Authentication for TCP-based Routing and Management Protocols
draft-bonica-tcp-auth-03

Status of this Memo

By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on May 20, 2006.

Copyright Notice

Copyright (C) The Internet Society (2005).

Abstract

This memo extends RFC 2385 to support time-based key rollover and multiple hashing algorithms. Operators can use the time-based key rollover feature to periodically update a key that is used to create authentication data for each TCP segment. Operators also can select
the hashing algorithm used to create authentication data depending upon the perceived threat level and the computational capabilities of their hardware platforms.

Table of Contents

1. Conventions Used In This Document 3
2. Introduction ... 3
3. Proposal .. 4
4. Syntax .. 6
5. Required Hash Algorithms 7
6. Implications ... 8
 6.1. Clock Synchronization 8
 6.2. Connectionless Resets 8
 6.3. Performance .. 8
 6.4. TCP Header Size 8
 6.5. Key Configuration 9
 6.6. Backwards Compatibility 9
7. Security Considerations 10
8. IANA Considerations 10
9. Acknowledgments ... 10
10. Normative References 10
Authors' Addresses .. 12
Intellectual Property and Copyright Statements 13
1. Conventions Used In This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC2119 [1].

2. Introduction

RFC 2385 [2] proposes a mechanism that secures BGP [3] sessions using MD5 [4] authentication. Specifically, RFC 2385 proposes a TCP MD5 Signature Option that can be appended to each TCP header. The MD5 Signature Option contains a 16-byte MD5 digest that serves as authentication data for the TCP segment. The MD5 digest is calculated over the following fields:

- the TCP pseudo-header
- the TCP header, excluding options, and assuming a checksum of zero
- the TCP segment data (if any)
- an independently-specified key, known to both TCPs and presumably connection-specific

To spoof a connection using the scheme described above, an attacker would not only have to guess TCP sequence numbers, but would also have had to obtain the key included in the MD5 digest. This key never appears in the connection stream, and the actual form of the key is determined by the application.

RFC 3562 [5] addresses key management considerations regarding the TCP MD5 Signature Option. Specifically, based upon the strength of the MD5 hashing algorithm, RFC 3562 recommends that keys SHOULD be changed at least every 90 days.

Unfortunately, the strategy described in RFC 2385 permits keys to be changed during the lifetime of a TCP connection only so long as the change is synchronized at both ends. This limitation has proven to be a significant deterrent to the deployment of the TCP MD5 Signature Option for BGP.

This document addresses the above mentioned limitation. It also extends the strategy proposed in RFC 2385 to allow for other hashing algorithms besides MD5.
3. Proposal

This document proposes a new TCP Enhanced Authentication Option that is used as follows.

Operators configure a key-chain for each protected TCP connection. Each key-chain contains a list of keys. Each key includes the following data items:

- an key identifier (integer [0..255])
- a shared secret
- a hash algorithm
- a start time

Each key in the key-chain must include a unique key identifier and a unique start time. Operators may configure a special "bail-out" key for each key-chain. The function of the "bail-out" key is described below.

Operators also configure a tolerance parameter that will be used on the receiving system. A description of the tolerance parameter is provided below.

Whenever TCP generates a segment, it searches the key-chain for the current key. If TCP does not find a current key, it discards the segment. The current key must have a start time that is less than or equal to the current time. If multiple keys meet that criteria, TCP will select one of them. Specifically, it will select the key that specifies the latest start time. If no key meets that criteria and a bail-out key is configured, the bail-out key will be chosen as the current key.

TCP then inserts the TCP Enhanced Authentication Option and calculates a message digest. It calculates a message digest by applying the hash algorithm from the selected key to the following items in the order that they are listed:

- the TCP pseudo-header
- the TCP header, including options, but with hash value set to zero for the purpose of computation and assuming a checksum of zero
- the TCP segment data (if any)
- the shared secret specified by the current key

For IPv4, the pseudo-header is described in RFC 793 [6]. It includes the 32-bit source IP address, the 32-bit destination IP address, the zero-extended protocol number (to form 16 bits), and the 16-bit segment length. Note that this includes use of IPv4 via IPv4-mapped IPv6 addresses, in which case the source and destination IP addresses are from the IPv4 portions of the IPv6 source and destination addresses, respectively.

For IPv6, the pseudo-header is described in RFC 2460 [7]. It includes the 128-bit source IPv6 address, the 128-bit destination IPv6 address, the zero-extended next header value (to form 32 bits), and the 32-bit segment length.

For any other network protocol, the pseudo-header is as described in the document that defines how upper-level protocols like TCP compute their checksums.

The header and pseudo-header are in network byte order. The nature of the shared secret is deliberately left unspecified, but it must be known by both ends of the connection. A particular TCP implementation will determine what the application may specify as the shared secret.

Having calculated the message digest, TCP updates the TCP Enhanced Authentication Option to include the message digest. TCP then calculates a checksum and forwards the segment to its TCP peer.

The TCP peer is also configured with a key-chain for the connection. Having received a TCP segment, the TCP peer scans its key-chain, searching for a key whose identifier matches that which was specified by the incoming TCP option. If the TCP peer finds that key and any of the following criteria are met, TCP uses the shared secret from that key to calculate a message digest:

- the key is current. That is, its start time is less than the current time and there is not a more recent key whose start time is less than the current time.

- the key will be current within the number of seconds specified by the tolerance parameter
- the key has been current within the number of seconds specified by the tolerance parameter

If the calculated message digest matches the message digest received in the incoming TCP segment, the segment is accepted. Otherwise, TCP declares an authentication failure and discards the datagram. An authentication failure MUST NOT produce any response back to the sender. Routers SHOULD log authentication failures.

Unlike other TCP extensions (e.g., the Window Scale option [8]), the absence of the option in the SYN,ACK segment must not cause the sender to disable its sending of authentication data. This negotiation is typically done to prevent some TCP implementations from misbehaving upon receiving options in non-SYN segments. This is not a problem for this option, since the SYN,ACK sent during connection negotiation will not be signed and will thus be ignored. The connection will never be made, and non-SYN segments with options will never be sent. More importantly, the sending of authentication data must be under the complete control of the application, not at the mercy of the remote host not understanding the option.

4. Syntax

The proposed TCP Enhanced Authentication Option has the following format:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     Kind      |     Length    |    Key  ID    | Message Digest|
|               |               |               |   (Octet 1)   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                                   |
|                       Message Digest                              |
|                        (octets 2-N)                               |
|                            //                                   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 1: Option Syntax

Kind: 8 bits

The Kind field identifies the TCP Enhanced Authentication Option. This value will be assigned by IANA.

Length: 8 bits
The Length field specifies the length of the TCP Enhanced Authentication Option, in octets. This count includes two octets representing the Kind and Length fields.

Key ID: 8 bits

The Key ID field identifies the key that was used to generate the message digest.

Message Digest: Variable length

A Message Digest that serves as authentication data for the TCP segment. The length of the Message Digest, and therefore, the length of the entire option, is determined by the hash algorithm.

Table 1 maps hash algorithms to the size of the digests that they produce. Permissible hash algorithms are not restricted to those listed in the table.

<table>
<thead>
<tr>
<th>Hash Algorithm</th>
<th>Octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD5 [4]</td>
<td>16</td>
</tr>
<tr>
<td>HMAC-MD5 [9]</td>
<td>16</td>
</tr>
<tr>
<td>HMAC-MD5-96</td>
<td>12</td>
</tr>
<tr>
<td>SHA-1 [10]</td>
<td>20</td>
</tr>
<tr>
<td>HMAC-SHA-1</td>
<td>20</td>
</tr>
<tr>
<td>HMAC-SHA-1-96</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 1

5. Required Hash Algorithms

All implementations MUST support one specific authentication algorithm. This algorithm will be chosen at a later date, but it will produce a hash value of 16 octets or less.

Furthermore, all implementations SHOULD support two additional authentication algorithms. These will be specified at a later date. One will be chosen for its strength and the other for computational efficiency.

Until authentication algorithms are chosen, experimental implementations SHOULD support MD5 and HMAC-SHA-1-96.
6. Implications

6.1. Clock Synchronization

Because the TCP Enhanced Authentication Option includes a key identifier, the strategy described herein is immune from most problems caused by poor clock synchronization. Clocks do not need to be synchronized between the sending and receiving systems. The only requirement is that the key used to generate the hash value on the sending system is also configured on the receiving system.

Receipt of a segment whose authentication data was generated using a stale key does not constitute an error. It may indicate only that clocks are not synchronized between the sending and receiving systems.

6.2. Connectionless Resets

A connectionless reset will be ignored by the receiver of the reset, since the originator of that reset does not know the key and therefore cannot generate the proper authentication data for the segment. This means, for example, that connection attempts by a TCP which is generating authentication data to a port with no listener will time out instead of being refused. Similarly, resets generated by a TCP in response to segments sent on a stale connection will also be ignored. Operationally this can be a problem since resets help some protocols recover quickly from peer crashes.

6.3. Performance

The performance hit in calculating digests may inhibit the use of this option. Performance will vary depending upon processor type, hash algorithm, packet size and number of hash calculations per second.

6.4. TCP Header Size

As with other options that are added to every segment, the size of the TCP Enhanced Authentication Option must be factored into the MSS offered to the other side during connection negotiation. Specifically, the size of the header to subtract from the MTU (whether it is the MTU of the outgoing interface or IP’s minimal MTU of 576 octets) is now increased by the size of the TCP Enhanced Authentication Option.

The total header size is also an issue. The TCP header specifies where segment data starts with a 4-bit field which gives the total size of the header (including options) in 32-byte words. This means
that the total size of the header plus option must be less than or equal to 60 octets. This leaves 40 octets for options.

As a concrete example, assume that a TCP implementation defaults to sending window-scaling for connections it initiates. The most loaded segment will be the initial SYN packet to start the connection. With a TCP Enhanced Authentication object using SHA-1 authentication, the SYN packet will contain the following:

-- 4 octets MSS option

-- 4 octets window scale option (3 octets padded to 4 in this implementation)

-- 24 octets for the TCP Enhanced Authentication Option (23 octets padded to 24 in this implementation)

-- 2 octets for end-of-option-list, to pad to a 32-bit boundary.

This sums to exactly 34 octets. This leaves only 6 octets for additional TCP options. Some longer options (e.g. Timestamp) would not fit in that space.

6.5. Key Configuration

It should be noted that the key configuration mechanism of routers may restrict the possible shared secrets that may be used between peers. It is strongly recommended that an implementation be able to support at minimum a shared secret composed of a string of printable ASCII of 80 octets or less, as this is current practice.

During the lifetime of a TCP connection, network operators may add or delete any key. However, the network operator must ensure that the active key is always configured on both TCP endpoints.

Network operators may choose to protect multiple connections with a single key chain. For example, a network operator may associate every TCP connection supporting iBGP with one key chain while associating a unique key chain with each TCP connection that supports eBGP.

In the future, a key chain exchange protocol may be specified to provision the keys described herein.

6.6. Backwards Compatibility

On any particular TCP connection, use of the TCP Enhanced Authentication Option precludes use of the TCP MD5 Signature Option.
However, use of the TCP Enhanced Authentication Option on one connection does not preclude the use of the TCP MD5 Signature Option on another connection by the same system.

7. Security Considerations

This document defines a weak but easily deployed security mechanism for TCP-based routing protocols. It is anticipated that future work will provide different stronger mechanisms for dealing with these issues.

8. IANA Considerations

IANA will assign a codepoint for the TCP Enhanced Authentication Option.

9. Acknowledgments

Thanks to Steve Bellovin, Ted Faber, Ross Callon, Kapil Jain and Ran Atkinson for their comments regarding this draft.

10. Normative References

Authors’ Addresses

Ronald P. Bonica
Juniper Networks
2251 Corporate Park Drive
Herndon, VA 20171
US
Phone: +1 571 203 1704
Email: rbonica@juniper.net

Andy Heffernan
Juniper Networks
1194 N. Mathilda Ave.
Sunnyvale, CA 94089
US
Phone: +1 408 745 2037
Email: ahh@juniper.net

Andrew Lange
Alcatel
USA
Phone:
Email: andrew.lange@alcatel.com

Sriram Viswanathan
Cisco Systems
170 W. Tasman Drive
San Jose, CA 95134
US
Phone: +1 408 527-8830
Email: sriram_v@cisco.com
Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

Disclaimer of Validity

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

Copyright (C) The Internet Society (2005). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

Acknowledgment

Funding for the RFC Editor function is currently provided by the Internet Society.