11

12

13

14

15

16

17

18

19

20

21

22
23

24

25

26

27

28

29

30

31

32

33

Internet Engineering Task Force SIP WG

INTERNET-DRAFT Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler

draft-ietf-sip-rfc2543bis-07.ps Various places
February 4, 2002
Expires: Aug 2002

SIP: Session Initiation Protocol

Status of this Memo

This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its
working groups. Note that other groups may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced,
or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”
The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1lid-abstracts.txt
To view the list Internet-Draft Shadow Directories, $eg://www.ietf.org/shadow.html.

Copyright Notice
Copyright (c) The Internet Society (2002). All Rights Reserved.

Abstract

The Session Initiation Protocol (SIP) is an application-layer control (signaling) protocol for creat-
ing, modifying and terminating sessions with one or more participants. These sessions include Internet
telephone calls, multimedia distribution and multimedia conferences.

SIP invitations used to create sessions carry session descriptions which allow participants to agree on
a set of compatible media types. SIP makes use of elements called proxy servers to help route requests to
the users current location, authenticate and authorize users for services, implement provider call routing
policies, and provide features to users. SIP also provides a registration function that allows them to
upload their current location for use by proxy servers. SIP runs ontop of several different transport

protocols.

Contents

1 Introduction 8
2 Overview of SIP Functionality 8
3 Terminology 9
4 Overview of Operation 9
5 Structure of the Protocol 14
6 Definitions 16
7 SIP Messages 20

7.1 Requests 20

7.2 RESPONSES o o e e e e e e 21

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

34 7.3 HeaderFields e 22
35 7.3.1 HeaderFieldFormat 22
36 7.3.2 Header Field Classification 24

37 7.3.3 CompactForm e e e e 24
38 7.4 BodieS e 24
39 7.4.1 MessageBody Type e 25

40 7.4.2 MessageBodylLength 25

a 7.5 Framing SIPmMessages o 0 i i e e 25

22 8 General User Agent Behavior 25

a3 8.1 UACBehavior. e e e 26
a4 8.1.1 Generatingthe Request e 26
a5 8.1.2 Sendingthe Request 29
46 8.1.3 Processing Responses. 30

a7 8.2 UASBehavior e 32
a8 8.2.1 Method Inspection 32
49 8.2.2 HeaderlInspection e 32
50 8.2.3 Content Processing... v o v i i 34

51 8.2.4 Applying EXtensions e e 34
52 8.25 Processingthe Request 34

53 8.2.6 Generatingthe Response i i e 34

54 8.2.7 Stateless UAS Behavior 35
55 8.3 Redirect Servers e 36
ss 9 Canceling a Request 37

57 9.1 ClientBehavior e 37
58 9.2 ServerBehavior e 38
so 10 Registrations 38

60 10.1 OVEIVIEW o o e e e e e 38
61 10.2 Constructing thREGISTERRequest e 39
62 10.2.1 Adding Bindings e 41
63 10.2.2 Removing Bindings 41
64 10.2.3 Fetching Bindings e e 42
65 10.2.4 Refreshing Bindings e e 42
66 10.2.5 Settingthe Internal Clock 42

67 10.2.6 Discoveringa Reqistrar e e 42
68 10.2.7 Transmittinga Request. 43

69 10.2.8 Error RESpoNSES 0 o e e e e e e e 43
70 10.3 ProcessinREGISTER Requests i i 43
7 11 Querying for Capabilities 45

7 11.1 Construction oDPTIONS Request e 45
73 11.2 Processing of OPTIONS Request i 46

72 12 Dialogs 47

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 2]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

75 12.1 CreationofaDialog. e 47
76 12.1.1 UASbehavior e 48
7 12.1.2 UAC behavior 48
78 12.2 RequestswithinaDialog e 49
79 12.2.1 UACBehavior e e 49
80 12.2.2 UASbehavior e 50
81 12.3 TerminationofaDialog 51
82 13 Initiating a Session 51

83 13.1 OVEIVIEW o o e e e e e 51
84 13.2 Caller ProCcessing o v v v e e e e e 52
85 13.2.1 Creatingthe InitidNVITE i 52

86 13.2.2 ProcessintNVITEResponses it 54
87 13.3 Callee ProCessing o o v v v e e e e 55
88 13.3.1 Processing of tHBIVITE i e 55

ss 14 Modifying an Existing Session 57

90 14.1 UACBehavior e e e 57
o1 14.2 UAS Behavior o e e e e e 58
92 15 Terminating a Session 59

93 15.1 Terminating a Dialog withBYE Request 60
94 15.1.1 UACBehavior e 60
95 15.1.2 UASBehavior e 60
96 16 Proxy Behavior 61

97 16.1 OVEIVIEW o o e e e e e e e e e 61
98 16.2 Stateful Proxy e e e e e e 61
99 16.3 Request Validation 62
100 16.4 Making a Routing Decision 64
101 16.5 Request Processing. o e 66
102 16.6 Response Processing. o o i e e e e e e 71
103 16.7 Processing TiImer C i e 76
104 16.8 Handling Transport Errors e e e e e e e e e e 76
105 16.9 CANCEL Processing. o 0 i i i e e e e e e 76
106 16.10Stateless Proxy 76
107 16.11Summary of Proxy Route Processing e 77

108 16.11.1Examples o 78
109 17 Transactions 81

110 17.1 Client Transaction e e e 83
111 17.1.1 INVITE Client Transaction et 83
112 17.1.2 nonNVITE Client Transaction 87
113 17.1.3 Matching Responses to Client Transactions 88
114 17.1.4 Handling Transport Errors e 89
115 17.2 Server Transaction 89

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 3]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

116 17.2.1 INVITE Server Transaction it i e 89
17 17.2.2 nonNVITE Server Transaction 91
118 17.2.3 Matching Requests to Server Transactions 93
119 17.2.4 Handling Transport Errors e e 93
120 17.3 RTTEStimation e 94
121 18 Reliability of Provisional Responses 94

122 18.1 UASBehavior e 95
123 18.2 UAC Behavior e e 96
14 19 Transport 97

125 19.1 Clients e 97
126 19.1.1 Sending Requests e 97
127 19.1.2 Receiving RESpONSES. 99

128 19.2 SeIVers . . . o e 99
129 19.2.1 Receiving Requests... 99

130 19.2.2 Sending RESPONSES i i i e e e e e e 99
131 19.3 Framing o 100
132 19.4 ErrorHandling e e e e 100
133 20 Usage of HTTP Authentication 100

134 20.1 Framework e e 101
135 20.2 User-to-User Authentication e 102
136 20.3 Proxy-to-User Authentication e 103
137 20.4 The Digest Authentication Scheme 105
138 21 SIMIME 106

139 21.1 S/MIME Certificates. e 106
140 21.2 SIMIME Key Exchange 107
141 21.3 Securing MIME bodies 108
142 21.4 Tunneling SIPINMIME 109

143 21.4.1 Integrity and Confidentiality Properties of SIP Headers. 109

144 21.4.2 Tunneling Integrity and Authentication 110

145 21.4.3 Tunneling Encryption. e e 112
146 22 Security Considerations 113

147 22.1 Attacksand ThreatModels 113
148 22.1.1 Registration Hijacking 113
149 22.1.2 Impersonating aServer e e e e e e 114
150 22.1.3 Tampering with Message Bodies 114

151 22.1.4 Tearing DOWNn SESSIONS. o v i e e e e e e 115
152 22.1.5 Denial of Service and Amplification oL 115
153 22.2 Security Mechanisms e 116
154 22.2.1 Transport and Network Layer Security, 116

155 22.2.2 HTTP Authentication 117
156 22.2.3 SIMIME 117

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 4]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

157 22.3 Implementing Security Mechanisms e 117
158 22.3.1 Requirements for Implementersof SIP. 117
159 22.3.2 Security Solutions 118
160 22,4 Limitations L e e 121
161 22.4.1 HTTPDIgest e e e e e e e e e e e 121
162 22.4.2 SIMIME e 122
163 22.4.3 TLS . . . 122
164 225 Privacy 123
165 23 Common Message Components 123
166 23.1 SIP Uniform Resource Indicators 123
167 23.1.1 SIPURICoOmponents. e e e e 123
168 23.1.2 Character Escaping Requirements 126
169 23.1.3 Example SIPURIS 127
170 23.1.4 SIPURICOMPArison e e e e e e e 127
i 23.1.5 Forming RequestsfromaSIPURI 128
172 23.1.6 Relating SIPURIsandtelURLs0.... 129
173 232 OptON TAGS .« « o o v e e e 130
174 23.3 Ta0S . . . o e e e 131
175 24 Header Fields 131

176 24.1 ACCEPL . . o o 134
177 24.2 Accept-Encoding e e 134
178 24.3 Accept-Language e e e e e e 135
179 24.4 Alert-Info L e e 135
180 245 Allow . . L e 135
181 24.6 Authentication-Info 136
182 247 Authorization L e 136
183 24.8 Call-ID e e 136
184 249 Call-Info e 136
185 24.10C0NtACE L e 137
186 24.11Content-Disposition e e e 137
187 24.1Content-Encoding 138
188 24.13ontent-Language e e e e 138
189 24.14Content-Length L 138
190 24 18C0oNtent-TYPe e 139
191 2406CSEQ -« v v e 139
192 24.1DAtE e e e e e e e e 139
193 24 18rror-Info . . L L L e 139
194 24.0FEXPITES . . o o 140
195 2420FIOM . . . L e e e 140
196 24.21N-Reply-TO o o 141
197 242Max-Forwards e 141
198 2423VIN-EXpIres 141
199 24 2AMIME-Version e e 141

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 5]

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

239

240

241

242

243

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

25

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 6]

24.250rganization L e e e e e e e 141
24.26PrIONtY . . . L e e e e e e 142
24.27Proxy-Authenticate 142
24.28roxy-Authorization L e e 142
242Proxy-Require e 143
243RACK . . e 143
24.31Record-Route L e 143
243Reply-TO o o e 143
243REQUITE . . . o 144
24.34Retry-After e e e 144
243R0ULE . . . e 144
2436RSEQ . . . e 144
24.3TSEIVEN . . o o e 144
24.385Ubject 145
24.3upported e e e e e e 145
2440TIMESIAMP o o 145
244TT0 o e 145
24.420nsupported L L 146
24.43User-Agent L L e e e e e e e e e e 146
24400A e e 146
24.48NaArMiNg e e e e e e e e e e e 147
24 ABNWW-Authenticate e e 148
Response Codes 148
25.1 Provisional IXX e e e e 148
25.1.1 100 Trying . . . o o o o e 149
25.1.2 180 RINGING o o e e 149
25.1.3 181 CalllsBeingForwarded 149
25.1.4 182 Queued e 149
25.1.5 183 SesSion Progress v . i i e e e e e 149
25.2 Successful 2xXX L e e 149
25.2.1 200 0K e 149
25.3 Redirection 3XX e e e e e e 149
25.3.1 300 Multiple Choices e 149
25.3.2 301 Moved Permanently 150
25.3.3 302 Moved Temporarily. e 150
25.3.4 305USe ProxXy o i i e e 150
25.3.5 380 Alternative Service 150
25.4 Request Failure 4xx e e e e 150
25.4.1 400 Bad Request 151
25.4.2 401 Unauthorized e 151
25.4.3 402 PaymentRequired 151
25.4.4 403 Forbidden e 151
25.45 404 NotFound 151
25.4.6 405 Method Not Allowed L 151

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

260

261

262

263

264

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

284

285

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

25.4.7 406 Not Acceptable... oo 151
25.4.8 407 Proxy Authentication Required 151
25.4.9 408 Request TImeout e e 152
25410410 GONE e 152
25.4.11413 Request Entity Too Large. 152
25.4.12414 Request-URI TooLong i i e 152
25.4.13415 Unsupported Media Type. o o o i o 152
25.4.14 416 Unsupported URIScheme, 152
25.4.15420 Bad EXtension e e 152
25.4.16 421 Extension Required e e e e 152
25.4.17 423 Registration Too Brief 153
25.4.18 480 Temporarily Unavailable 153
25.4.19 481 Call/Transaction Does NotExist. 153
25.4.20482 Loop Detected 153
25421483 TooMany HOpSs e e e 153
25.4.22 484 Address Incomplete L 153
25.4.23485 AMbIguUOUS L 153
25.4.24 486 Busy Here 154
25.4.25487 Request Terminated e 154
25.4.26 488 Not Acceptable Here. 154
25.4.27491 RequestPending 154
25.4.28493 Undecipherable 154
255 ServerFailure 5xx L 154
25.5.1 500 Server Internal Error 155
25.5.2 501 NotImplemented 155
2553 B02Bad Gateway 155
25.5.4 503 Service Unavailable 155
25.5.,5 504 Server Time-out e 155
25.5.6 505 Version Not Supported 155
25.5.7 513 Message TooLarge e e e 155
25.6 Global Failures 6XX o e e e 156
25.6.1 600 Busy Everywhere 156
25.6.2 603 Decline e 156
25.6.3 604 Does Not Exist Anywhere 156
25.6.4 606 Not Acceptable... e 156
26 Examples 156
26.1 Registration e 156
26.2 SesSioN Setup L e 158
27 Augmented BNF for the SIP Protocol 162
27.1 BasicRules e 162
28 IANA Considerations 177
28.1 OptioNn TagS v v e e e e e e e e e 178

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 7]

286

287

288

289

290

291

292

293

294

295

296

297

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

28.1.1 Registrationof 100rel. e 178
28.2 Warn-Codes e 179
28.3 Header Field Names e 179
28.4 Methodand Response Codes i i i i i i 179
29 Changes From RFC 2543 180
29.1 Major Functional Changes 180
29.2 Minor Functional Changes e 183
30 Acknowledgments 183
31 Authors’ Addresses 184
32 Normative References 185
33 Non-Normative References 187

1 Introduction

There are many applications of the Internet that require the creation and management of a session, where
a session is considered an exchange of data between an association of participants. The implementation
of these services is complicated by the practices of participants; users may move between endpoints, they
may be addressable by multiple names, and they may communicate in several different media - sometimes
simultaneously. Numerous protocols have been authored that carry various forms of real-time multimedia
session data such as voice, video, or text messages. SIP works in concert with these protocols by enabling
Internet endpoints (called “user agents”) to discover one another and to agree on a characterization of a
session they would like to share. For locating prospective session participants, and for other functions, SIP
enables creation of an infrastructure of network hosts (called “proxy servers”) to which user agents can send
registrations, invitations to sessions and other requests. SIP is an agile, general-purpose tool for creating,
modifying and terminating sessions that works independently of underlying transport protocols and without
dependency on the type of session that is being established.

2 Overview of SIP Functionality

The Session Initiation Protocol (SIP) is an application-layer control protocol that can establish, modify, and
terminate multimedia sessions (conferences) such as Internet telephony calls. SIP can also invite participants
to already existing sessions, such as multicast conferences. Media can be added to (and removed from)
an existing session. SIP transparently supports name mapping and redirection services, which supports
personal mobilityf29, p. 44] - users can maintain a single externally visible identifier (SIP URI) regardless
of their network location.

SIP supports five facets of establishing and terminating multimedia communications:

User location: determination of the end system to be used for communication;

User availability: determination of the willingness of the called party to engage in communications;

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 8]

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

User capabilities: determination of the media and media parameters to be used;
Session setup:‘ringing”, establishment of session parameters at both called and calling party;

Session managementincluding transfer and termination of sessions, modifying session parameters, and
invoking services.

SIP is not a vertically integrated communications system. SIP is rather a component that can be used with
other IETF protocols to build a complete multimedia architecture. Typically, these architectures will include
protocols such as the real-time transport protocol (RTP) (RFC 1889 [32]) for transporting real-time data and
providing QoS feedback, the real-time streaming protocol (RTSP) (RFC 2326 [35]) for controlling delivery
of streaming media, the Media Gateway Control Protocol (MEGACO) (RFC 3015 [43]) for controlling
gateways to the Public Switched Telephone Network (PSTN), and the session description protocol (SDP)
(RFC 2327 [11]) for describing multimedia sessions. Therefore, SIP should be used in conjunction with
other protocols in order to provide complete services to the users. However, the basic functionality and
operation of SIP does not depend on any of these protocols.

SIP does not provide services. SIP rather provides primitives that can be used to implement different
services. For example, SIP can locate a user and deliver an opaque object to his current location. If this
primitive is used to deliver a session description written in SDP, for instance, the parameters of a session
can be agreed between endpoints. If the same primitive is used to deliver a photo of the caller as well as
the session description, a "caller ID” service can be easily implemented. As this example shows, a single
primitive is typically used to provide several different services.

SIP does not offer conference control services such as floor control or voting and does not prescribe how
a conference is to be managed. SIP can be used to initiate a session that uses some other conference control
protocol. Since SIP messages and the sessions they establish can pass through entirely different networks,
SIP cannot, and does not, provide any kind of network resource reservation capabilities.

The nature of the services provided by SIP make security particularly important. To that end, SIP
provides a suite of security services, which include denial-of-service prevention, authentication (both user
to user and proxy to user), integrity protection, and encryption and privacy services.

SIP works with both IPv4 and IPv6.

3 Terminology

In this document, the key wordsfUsT”, “ MUST NOT”, “ REQUIRED’, “ SHALL", “ SHALL NOT”, “ SHOULD",
“SHOULD NOT’, “RECOMMENDED’, “MAY”, and “OPTIONAL” are to be interpreted as described in RFC
2119 [24] and indicate requirement levels for compliant SIP implementations.

4 Overview of Operation

This section introduces the basic operations of SIP using simple examples. This section is tutorial in nature
and does not contain any normative statements.

The first example shows the basic functions of SIP: location of an end point, signal of a desire to com-
municate, negotiation of session parameters to establish the session, and teardown of the session once es-
tablished.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 9]

357

358

359

360

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Figure 1 shows a typical example of a SIP message exchange between two users, Alice and Bob. (Each
message is labeled with the letter “F” and a number for reference by the text.) In this example, Alice uses a
SIP application on her PC (referred to as a softphone) to call Bob on his SIP phone over the Internet. Also
shown are two SIP proxy servers that act on behalf of Alice and Bob to facilitate the session establishment.
This typical arrangement is often referred to as the “SIP trapezoid” as shown by the geometric shape of the
dashed lines in Figure 1.

= =
- e * S ~
-7 atlanta.com biloxi.com Proxy Sso
L7 Proxy Server Server Sso
3 g ’ -) @
Alice’s PC Bob’s SIP Phone
INVITE FI
- > INVITE F2
< 100 Trying £3 > INVITE £4
100 Trying F5 >
180 Ringing F6
180 Ringing £7 <

180 Ringing F8

200 OK F9

200 OK F10
200 OK F11 <

ACK F12

RTP Media Session

>
>

BYE F13

A AT A A

200 OK F14

>

Figure 1: SIP session setup example with SIP trapezoid

Alice “calls” Bob using his SIP identity, a type of Uniform Resource Identifier (URI) called a SIP URI
and defined in Section 23.1. It has a similar form to an email address, typically containing a username and
a host name. In this case, it is sip:bob@biloxi.com, where biloxi.com is the domain of Bob’s SIP service
provider (which can be an enterprise, retail provider, etc). Alice also has a SIP URI of sip:alice@atlanta.com.
Alice might have typed in Bob’s URI or perhaps clicked on a hyperlink or an entry in an address book.

SIP is based on an HTTP-like request/response transacton model. Each transaction consists of a request
that invokes a particular “Method”, or function, on the server, and at least one response. In this example, the
transaction begins with Alice’s softphone sendindd¥ITE request addressed to Bob’s SIP URIVITE
is an example of a SIP method which specifies the action that the requestor (Alice) wants the server (Bob)
to take. ThelNVITE request contains a number of header fields. Header fields are named attributes that
provide additional information about a message. The ones presentNWV#FE include a unique identifier
for the call, the destination address, Alice’s address, and information about the type of session that Alice
wishes to establish with Bob. THNVITE (message F1 in Figure 1) might look like this:

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK776asdhds
To: Bob <sip:bob@biloxi.com>

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 10]

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

From: Alice <sip:alice@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710

CSeq: 314159 INVITE

Contact: <sip:alice@pc33.atlanta.com>
Max-Forwards: 70

Content-Type: application/sdp

Content-Length: 142

(Alice’s SDP not shown)

The first line of the text-encoded message contains the method nEME E). The lines that follow
are a list of header fields. This example contains a minimum required set. The headers are briefly described
below:

Via contains the address (pc33.atlanta.com) on which Alice is expecting to receive responses to this
request. It also contains a branch parameter that contains an identifier for this transaction.

To contains a display name (Bob) and a SIP URI (sip:bob@biloxi.com) towards which the request was
originally directed. Display nhames are described in RFC 2822 [20].

From also contains a display name (Alice) and a SIP URI (sip:alice@atlanta.com) that indicate the
originator of the request. This header field also haagaparameter containing a pseudorandom string
(1928301774) that was added to the URI by the softphone. It is used for identification purposes.

Call-ID contains a globally unique identifier for this call, generated by the combination of a pseudoran-
dom string and the softphone’s IP address. The combination dbtiferom, andCall-ID completely define
a peer-to-peer SIP relationship betwee Alice and Bob, and is referred to as a “dialog”.

CSeq or Command Sequence contains an integer and a method nameSéhgenumber is incremented
for each new request, and is a traditional sequence number.

Contact contains a SIP URI that represents a direct route to reach or contact Alice, usually composed
of a username at an FQDN. While an FQDN is preferred, many end systems do not have registered domain
names, so IP addresses are permitted. Whilévikeheader field tells other elements where to send the
response, th€ontact header field tells other elements where to send future requests for this dialog.

Content-Type contains a description of the message body (not shown).

Content-Length contains an octet (byte) count of the message body.

The complete set of SIP header fields is defined in Section 24.

The details of the session, type of media, codec, sampling rate, etc. are not described using SIP. Rather,
the body of a SIP message contains a description of the session, encoded in some other protocol format. One
such format is Session Description Protocol (SDP) [11]. This SDP message (nhot shown in the example) is
carried by the SIP message in a way that is analogous to a document attachment being carried by an email
message, or a web page being carried in an HTTP message.

Since the softphone does not know the location of Bob or the SIP server in the biloxi.com domain, the
softphone sends tHBIVITE to the SIP server that serves Alice’s domain, atlanta.com. The IP address of the
atlanta.com SIP server could have been configured in Alice’s softphone, or it could have been discovered by
DHCP, for example.

The atlanta.com SIP server is a type of SIP server known as a proxy server. A proxy server receives
SIP requests and forwards them on behalf of the requestor. In this example, the proxy server receives the
INVITE request and sends a 100 (Trying) response back to Alice’s softphone. The 100 (Trying) response
indicates that th&NVITE has been received and that the proxy is working on her behalf to roulid VWEE

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 11]

423

424

425

426

427

428

429

430

431

432

434

435

436

437

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

460

461

462

463

464

465

466

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

to the destination. Responses in SIP use a three-digit code followed by a descriptive phrase. This response
contains the samio, From, Call-ID, andCSeq as thelNVITE, which allows Alice’s softphone to correlate

this response to the seMIVITE. The atlanta.com proxy server locates the proxy server at biloxi.com,
possibly by performing a particular type of DNS (Domain Name Service) lookup to find the SIP server
that serves the biloxi.com domain. This is described in [2]. As a result, it obtains the IP address of the
biloxi.com proxy server and forwards, or proxies, tN&/ITE request there. Before forwarding the request,

the atlanta.com proxy server adds an additidfialheader field that contains its own IP address (I TE

already contains Alice’s IP address in the fih). The biloxi.com proxy server receives théVITE and
responds with a 100 (Trying) response back to the Atlanta.com proxy server to indicate that it has received
theINVITE and is processing the request. The proxy server consults a database, generically called a location
service, that contains the current IP address of Bob. (We shall see in the next section how this database can
be populated.) The biloxi.com proxy server adds ancothatheader with its own IP address to the&VITE

and proxies it to Bob’s SIP phone.

Bob’s SIP phone receives thRVITE and alerts Bob to the incoming call from Alice so that Bob can
decide whether or not to answer the call, i.e., Bob’s phone rings. Bob’s SIP phone sends an indication of
this in a 180 (Ringing) response, which is routed back through the two proxies in the reverse direction.
Each proxy uses théia header to determine where to send the response and removes its own address from
the top. As a result, although DNS and location service lookups were required to route théNIMtiBE,
the 180 (Ringing) response can be returned to the caller without lookups or without state being maintained
in the proxies. This also has the desirable property that each proxy that sdb¥/th& will also see all
responses to th&NVITE.

When Alice’s softphone receives the 180 (Ringing) response, it passes this information to Alice, perhaps
using an audio ringback tone or by displaying a message on Alice’s screen.

In this example, Bob decides to answer the call. When he picks up the handset, his SIP phone sends a
200 (OK) response to indicate that the call has been answered. The 200 (OK) contains a message body with
the SDP media description of the type of session that Bob is willing to establish with Alice. As a result, there
is a two-phase exchange of SDP messages; Alice sent one to Bob, and Bob sent one back to Alice. This
two-phase exchange provides basic negotiation capabilities and is based on a simple offer/answer model of
SDP exchange. If Bob did not wish to answer the call or was busy on another call, an error response would
have been sent instead of the 200 (OK), which would have resulted in no media session being established.
The complete list of SIP response codes is in Section 25. The 200 (OK) (message F9 in Figure 1) might
look like this as Bob sends it out:

SIP/2.0 200 OK

Via: SIP/2.0/UDP serverl0.biloxi.com;branch=z9hG4bKnashds8
Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;branch=z9nG4bK77ef4c2312983.1
Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK776asdhds
To: Bob <sip:bob@biloxi.com>;tag=a6¢c85cf

From: Alice <sip:alice@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e66710

CSeq: 314159 INVITE

Contact: <sip:bob@192.0.2.8>

Content-Type: application/sdp

Content-Length: 131

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 12]

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

(Bob’s SDP not shown)

The first line of the response contains the response code (200) and the reason phrase (OK). The remain-
ing lines contain header fields. Th&a header fieldsJo, From, Call- ID, andCSeq are all copied from
the INVITE request. (There are thrada headers - one added by Alice’s SIP phone, one added by the
atlanta.com proxy, and one added by the biloxi.com proxy.) Bob’s SIP phone has addgpeaameter to
the To header field. This tag will be incorporated by both User Agents into the dialog and will be included
in all future requests and responses in this call. Thatact header field contains a URI at which Bob can
be directly reached at his SIP phone. T®entent-Type and Content-Length refer to the message body
(not shown) that contains Bob's SDP media information.

In additon to DNS and location service lookups shown in this example, proxy servers can make flexible
“routing decisions” to decide where to send a request. For example, if Bob’s SIP phone returned a 486 (Busy
Here) response, the biloxi.com proxy server could proxylMMITE to Bob’s voicemail server. A proxy
server can also send #NVITE to a number of locations at the same time. This type of parallel search is
known as “forking”.

In this case, the 200 (OK) is routed back through the two proxies and is received by Alice’s softphone
which then stops the ringback tone and indicates that the call has been answered. Finally, an acknowledge-
ment messag@&\CK, is sent by Alice to Bob to confirm the reception of the final response (200 (OK)). In this
example, theACK is sent directly from Alice to Bob, bypassing the two proxies. This is because, through
the INVITE/200 (OK) exchange, the two SIP user agents have learned each other’s IP address through the
Contact header fields, which was not known when the initlVITE was sent. The lookups performed by
the two proxies are no longer needed, so they drop out of the call flow. This complelis¥/th&/200/ACK
three-way handshake used to establish SIP sessions and is the end of the transaction. Full details on session
setup are in Section 13.

Alice and Bob’s media session has now begun, and they send media packets using the format agreed to
in the exchange of SDP. In general, the end-to-end media packets take a different path from the SIP signaling
messages.

During the session, either Alice or Bob may decide to change the characteristics of the media session.
This is accomplished by sending aliVITE containing a new media description. If the change is accepted
by the other party, a 200 (OK) is sent, which is itself responded to wih@K. This reiNVITE references
the existing dialog so the other party knows that it is to modify an existing session instead of establishing a
new session. If the change is not accepted, an error response, such as a 406 (Not Acceptable), is sent, which
also receives aACK. However, the failure of the riNVITE does not cause the existing call to fail - the
session continues using the previously negotiated characteristics. Full details on session modification are in
Section 14.

At the end of the call, Bob disconnects (hangs up) first, and gener&&&anessage. ThiBYE is
routed directly to Alice’s softphone, again bypassing the proxies. Alice confirms receipt B¥tavith a
200 (OK) response, which terminates the session anBtietransaction. NACK is sent - arACK is only
sent in response to a response tdMXITE request. The reasons for this special handlingN/ITE will
be discussed later, but relate to the reliability mechanisms in SIP, the length of time it can take for a ringing
phone to be answered, and forking. For this reason, request handling in SIP is often classified as either
INVITE or non-INVITE, referring to all other methods besid®&VITE. Full details on session termination
are in Section 15.

Full details of all the messages shown in the example of Figure 1 are shown in Section 26.2.

In some cases, it may be useful for proxies in the SIP signaling path to see all the messaging between

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 13]

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

5562

553

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

the endpoints for the duration of the session. For example, if the biloxi.com proxy server wished to remain
in the SIP messaging path beyond the initkdY/ITE, it would add to thdNVITE a required routing header

field known asRecord-Route that contained a URI resolving to the proxy. This information would be
received by both Bob’s SIP phone and (due to Rexord-Route header field being passed back in the

200 (OK)) Alice’s softphone and stored for the duration of the dialog. The biloxi.com proxy server would
then receive and proxy th&CK, BYE, and 200 (OK) to th&YE. Each proxy can independently decide to
receive subsequent messaging, and that messaging will go through all proxies that elect to receive it. This
capability is frequently used for proxies that are providing mid-call features.

Registration is another common operation in SIP. Registration is one way that the biloxi.com server
can learn the current location of Bob. Upon initialization, and at periodic intervals, Bob’s SIP phone sends
REGISTER messages to a server in the biloxi.com domain known as a SIP registraRHGETER
messages associate Bob’s SIP URI (sip:bob@biloxi.com) with the machine he is currently logged in at
(conveyed as a SIP URI in tHeontact header). The registrar writes this association, also called a binding,
to a database, called thacation servicewhere it can be used by the proxy in the biloxi.com domain. Often,

a registrar server for a domain is co-located with the proxy for that domain. It is an important concept that
the distinction between types of SIP servers is logical, not physical.

Bob is not limited to registering from a single device. For example, both his SIP phone at home and
the one in the office could send registrations. This information is stored together in the location service and
allows a proxy to perform various types of searches to locate Bob. Similarly, more than one user can be
registered on a single device at the same time.

The location service is just an abstract concept. It generally contains information that allows a proxy to
input a URI and get back a translated URI that tells the proxy where to send the request. Registrations are
one way to create this information, but not the only way. Arbitrary mapping functions can be programmed,
at the discretion of the administrator.

Finally, it is important to note that in SIP, registration is used for routing incoming SIP requests and
has no role in authorizing outgoing requests. Authorization and authentication are handled in SIP either
on a request-by-request, challenge/response mechanism, or using a lower layer scheme as discussed in
Section 22.

The complete set of SIP message details for this registration example is in Section 26.1.

Additional operations in SIP, such as querying for the capabilities of a SIP server or clientQRing
TIONS, canceling a pending request usiGfANCEL, or supporting reliability of provisional responses
usingPRACK will be introduced in later sections.

5 Structure of the Protocol

SIP is structured as a layered protocol, which means that its behavior is described in terms of a set of fairly
independent processing stages with only a loose coupling between each stage. The protocol is structured
into layers for the purpose of presentation and conciseness; it allows the grouping of functions common
across elements into a single place. It does not dictate an implementation in any way. When we say that an
element “contains” a layer, we mean it is compliant to the set of rules defined by that layer.

Not every element specified by the protocol contains every layer. Furthermore, the elements specified
by SIP are logical elements, not physical ones. A physical realization can choose to act as different logical
elements, perhaps even on a transaction-by-transaction basis.

The lowest layer of SIP is its syntax and encoding. Its encoding is specified using a BNF. The complete
BNF is specified in Section 27. However, a basic overview of the structure of a SIP message can be found

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 14]

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

in Section 7. This section provides enough understanding of the format of a SIP message to facilitate
understanding the remainder of the protocol.

The next higher layer is the transport layer. This layer defines how a client takes a request and physically
sends it over the network, and how a response is sent by a server and then received by a client. All SIP
elements contain a transport layer. The transport layer is described in Section 19.

The next higher layer is the transaction layer. Transactions are a fundamental component of SIP. A
transaction is a request, sent by a client transaction (using the transport layer), to a server transaction, along
with all responses to that request sent from the server transaction back to the client. The transaction layer
handles application layer retransmissions, matching of responses to requests, and application layer timeouts.
Any task that a UAC accomplishes takes place using a series of transactions. Discussion of transactions can
be found in Section 17. User agents contain a transaction layer, as do stateful proxies. Stateless proxies do
not contain a transaction layer.

The transaction layer has a client component (referred to as a client transaction), and a server component
(referred to as a server transaction), each of which are represented by an FSM that is constructed to process
a particular request. The layer on top of the transaction layer is called the transaction user (TU), of which
there are several types. When a TU wishes to send a request, it creates a client transaction instance and
passes it the request along with the destination IP address, port, and transport to which to send the request.

A TU which creates a client transaction can also cancel it. When a client cancels a transaction, it requests
that the server stop further processing, revert to the state that existed before the transaction was initiated,
and generate a specific error response to that transaction. This is done @ANGEL request, which
constitutes its own transaction, but references the transaction to be cancelled. Cancellation is described in
Section 9.

There are several different types of transaction users. A UAC contains a UAC core, a UAS contains a
UAS core, and a proxy contains a proxy core. The behavior of the UAC and UAS cores depend largely on
the method. However, there are some common rules for all methods. These rules are captured in Section 8.
They primarily deal with construction of a request, in the case of a UAC, and processing of that request and
generation of a response, in the case of a UAS.

UAC and UAS core behavior for tHREGISTER method is described in Section 10. Registrations play
an important role in SIP. In fact, a UAS that handleRBGISTER is given a special hame - a registrar -
and it is described in that section.

UAC and UAS core behavior for tr@PTIONS method, used for determining the capabilities of a UA,
are described in Section 11.

Certain other requests are sent withidialog. A dialog is a peer-to-peer SIP relationship between two
user agents that persists for some time. The dialog facilitates sequencing of messages and proper routing
of requests between the user agents. W& TE method is the only way defined in this specification to
establish a dialog. When a UAC sends a request that is within the context of a dialog, it follows the common
UAC rules as discussed in Section 8, but also the rules for mid-dialog requests. Section 12 discusses dialogs
and presents the procedures for their construction, and maintenance, in addition to construction of requests
within a dialog.

The UAS core can generate provisional responses to requests, which are responses that provide ad-
ditional information about the request processing but do not indicate completion. Normally, provisional
responses are not transmitted reliably. However, an optional mechanism exists for them to be transmitted
reliably. This mechanism makes use of a method ca#BACK, sent as a separate transaction within the
dialog between the UAC and UAS, which is used to acknowledge a reliable provisional response.

The most important method in SIP is the¢VITE method, which is used to establish a session between

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 15]

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

participants. A session is a collection of participants, and streams of media between them, for the purposes
of communication. Section 13 discusses how sessions are initiated, resulting in one or more SIP dialogs.
Section 14 discusses how characteristics of that session are maodified through the ub&\OT&Tequest
within a dialog. Finally, section 15 discusses how a session is terminated.

The procedures of Sections 8, 10, 11, 12, 13, 14, and 15 deal entirely with the UA core (Section 9
describes cancellation, which applies to both UA core and proxy core). Section 16 discusses the proxy
element, which facilitates routing of messages between user agents.

6 Definitions

This specification uses a number of terms to refer to the roles played by participants in SIP communications.
The terms and generic syntax of URI and URL are defined in RFC 2396 [13]. The following terms have
special significance for SIP.

Back-to-Back user agent: A back-to-back user agent (B2BUA) is a logical entity that receives a request
and processes it as an user agent server (UAS). In order to determine how the request should be
answered, it acts as an user agent client (UAC) and generates requests. Unlike a proxy server, it
maintains dialog state and must participate in all requests sent on the dialogs it has established. Since
it is a concatenation of a UAC and UAS, no explicit definitions are needed for its behavior.

Call: A callis an informal term that refers to a dialog between peers generally set up for the purposes of a
multimedia conversation.

Call leg: Another name for a dialog.

Call stateful: A proxy is call stateful if it retains state for a dialog from the initiatidVITE to the termi-
natingBYE request. A call stateful proxy is always stateful, but the converse is not true.

Client: A client is any network element that sends SIP requests and receives SIP responses. Clients may or
may not interact directly with a human usbkser agent clienteindproxiesare clients.

Conference: A multimedia session (see below) that contains multiple participants.

Dialog: A dialog is a peer-to-peer SIP relationship between a UAC and UAS that persists for some time.
A dialog is established by SIP messages, such as a 2xx responsé\WIaiE request. A dialog is
identified by a call identifier, local address, and remote address. A dialog was formerly known as a
call leg in RFC 2543.

Downstream: A direction of message forwarding within a transaction that refers to the direction that re-
quests flow from the user agent client to user agent server.

Final response: A response that terminates a SIP transaction, as opposeg@ravigional respons¢hat
does not. All 2xx, 3xx, 4xx, 5xx and 6xx responses are final.

Header: A header is a component of a sip message that conveys information about the message. It is
structured as a header name, followed by a colon, followed by its value.

Home Domain: The domain providing service to a SIP user. Typically, this is the domain present in the
URI in the address-of-record of a registration.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 16]

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Informational Response: Same as a provisional response.

Initiator, calling party, caller: The party initiating a session (and dialog) withI&tVITE request. A caller
retains this role from the time it sends the initillVITE which established a dialog, until the termi-
nation of that dialog.

Invitation: An INVITE request.

Invitee, invited user, called party, callee: The party that receives dNVITE request for the purposes of
establishing a new session. A callee retains this role from the time it receivé\WHEE until the
termination of the dialog established by thisi/ITE.

Location service: A location service is used by a SIP redirect or proxy server to obtain information about
a callee’s possible location(s). It contains a list of bindings of adress-of-record keys to zero or more
contact addresses. The bindings can be created and removed in many ways; this specification defines
aREGISTER method that updates the bindings.

Loop: A request that arrives at a proxy, is forwarded, and later arrives back at the same proxy. When it
arrives the second time, iBequest-URI is identical to the first time, and other headers that affect
proxy operation are unchanged, so that the proxy would make the same processing decision on the
request it made the first time around. Looped requests are errors, and the procedures for detecting
them and handling them are described by the protocol.

Loose Routing: A proxy is said to be loose routing if it follows the procedures defined in this specification
for processing of th&koute header field. These procedures separate the destination of the request
(present in th&Request-URI) from the set of proxies that need to be visited along the way (present
in the Route header field). A proxy compliant to these mechanisms is also known as a loose router.

Message: Data sent between SIP elements as part of the the protocol. SIP messages are either requests or
responses.

Method: The method is the primary function that a request is meant to invoke on a server. The method is
carried in the request message itself. Example method&Natid E andBYE.

Outbound proxy: A proxythat receives all requests from a client, even though it is not the server resolved
by the Request-URI. The outbound proxy sends these requests, after any local processing, to the
address indicated in tHRequest-URI, or to another outbound proxy. Typically, a UA is manually
configured with its outbound proxy, or can learn it through auto-configuration protocols.

Parallel search: In a parallel search, a proxy issues several requests to possible user locations upon receiv-
ing an incoming request. Rather than issuing one request and then waiting for the final response before
issuing the next request as isagquential searcha parallel search issues requests without waiting for
the result of previous requests.

Provisional response: A response used by the server to indicate progress, but that does not terminate a SIP
transaction. 1xx responses are provisional, other responses are consigerétbrmally, provisional
responses are not sent reliably. A provisional response that is sent reliably is referredrétiaidea
provisional response

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 17]

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Proxy, proxy server: Anintermediary entity that acts as both a server and a client for the purpose of making
requests on behalf of other clients. A proxy server primarily plays the role of routing, which means
its job is to ensure that a request is passed on to another entity “closer” to the targeted user. Proxies
are also useful for enforcing policy (for example, making sure a user is allowed to make a call). A
proxy interprets, and, if necessary, rewrites specific parts of a request message before forwarding it.

Recursion: A client recurses on a 3xx response when it generates a new request to the URISonthet
headers in the response.

Redirect Server: Aredirect server is a server that generates 3xx responses to requests it receives, directing
the client to contact an alternate URI.

Registrar: A registrar is a server that accefREGISTER requests, and places the information it receives
in those requests into the location service for the domain it handles.

Regular Transaction: A regular transaction is any transaction with a method other tR&HMTE, ACK, or
CANCEL.

Reliable Provisional Response:A provisional response that is sent reliably from the UAS to UAC.
Request: A SIP message sent from a client to a server, for the purpose of invoking a particular operation.

Response:A SIP message sent from a server to a client, for indicating the status of a request sent from the
client to the server.

Ringback: Ringback is the signaling tone produced by the calling party’s application indicating that a
called party is being alerted (ringing).

Route Refresh Request:A route refresh request sent within a dialog is defined as a request that can modify
theroute setof the dialog.

Server: A server is a network element that receives requests in order to service them and sends back re-
sponses to those requests. Examples of servers are proxies, user agent servers, redirect servers, and
registrars.

Sequential search:In a sequential search, a proxy server attempts each contact address in sequence, pro-
ceeding to the next one only after the previous has generated a non-2xx final response.

Session: From the SDP specification: “A multimedia session is a set of multimedia senders and receivers
and the data streams flowing from senders to receivers. A multimedia conference is an example of a
multimedia session.” (RFC 2327 [11]) (A session as defined for SDP can comprise one or more RTP
sessions.) As defined, a callee can be invited several times, by different calls, to the same session.
If SDP is used, a session is defined by the concatenation afsdienamesession igdnetwork type
address typeandaddresselements in the origin field.

(SIP) transaction: A SIP transaction occurs between a client and a server and comprises all messages from
the first request sent from the client to the server up to a final (non-1xx) response sent from the server
to the client, and th&CK for the response in the case the response was a non-2xxAdKdor a
2XX response is a separate transaction.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 18]

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

736

737

739

740

741

742

743

744

745

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Spiral: A spiral is a SIP request that is routed to a proxy, forwarded onwards, and arrives once again at that
proxy, but this time, differs in a way that will result in a different processing decision than the original
request. Typically, this means that the requeREzjuest-URI differs from its previous arrival. A
spiral is not an error condition, unlike a loop. A typical cause for this is call forwarding. A user calls
joe@example.com. The example.com proxy forwards it to Joe’s PC, which in turn, forwards it to
bob@example.com. This request is proxied back to the example.com proxy. However, this is not a
loop. Since the request is targeted at a different user, it is considered a spiral, and is a valid condition.

Stateful proxy: A logical entity that maintains the client and server transaction state machines defined by
this specification during the processing of a request. Also known as a transaction stateful proxy. The
behavior of a stateful proxy is further defined in Section 16. A stateful proxy is not the same as a call
stateful proxy.

Stateless proxy: A logical entity that does not maintain the client or server transaction state machines
defined in this specification when it processes requests. A stateless proxy forwards every request it
receives downstream and every response it receives upstream.

Strict Routing: A proxy is is said to be strict routing if it follows thRoute processing rules of RFC 2543
and many prior Internet Draft versions of this RFC. That rule caused proxies to destroy the contents of
the Request-URI when aRoute header field was present. Strict routing behavior is not used in this
specification, in favor of a loose routing behavior. Proxies that perform strict routing are also known
as strict routers.

Transaction User (TU): The layer of protocol processing that resides above the transaction layer. Trans-
action users include the UAC core, UAS core, and proxy core.

Upstream: A direction of message forwarding within a transaction that refers to the direction that responses
flow from the user agent server to user agent client.

URL-encoded: A character string encoded according to RFC 1738, Section 2.2 [4].

User agent client (UAC): A user agent client is a logical entity that creates a new request, and then uses
the client transaction state machinery to send it. The role of UAC lasts only for the duration of that
transaction. In other words, if a piece of software initiates a request, it acts as a UAC for the duration
of that transaction. If it receives a request later on, it assumes the role of a user agent server for the
processing of that transaction.

UAC Core: The set of processing functions required of a UAC that reside above the transaction and trans-
port layers.

User agent server (UAS): A user agent server is a logical entity that generates a response to a SIP request.
The response accepts, rejects or redirects the request. This role lasts only for the duration of that
transaction. In other words, if a piece of software responds to a request, it acts as a UAS for the
duration of that transaction. If it generates a request later on, it assumes the role of a user agent client
for the processing of that transaction.

UAS Core: The set of processing functions required at a UAS that reside above the transaction and transport
layers.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 19]

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

77

778

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

User agent (UA): A logical entity that can act as both a user agent client and user agent server for the
duration of a dialog.

The role of UAC and UAS as well as proxy and redirect servers are defined on a transaction-by-
transaction basis. For example, the user agent initiating a call acts as a UAC when sending the initial
INVITE request and as a UAS when receivinB¥4E request from the callee. Similarly, the same software
can act as a proxy server for one request and as a redirect server for the next request.

Proxy, location, and registrar servers defined abovdogiieal entities; implementationsAy combine
them into a single application.

7 SIP Messages

SIP is a text-based protocol and uses the ISO 10646 character set in UTF-8 encoding (RFC 2279 [25]).

A SIP message is either a request from a client to a server, or a response from a server to a client.

Both Request (section 7.1) andResponse (section 7.2) messages use the basic format of RFC 2822
[20], even though the syntax differs in character set and syntax specifics. (SIP allows header fields that
would not be valid RFC 2822 header fields, for example.)

Both types of messages consist ddtart-line, one or more header fields (also known as “headers”), an
empty line indicating the end of the header fields, and an optimeakage-body.

generic-message = start-line
*message-header
CRLF
[message-body]

The start-line, each message-header line, and the emptwyilise be terminated by a carriage-return
line-feed sequenceCRLF). Note that the empty lineusT be present even if the message-body is not.

Except for the above difference in character sets, much of SIP’s message and header field syntax is
identical to HTTP/1.1. Rather than repeating the syntax and semantics here, we use [HX.Y] to refer to
Section X.Y of the current HTTP/1.1 specification (RFC 2616 [15]).

However, SIP is not an extension of HTTP.

7.1 Requests

SIP requests are distinguished by havinReguest-Line for a start-line. A Request-Line contains a
method name, Request-URI, and the protocol version separated by a single sgaeg ¢haracter.

The Request-Line ends withCRLF. No CR or LF are allowed except in the end-of-lifeRLF se-
guence. No LWS is allowed in any of the elements.

Method Request-URI SIP-Version

Method: This specification defines seven methoBEGISTER for registering contact informatiornN-
VITE, ACK, PRACK and CANCEL for setting up session8YE for terminating sessions artaP-
TIONS for querying servers about their capabilities. SIP extensions, documented in standards track
RFCs, may define additional methods.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 20]

779

780

781

782

783

784

785

786

787

788

789

790
791

792

793

794

795

796

797

798

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Request-URI: TheRequest-URIis a SIP URI as described in Section 23.1 or a general URI (RFC 2396 [13]).
It indicates the user or service to which this request is being addresseBeghnest-URI MUST NOT
contain unescaped spaces or control charactersasd NOT be enclosed in&>".

SIP elementsiAy supportRequest-URIs with schemes other than “sip”, for example the “tel” URI
scheme of RFC 2806 [19]. SIP elememay translate non-SIP URIs using any mechanism at their
disposal, resulting in either a SIP URI or some other scheme.

SIP-Version: Both request and response messages include the version of SIP in use, and follow [H3.1] (with
HTTP replaced by SIP, and HTTP/1.1 replaced by SIP/2.0) regarding version ordering, compliance
requirements, and upgrading of version numbers. To be compliant with this specification, applications
sending SIP messages)sT include aSIP-Version of “SIP/2.0". TheSIP-Version string is case-
insensitive, but implementationsusT send upper-case.

Unlike HTTP/1.1, SIP treats the version number as a literal string. In practice, this should make no
difference.

7.2 Responses

SIP responses are distinguished from requests by havBigtas-Line as theirstart-line. A Status-Line
consists of the protocol version followed by a numetatus-Code and its associated textual phrase, with
each element separated by a sirfgkecharacter.

No CR or LF is allowed except in the find RLF sequence.

SIP-version Status-Code Reason-Phrase

The Status-Code is a 3-digit integer result code that indicates the outcome of an attempt to understand
and satisfy a request. ThHeeason-Phrase is intended to give a short textual description of Status-
Code. TheStatus-Code is intended for use by automata, whereasRleason-Phrase is intended for the
human user. A client is not required to examine or displayRbason-Phrase.

While this specification suggests specific wording for the reason phrase, implementatiorthoose
other text, e.g., in the language indicated in Aoeept-Language header field of the request.

The first digit of theStatus-Code defines the class of response. The last two digits do not have any

categorization role. For this reason, any response with a status code between 100 and 199 is referred to as

a “1xx response”, any response with a status code between 200 and 299 as a “2xx response”, and so on.
SIP/2.0 allows six values for the first digit:

1xx: Provisional — request received, continuing to process the request;

2xx: Success — the action was successfully received, understood, and accepted;

3xx: Redirection — further action needs to be taken in order to complete the request;
4xx: Client Error — the request contains bad syntax or cannot be fulfilled at this server;
5xx: Server Error — the server failed to fulfill an apparently valid request;

6xx: Global Failure — the request cannot be fulfilled at any server.

Section 25 defines these classes and describes the individual codes.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 21]

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

7.3 Header Fields

SIP header fields are similar to HTTP header fields in both syntax and semantics. In particular, SIP header
fields follow the [H4.2] definitions of syntax fanessage-header, and the rules for extending header fields
over multiple lines. However, the latter is specified in HTTP with implicit white space and folding. This
specification conforms with RFC 2234 [28] and uses only explicit white space and folding as an integral
part of the grammar.

[H4.2] also specifies that multiple header fields of the same field name whose value is a comma separated
list can be combined into one header field. That applies to SIP as well, but the specific rule is different
because of the different grammars. Specifically, any SIP header whose grammar is of the form:

header = "header-name” HCOLON header-value *(COMMA header-value)

allows for combining header fields of the same name into a comma separated list. This is also true for
the Contact header, as long as none of the header instances have a value of “*”.
7.3.1 Header Field Format

Header fields follow the same generic header format as that given in Section 2.2 of RFC 2822 [20]. Each
header field consists of a field name followed by a colon (") and the field value.

field-name: field-value

The formal grammar for anessage-header specified in Section 27 allows for an arbitrary amount of
whitespace on either side of the colon; however, implementations should avoid spaces between the field
name and the colon and use a single sp&Y petween the colon and thield-value. Thus,

Subject: lunch
Subject : lunch
Subject :lunch

Subject: lunch

are all valid and equivalent, but the last is the preferred form.

Header fields can be extended over multiple lines by preceding each extra line with at Ie88t one
horizontal tab HT). The line break and the whitespace at the beginning of the next line are treated as a
single SP character. Thus, the following are equivalent:

Subject: | know you're there, pick up the phone and talk to me!
Subject: | know you're there,

pick up the phone

and talk to me!

The relative order of header fields with different field names is not significant. HoweveRHCioM-
MENDED that headers which are needed for proxy procesaiigy Route, Record-Route, Proxy-Require,
Max-Forwards, andProxy-Authorization, for example) appear towards the top of the message, to facilitate
rapid parsing. The relative order of header fields with the same field name is important. Multiple header
fields with the samdield-name MAY be present in a message if and only if the entire field-value for that

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 22]

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

header field is defined as a comma-separated list (that is, if follows the grammar defined in Section 7.3).
It MUST be possible to combine the multiple header fields into one “field-name: field-value” pair, without
changing the semantics of the message, by appending each subs$iedgienatue to the first, each separated
by a comma. The exception to this rule are ghahorization, Proxy-Authorization, Proxy-Authenticate
and Proxy-Authorization headers. Multiple header fields with these namesg be present in a message,
but since their grammar does not follow the general form listed in Section 7.3vth&y NOT be combined
into a single header field.

ImplementationsiusT be able to process multiple header fields with the same nhame in any combination
of the single-value-per-line or comma-separated value forms.

The following groups of header fields are valid and equivalent:

Route: <sip:alice@atlanta.com>
Subject: Lunch

Route: <sip:bob@biloxi.com>
Route: <sip:carol@chicago.com>

Route: <sip:alice@atlanta.com>, <sip:bob@biloxi.com>
Route: <sip:carol@chicago.com>
Subject: Lunch

Subject: Lunch
Route: <sip:alice@atlanta.com>, <sip:bob@biloxi.com>, <sip:carol@chicago.com>

Each of the following blocks is valid but not equivalent to the others:

Route: <sip:alice@atlanta.com>
Route: <sip:bob@biloxi.com>
Route: <sip:carol@chicago.com>

Route: <sip:bob@biloxi.com>
Route: <sip:alice@atlanta.com>
Route: <sip:carol@chicago.com>

Route: <sip:alice@atlanta.com>,<sip:carol@chicago.com>,<sip:bob@biloxi.com>

The format of a header field-value is defined per header-name. It will always be either an opaque se-
qguence of TEXT-UTF8 octets, or a combination of whitespace, tokens, separators, and quoted strings. Many
existing headers will adhere to the general form of a value followed by a semi-colon separated sequence of
parameter-name, parameter-value pairs:

field-name: field-value *(;parameter-name=parameter-value)

Even though an arbitrary number of parameter pairs may be attached to a header field value, any given
parameter-name MUST NOT appear more than once.

All new header fieldsausT follow this generic format unless they have been inherited from other RFC
2822-like specifications.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 23]

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

When comparing header fields, field names are always case-insensitive. Unless otherwise stated in
the definition of a particular header field, field values, parameter names, and parameter values are case-
insensitive. Tokens are always case-insensitive. Unless specified otherwise, values expressed as quoted
strings are case-sensitive.

For example,

Contact: <sip:alice@atlanta.com>;expires=3600

is equivalent to

CONTACT: <sip:alice@atlanta.com>;ExPiReS=3600

and

Content-Disposition: session;handling=optional

is equivalent to

content-disposition: Session;HANDLING=OPTIONAL
The following two header fields are not equivalent:

Warning: 370 devnull "Choose a bigger pipe"
Warning: 370 devnull "CHOOSE A BIGGER PIPE"

7.3.2 Header Field Classification

Some header fields only make sense in requests or responses. These are called request header fields and
response header fields, respectively. If a header appears in a message not matching its category (such as a
request header field in a responseMitsT be ignored. Section 24 defines the classification of each header

field.

7.3.3 Compact Form

SIP provides a mechanism to represent common header fields in an abbreviated form. This may be useful
when messages would otherwise become too large to be carried on the transport available to it (exceeding
the maximum transmission unit (MTU) when using UDP, for example). These compact forms are defined
in Section 24. A compact formAy be substituted for the longer form of a header name at any time without
changing the semantics of the message. The same type of headefaftelgppear in both long and short

forms within the same message. ImplementationsT accept both the long and short forms of each header
name.

7.4 Bodies

Requests, including new requests defined in extensions to this specificatiorcontain message bodies
unless otherwise noted. The interpretation of the body depends on the request method.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 24]

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

For response messages, the request method and the response status code determine the type and inter-
pretation of any message body. All responses include a body.

7.4.1 Message Body Type

The Internet media type of the message brd\sT be given by theContent-Type header field. If the body
has undergone any encoding such as compression, theaubisbe indicated by th€ontent-Encoding
header field; otherwis€&ontent-Encoding MUST be omitted. If applicable, the character set of the message
body is indicated as part of tl@ontent-Type header-field value.

The “multipart” MIME type defined in RFC 2046 [8)iAY be used within the body of the message.
Implementations that send requests containing multipart message bugigssend a session description
as a non-multipart message body if the remote implementation requests this throdgteahheader field
that does not contaimultipart.

Note that SIP messages\y contain binary bodies or body parts.

7.4.2 Message Body Length

The body length in bytes is provided by tl@mntent-Length header field. Section 24.14 describes the
necessary contents of this header in detail.

The “chunked” transfer encoding of HTTP/IMMUST NOT be used for SIP. (Note: The chunked encoding
modifies the body of a message in order to transfer it as a series of chunks, each with its own size indicator.)

7.5 Framing SIP messages

Unlike HTTP, SIP implementations can use UDP or other unreliable datagram protocols. Each such data-

gram carries one request or response. See Section 19 on constraints on usage of unreliable transports.
Likewise, implementations processing SIP messages over stream-oriented tramsygarignore any

CRLF appearing before thetart-line [H4.1]

8 General User Agent Behavior

A user agent represents an end system. It contains a User Agent Client (UAC), which generates requests,
and a User Agent Server (UAS) which responds to them. A UAC is capable of generating a request based on
some external stimulus (the user clicking a button, or a signal on a PSTN line), and processing a response.
A UAS is capable of receiving a request, and generating a response, based on user input, external stimulus,
the result of a program execution, or some other mechanism.

When a UAC sends a request, it will pass through some number of proxy servers, which forward the
request towards the UAS. When the UAS generates a response, the response is forwarded towards the UAC.

UAC and UAS procedures depend strongly on two factors. First, whether the request or response is
inside or outside of a dialog, and second, based on the method of a request. Dialogs are discussed thoroughly
in Section 12; they represent a peer-to-peer relationship between user agents, and are established by specific
SIP methods, such da8VITE.

In this section, we discuss the method independent rules for UAC and UAS behavior when processing
requests that are outside of a dialog. This includes, of course, the requests which themselves establish a
dialog.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 25]

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Security procedures for requests and responses outside of a dialog are described in Section 22. Specif-
ically, mechanisms exist for the UAS and UAC to mutually authenticate. A limited set of privacy features
are also supported through encryption of bodies using S/IMIME.

8.1 UAC Behavior

This section covers UAC behavior outside of a dialog.

8.1.1 Generating the Request

A valid SIP request formulated by a UAGUST at a minimum contain the following header, From,
CSeq, Call-ID, Max-Forwards, andVia; all of these headers are mandatory in all SIP messages. These
six headers are the fundamental building blocks of a SIP message, as they jointly provide for most of the
critical message routing services including the addressing of messages, the routing of responses, limiting
message propagation, ordering of messages, and the unique identification of transactions. These headers are
in addition to the mandatory request line, which contains the meteduest-URI and SIP version.

Examples of requests sent outside of a dialog includéNafiTE to establish a session (Section 13) and
anOPTIONS to query for capabilities (Section 11).

8.1.1.1 Request-URI The initial Request-URI of the messageHoOULD be set to the value of the URI
in theTo field. One notable exception is tREGISTER method; behavior for setting tiRequest-URI of
register is given in Section 10.

In some special circumstances, the presence of a pre-existing route set can afRedulest-URI of
the message. A pre-existing route set is an ordered set of URIs that identify a chain of servers, to which a
UAC will send outgoing requests that are outside of a dialog. Commonly, they are configured on the user
agent by a user or service provider manually, or through some non-SIP mechanism. When a provider wishes
to configure a UA with an outbound proxy, it RECOMMENDED that this by done by providing it with a
pre-existing route set with a single URI, that of the outbound proxy.

When a pre-existing route set is present, the procedures for populatirRetheest-URI and Route
header field detailed in Section 12.2.MUST be followed, even though there is no dialog.

8.1.1.2 To TheTo field first and foremost specifies the desired “logical” recipient of the request, or the
address-of-record of the user or resource that is the target of this request. This may or may not be the
ultimate recipient of the request. Tfie heademAy contain a SIP URI, but it may also make use of other

URI schemes (the tel URL [19], for example) when appropriate. All SIP implementatioss support the

SIP URI. TheTo header field allows for a display nhame.

A UAC may learn how to populate thEo header field for a particular request in a number of ways.
Usually the user will suggest thio header field through a human interface, perhaps inputting the URI
manually or selecting it from some sort of address book. Frequently, the user will not enter a complete URI,
but rather, a string of digits or letters (i.e., “bob”). Itis at the discretion of the UA to choose how to interpret
this input. Using it to form the user part of a SIP URL implies that the UA wishes the name to be resolved in
the domain the right hand side (RHS) of the at-sign in the SIP URI (i.e., sip:bob@example.com). The RHS
will frequently be the home domain of the user, which allows for the home domain to process the outgoing
request. This is useful for features like “speed dial” which require interpretation of the user part in the home
domain. The tel URL is used when the UA does not wish to specify the domain that should interpret the

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 26]

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035
1036
1037
1038

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

user input. Rather, each domain that the request passes through would be given that opportunity. As an
example, a user in an airport might log in, and send requests through an outbound proxy in the airport. If
they enter “411” (this is the phone number for local directory assistance in the United States), that needs to
be interpreted and processed by the outbound proxy in the airport, not the user's home domain. In this case,
tel:411 would be the right choice.

A request outside of a dialagusT NOT contain a tag; the tag in thio field of a request identifies the
peer of the dialog. Since no dialog is established, no tag is present.

For further information on th&o header field, see Section 24.41. The following is an example of valid
To header:

To: Carol <sip:carol@chicago.com>

8.1.1.3 From TheFrom general-header field indicates the logical identity of the initiator of the request,
possibly the user’s address of record. Like Tiwefield, it contains a URI and optionally a display name.

It is used by SIP elements to determine processing rules to apply to a request (for example, automatic call
rejection). As such, itis very important that thRemm URI not contain IP addresses or the FQDN of the host

the UA is running on, since these are not logical names.

The From header field allows for a display hame. A UASHOULD use the display name “Anony-
mous”, along with a syntactically correct, but otherwise meaningless URI (like sip:988776a@ahhs.aa), if
the identity of the client is to remain hidden.

Usually the value that populates tReom header field in requests generated by a particular user agent
is pre-provisioned by the user or by the administrators of the user’s local domain. If a particular user agent
is used by multiple users, it might have switchable profiles that include a URI corresponding to the identity
of the profiled user. Recipients of requests can authenticate the originator of a request in order to ascertain
that they are who thelfrom header field claims they are (see Section 20 for more on authentication).

The From field MUST contain a newtag” parameter, chosen by the UAC. See Section 23.3 for details
on choosing a tag.

For further information on thErom header see Section 24.20. Examples:

From: "Bob" <sip:bob@biloxi.com> ;tag=a48s
From: sip:+12125551212@server.phone2net.com;tag=887s
From: Anonymous <sip:c80qz84zk7z@privacy.org>;tag=hyh8

8.1.1.4 Call-ID TheCall-ID general-header field acts as a unique identifier to group together a series of
messages. MusT be the same for all requests and responses sent by either UA in a diadeg Ut D be
the same in each registration from a UA.

In a new request created by a UAC outside of any dialogCalID heademusT be selected by the
UAC as a globally unique identifier over space and time unless overridden by method specific behavior.
All SIP user agents must have a means to guarantee th&ateD headers they produce will not be
inadvertently generated by any other user agent. Note that when requests are retried after certain failure
responses that solicit an amendment to a request (for example, a challenge for authentication), these retried

requests are not considered new requests, and therefore do not needlhEhheaders; see Section 8.1.3.6.

Use of cryptographically random identifiers [5] in the generation of Call-IDSESOMMENDED. Im-
plementationsvAy use the form “localid@host”.Call-IDs are case-sensitive and are simply compared
byte-by-byte.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 27]

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072
1073

1074

1075

1076

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Using cryptographically random identifiers provides some protection against session hijacking and reduces the
likelihood of unintentional Call-ID collisions.
No provisioning or human interface is required for the selection ofxhk-1D header field value for a
request.
For further information on th€all-ID header see Section 24.8.
Example:

Call-ID: f81d4fae-7dec-11d0-a765-00a0c9le6bf6@foo.bar.com

8.1.1.5 CSeq The Cseq header serves as a way to identify and order transactions. It consists of a
sequence number and a method. The methodT match that of the request. For requests outside of a
dialog, the sequence number value is arbitrary,NbusT be expressible as a 32-bit unsigned integer and
MUST be less than 2**31. As long as it follows the above guidelines, a client may use any mechanism it
would like to selectCSeq header field values.

Section 12.2.1.1 discusses construction of@lszq for requests within a dialog.

Example:

CSeq: 4711 INVITE

8.1.1.6 Max-Forwards The Max-Forwards header serves to limit the number of hops a request can
transit on the way to its destination. It consists of an integer that is decremented by one at each hop.
If the Max-Forwards value reaches 0 before the request reaches its destination, it will be rejected with a
483 Too Many Hops error response.

A UAC MuUsT insert aMax-Forwards header field into each request it originates with a value which
SHOULD be 70. This number was chosen to be sufficiently large to guarantee that a request would not be
dropped in any SIP network when there were no loops, but not so large as to consume proxy resources when
a loop does occur. Lower values should be used with caution, only in networks where topologies are known
by the UA.

8.1.1.7 Via TheVia header is used to indicate the transport used for the transaction, and to identify the
location where the response is to be sent.

When the UAC creates a requestMit'ST insert aVia into that request. The protocol and version in
the heademusT be SIP and 2.0, respectively. TR@ header it insertUsT contain a branch parameter.
This parameter is used to uniquely identify the transaction created by that request. This parameter is used
by both the client, and the server.

Thebranch parameter valu&usT be unique across time for all requests sent by the UA. The exception
to this rule isSCANCEL. As discussed below, @BANCEL request will have the same value of the branch
parameter as the request it cancels.

The uniqueness property of the branch ID parameter, to facilitate its use as a transaction ID, was not part of RFC
2543

The branch ID inserted by an element compliant with this specificatioaT always begin with the
characters “zZ9nG4bK”. These 7 characters are used as a magic cookie (7 is deemed sufficient to ensure that
an older RFC 2543 implementation would not pick such a value), so that servers receiving the request can

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 28]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

1077 determine that the branch ID was constructed in the fashion described by this specification (i.e., globally
1078 Unique). Beyond this requirement, the precise format obtlamch token is implementation-defined.

1079 The Via heademaddr, ttl, andsent-by components will be set when the request is processed by the
1080 transport layer (Section 19).
1081 Via processing for proxies is described in Sections 3sgaproxy-response-processing-via.

102 8.1.1.8 Contact The Contact header provides a SIP URI that can be used to contact that specific in-
183 Stance of the user agent for subsequent requestsCohtact heademusT be present in any request that

1084 can result in the establishment of a dialog. For the methods defined in this specification, that includes only
10ss the INVITE request. For these requests, the scope ofCthietact is global. That is, theContact header

1086 refers to the URI at which the UA would like to receive requests, and thisNuRIT be valid even if used

1087 IN subsequent requests outside of any dialo@sly a single URIMUST be present.

1088 For further information on th€ontact header, see Section 24.10.

10ss 8.1.1.9 Supported and Require If the UAC supports extensions to SIP that can be applied by the
1000 Server to the response, the USBoOULD include aSupported header in the request listing the option tags

1001 (Section 23.2) for those extensions. This includes support for reliability for provisional responses, which is
1092 an extension even though it is defined within this specification. The option tag for reliability of provisional
1003 responses i$00rel

1094 The option-tags listeahusT only refer to extensions defined in standards-track RFCs. This is to prevent
1005 Servers from insisting that clients implement non-standard, vendor-defined features in order to receive ser-
1006 Vice. Extensions defined by experimental and informational RFCs are explicitly excluded from usage with
1097 the Supported header in a request, since they too are often used to document vendor-defined extensions.
1098 If the UAC wishes to insist that a UAS understand an extension that the UAC will apply to the request
1009 in order to process the requestMusT insert aRequire header into the request listing the option tag for

oo that extension. If the UAC wishes to apply an extension to the request and insist that any proxies that are
o1 traversed understand that extensionmitsT insert aProxy-Require header into the request listing the

102 option tag for that extension.

1103 As with the Supported header, the option-tags in tiRequire heademusT only refer to extensions
104 defined in standards-track RFCs.
1105 A Require header in a request with the option th@0rel means that the UAC wishes for all provi-

106 Sional responses to this request to be transmitted reliably. This headarNOT be present in any requests
107 exceptingINVITE, although extensions to SIP may allow its usage with other request methods.

1mos 8.1.1.10 Additional Message ComponentsAfter a new request has been created, and the headers de-

1100 Scribed above have been properly constructed, any additional optional headers are added, as are any headers
110 Specific to the method.

1111 SIP requestsiAy contain a MIME-encoded message-body. Regardless of the type of body that a request

112 contains, certain headers must be formulated to characterize the contents of the body. For further information
11z on these headers see Sections 24.14, 24.15 and 24.12.

ma 8.1.2 Sending the Request

s The destination for the request is then computed. Unless there is local policy specifying otherwise, then
s the destinatiormusT be determined by applying the DNS proceedures described in [2] as follows. If

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 29]

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145
1146

1147
1148

1149

1150

1151

1152

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

the first element in the route set indicated a strict router (resulting in forming the request as described in
Section 12.2.1.1), the proceedum@ssT be applied to thdRequest-URI of the request. Otherwise, the
proceedures are applied to the fiRziute header field value in the request (if one exists), or to the request’s
Request-URI if there is noRoute header field present. These procedures yield an ordered set of address,
port, and transports to attempt.

Local policy MAY specify an alternate set of destinations to attempt. There are no restrictions on the
alternate destinations if the request containfwoaote headers. This provides a simple alternative to a pre-
existing route set as way to specify an outbound proxy. However, that approach for configuring outbound
proxy iSNOT RECOMMENDED, a pre-existing route set with a single UBHoULD be used instead. If the
request containRoute headers, the requegiy be sent to any server that the UA is certain will honor the
Route andRequest-URI policies specified in this document (as opposed to those in RFC 2543).

The UACsHouULD follow the procedures defined in [2] for stateful elements, trying each address until a
server is contacted. Each try constitutes a new transaction, and therefore each carries a\différesder
with a new branch parameter. Furthermore, the transport value Wighteeader is set to whatever transport
was determined for the target server.

8.1.3 Processing Responses

Responses are first processed by the transport layer and then passed up to the transaction layer. The trans-
action layer performs its processing and then passes it up to the TU. The majority of response processing in
the TU is method specific. However, there are some general behaviors independent of the method.

8.1.3.1 Transaction Layer Errors In some cases, the response returned by the transaction layer will
not be a SIP message, but rather a transaction layer event. The only event that the TU will encounter is the
timeout event. When the timeout event is received from the transaction layersit be treated as if a 408
(Request Timeout) status code has been received.

8.1.3.2 Unrecognized ResponsesA UAC MUST treat any response it does not recognize as being equiv-
alent to the x00 response code of that class, lmaodT be able to process the x00 response code for all
classes. For example, if a UAC receives an unrecognized response code of 431, it can safely assume that
there was something wrong with its request and treat the response as if it had received a 400 (Bad Request)
response code.

8.1.3.3 Vias If more than oneVia header field is present in a response, the UMOULD discard the
message.

The presence of addition®ia header fields that precede the originator of the request suggests that the message
was misrouted or possibly corrupted.

8.1.3.4 Processing Reliable 1xx Responses 1xx response that containsRequire header with the
option tag100rel is a reliable provisional response. The UA core follows the procedures in Section 18.2
to process the response, which will result in the generatiorPiR ACK request to acknowledge the reliable
provisional response.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 30]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

uss 8.1.3.5 Processing 3xx responsedJpon receipt of a redirection response (for example, a 3xx response
usa Status code), clientsHouLD use the URI(S) in th&Contact header field to formulate one or more new

uss requests based on the redirected request.

1156 If more than one URI is present @ontact header fields within the 3xx response, the MAST deter-

us7 - Mine an order in which these contact addresses should be processeslusAsonsult the §” parameter

uss value of the Contact header fields (see Section 24.10) if available. Contact addressease ordered from

useo highest gvalue to lowest. If no gvalue is present, a contact address is considered to have a qvalue of 1.0.
ue0 Note that two or more contact addresses might have an equal gvalue - these URIs are eligible to be tried in
uer parallel.

1162 Once an ordered list has been established, UACST try to contact each URI in the ordered list in turn

163 UNtil a server responds. If there are contact addresses with an equal qvalue, theagAtecide randomly

162 0N an order in which to process these addresses, &yt attempt to process contact addresses of equal

ues gqvalue in parallel.

1166 Note that for example, the UAC may effectively divide the ordered list into groups, processing the groups
ue7 Serially and processing the destinations in each group in parallel.

1168 If contacting an address in the list results in a failure, as defined in the next paragraph, the element moves
e to the next address in the list, until the list is exhausted. If the list is exhausted, then the request has failed.
1170 FailuressHouLD be detected through failure response codes (codes greater than 399) or network time-
u71 outs. Client transaction will report any transport layer failures to the transaction user.

1172 When a failure for a particular contact address is received, the dieouLD try the next contact

u7zs address. This will involve creating a new client transaction to deliver a new request.

1174 In order to create a request based on a contact address in a 3xx responseMa APy the entire

urs URI from theContact header into th&equest-URI, except for the thethod-param” and “header” URI

uze parameters (see Section 23.1.1 for a definition of these parameters). It usegdker” parameters to

u77 create headers for the new request, overwriting headers associated with the redirected request in accordance
u7zs With the guidelines in Section 23.1.5.

1179 Note that in some instances, headers that have been communicated in the contact address may instead
uso append to existing request headers in the original redirected request. As a general rule, if the header can
us1 accept a comma-separated list of values, then the new headematuee appended to any existing values

us2 in the original redirected request. If the header does not accept multiple values, the value in the original redi-
uss rected requestiAY be overwritten by the header value communicated in the contact address. For example,
usa if @ contact address is returned with the following value:

uss Sip:user@host?Subject=foo&Call-Info=<http://www.foo.com>

1186 Then anySubject header in the original redirected request is overwritten, but the HTTP URL is merely

us7 - appended to any existir@all-Info header field values.

1188 Itis RECOMMENDEDthat the UAC reuse the sarie, From, andCall-ID used in the original redirected

1use request, but the UA@AY also choose to update for example @al-ID header field value for new requests.

1190 Finally, once the new request has been constructed, it is sent using a new client transaction, and therefore
191 MUST have a new branch ID in the tofia field as discussed in Section 8.1.1.7.

1102 In all other respects, requests sent upon receipt of a redirect respeosa D re-use the headers and

193 bodies of the original request.

1194 In some instance$;ontact header values may be cached at UAC temporarily or permanently depending

195 0N the status code received and the presence of an expiration interval; see Sections 25.3.2 and 25.3.3.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 31]

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

8.1.3.6 Processing 4xx responsegCertain 4xx response codes require specific UA processing, indepen-
dent of the method.

If a 401 (Unauthorized) or 407 (Proxy Authentication Required) response is received, theH$AL D
follow the authorization procedures of Section 20.2 and Section 20.3 to retry the request with credentials.

If a 413 (Request Entity Too Large) response is received (Section 25.4.11), the request contained a body
that was longer than the UAS was willing to accept. If possible, the JAGULD retry the request, either
omitting the body or using one of a smaller length.

If a 415 (Unsupported Media Type) response is received (Section 25.4.13), the request contained media
types not supported by the UAS. The UABOULD retry sending the request, this time only using content
with types listed in thé\ccept header in the response, with encodings listed irAtteept-Encoding header
in the response, and with languages listed inAbeept-Language in the response.

If a 416 (Unsupported URI Scheme) response is received (Section 25.4.1Redest-URI used a
URI scheme not supported by the server. The clgbuLD retry the request, this time, using a SIP URI.

If a 420 (Bad Extension) response is received (Section 25.4.15), the request cont&aqdii@ or
Proxy-Require header listing an option-tag for a feature not supported by a proxy or UAS. The UAC
SHOULD retry the request, this time omitting any extensions listed inltheupported header in the re-
sponse.

In all of the above cases, the request is retried by creating a new request with the appropriate modifica-
tions. This new requestHoOULD have the same value of ti@all-1D, To, andFrom of the previous request,
but theCSeq should contain a new sequence number that is one higher than the previous.

With other 4xx responses, including those yet to be defined, a retry may or may not be possible depend-
ing on the method and the use case.

8.2 UAS Behavior

When a request outside of a dialog is processed by a UAS, there is a set of processing rules which are
followed, independent of the method. Section 12 gives guidance on how a UAS can tell whether a request
is inside or outside of a dialog.

Note that request processing is atomic. If arequest is accepted, all state changes associated svith it
be performed. If it is rejected, all state changessT NOT be performed.

8.2.1 Method Inspection

Once arequest is authenticated (or no authentication was desired), thelW#Snspect the method of the

request. If the UAS does not support the method of a requeststr generate a 405 (Method Not Allowed)

response. Procedures for generation of responses are described in Section 8.2.6. MesuAaio add

an Allow header to the 405 (Method Not Allowed) response. BHew header fieldvwusT list the set of

methods supported by the UAS generating the messageAlldve header field is presented in Section 24.5.
If the method is one supported by the server, processing continues.

8.2.2 Header Inspection

If a UAS does not understand a header field in a request (that is, the header is not defined in this specification
or in any supported extension), the sermersT ignore that header and continue processing the message. A
UAS sHouLD ignore any malformed headers that are not necessary for processing requests.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 32]

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250
1251
1252
1253

1254
1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

8.2.2.1 To and Request-URI TheTo header field identifies the original recipient of the request desig-
nated by the user identified in tikeom field. The original recipient may or may not be the UAS processing
the request, due to call forwarding or other proxy operations. A WAS apply any policy it wishes in
determination of whether to accept requests wherTthigeld is not the identity of the UAS. However, it is
RECOMMENDED that a UAS accept requests even if they do not recognize the URI scheme (for example,
atel: URI) in the To header, or if thelo header field does not address a known or current user of this
UAS. If, on the other hand, the UAS decides to reject the requestduLD generate a response with a 403
(Forbidden) status code and pass it to the server transaction layer for transmission.

However, theRequest-URI identifies the UAS that is to process the request. IfReguest-URI uses
a scheme not supported by the UASSHOULD reject the request with a 416 (Unsupported URI Scheme)
response. If th&kequest-URI does not identify an address that the UAS is willing to accept requests for,
it SHOULD reject the request with a 404 (Not Found) response. Typically, a UA that us&EBETER
method to bind its address of record to a specific contact address will see requestRefasst-URI
equals those contact addressess. Other potential sources of received Request-URIs in€Qattatite
headers of requests and responses sent by the UA that establish or refresh dialogs.

8.2.2.2 Merged Requests If the request has no tag in tie, the TU checks ongoing transactions. If the
To, From, Call-ID, CSeq exactly match (including tags) those of any request received previously, but the
branch-ID in the topmosVia is different from those received previously, the BHoOULD generate a 482
(Loop Detected) response and pass it to the server transaction.

The same request has arrived at the UAS more than once, following different paths, most likely due to forking.
The UAS processes the first such request received and responds with a 482 (Loop Detected) to the rest of them.

8.2.2.3 Require Assuming the UAS decides that it is the proper element to process the request, it ex-
amines thdRequire header field, if present.

The Require general-header field is used by a UAC to tell a UAS about SIP extensions that the UAC
expects the UAS to support in order to process the request properly. Its format is described in Section 24.33.
If a UAS does not understand an option-tag listed Reguire header field, imusT respond by generating a
response with status code 420 (Bad Extension). The MAST add anUnsupported header field, and list
in it those options it does not understand amongst those iRéggiire header of the request. Upon receipt
of the 420 (Bad Extension) the cliesHOULD retry the request, this time without using those extensions
listed in theUnsupported header field in the response.

Note thatRequire and Proxy-Require MusT NOT be used in a SIEANCEL request, or in alMACK
request sent for a non-2xx response. These headers should be ignored if they are present in these requests.

An ACK request for a 2xx respons@&sST contain only thos&kequire andProxy-Require values that
were present in the initial request.

Example:

UAC->UAS: INVITE sip:watson@bell-telephone.com SIP/2.0
Require: 100rel

UAS->UAC: SIP/2.0 420 Bad Extension
Unsupported: 100rel

This behavior ensures that the client-server interaction will proceed without delay when all options are under-

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 33]

1277
1278
1279
1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

stood by both sides, and only slow down if options are not understood (as in the example above). For a well-matched
client-server pair, the interaction proceeds quickly, saving a round-trip often required by negotiation mechanisms.
In addition, it also removes ambiguity when the client requires features that the server does not understand. Some
features, such as call handling fields, are only of interest to end systems.

8.2.3 Content Processing

Assuming the UAS understands any extensions required by the client, the UAS examines the body of the
message, and the headers that describe it. If there are any bodies whose type (indicateddmyehte

Type), language (indicated by teéontent-Language) or encoding (indicated by théontent-Encoding)

are not understood, and that body part is not optional (as indicated Botitent-Disposition header), the

UAS MUST reject the request with a 415 (Unsupported Media Type) response. The resposiseontain

an Accept header listing the types of all bodies it understands, in the event the request contained bodies
of types not supported by the UAS. If the request contained content encodings not understood by the UAS,
the respons@usT contain anAccept-Encoding header listing the encodings understood by the UAS. If

the request contained content with languages not understood by the UAS, the regpsmseontain an
Accept-Language header indicating the languages understood by the UAS. Beyond these checks, body
handling depends on the method and type. For further information on the processing of content-specific
headers see Section 7.4 as well as Section 24.11 through 24.15.

8.2.4 Applying Extensions

A UAS that wishes to apply some extension when generating the resparsseonly do so if support for

that extension is indicated in tl8upported header in the request. If the desired extension is not supported,

the serversHoULD rely only on baseline SIP and any other extensions supported by the client. To ensure
that thesHouLD can be fulfilled, any specification of a new extensiensT include discussion of how

to return gracefully to baseline SIP when the extension is not present. In rare circumstances, where the
server cannot process the request without the extension, the setvesend a 421 (Extension Required)
response. This response indicates that the proper response cannot be generated without support of a specific
extension. The needed extensiongs)sT be included in &Require header in the response. This behavior

iSNOT RECOMMENDED, as it will generally break interoperability.

Any extensions applied to a non-421 respongesT be listed in aRequire header included in the
response. Of course, the senwewsT NOT apply extensions not listed in tHeupported header in the
request. As a result of this, tieequire header in a response will only ever contain option tags defined in
standards-track RFCs.

8.2.5 Processing the Request

Assuming all of the checks in the previous subsections are passed, the UAS processing becomes method-
specific. Section 10 covers tRREGISTER request, section 11 covers tRPTIONS request, section 13
covers thdNVITE request, and section 15 covers B¥E request.

8.2.6 Generating the Response

When a UAS wishes to construct a response to a request, it follows these procedures. Additional procedures
may be needed depending on the status code of the response and the circumstances of its construction. These
additional procedures are documented elsewhere.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 34]

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

8.2.6.1 Sending a Provisional ResponseOne largely non-method-specific guideline for the generation
of responses is that UASSHOULD NOT issue a provisional response for a AdW/ITE request. Rather,
UASsSHOULD generate a final response to a AbMVITE request as soon as possible.

When a 100 (Trying) response is generated, @imgestamp header present in the requestsT be
copied into this 100 (Trying) response. If there is a delay in generating the response, tli0ASD add
a delay value into th@imestamp value in the response. This valuesT contain the difference between
time of sending of the response and receipt of the request, measured in seconds.

8.2.6.2 Headers and Tags The From field of the responseiusT equal theFrom field of the request.
TheCall-ID field of the responseusT equal theCall-ID field of the request. Th€seq field of the response
MUST equal theCseq field of the request. Th¥ia headers in the responsesT equal theVia headers in
the request anshusT maintain the same ordering.

If a request contained® tag in the request, tho field in the responseusT equal that of the request.
However, if theTo field in the request did not contain a tag, the URI in Tioefield in the responseiusT
equal the URI in thelo field in the request; additionally, the UABUST add a tag to thdo field in the
response (with the exception of the 100 (Trying) response, in which mAsgbe present). This serves to
identify the UAS that is responding, possibly resulting in a component of a dialog ID. The same $ag
be used for all responses to that request, both final and provisional (again excepting the 100 (Trying)).
Procedures for generation of tags are defined in Section 23.3.

8.2.7 Stateless UAS Behavior

A stateless UAS is a UAS that does not maintain transaction state. It replies to requests normally, but
discards any state that would ordinarily be retained by a UAS after a response has been sent. If a stateless
UAS receives a retransmission of a request, it regenerates the response and resends it, just as if it were
replying to the first instance of the request. Stateless UASs do not use a transaction layer; they receive
requests directly from the transport layer and send responses directly to the transport layer.

The stateless UAS role is needed primarily to handle unauthenticated requests for which a challenge
response is issued. If unauthenticated requests were handled statefully, then malicious floods of unau-
thenticated requests could create massive amounts of transaction state that might slow or completely halt
call processing in a UAS, effectively creating a denial of service condition; for more information see Sec-
tion 22.1.5.

The most important behaviors of a stateless UAS are the following:

A stateless UAS1UST NOT send provisional (1xx) responses.

A stateless UASAUST NOT retransmit responses.

A stateless UAS1UST ignore ACK requests.

A stateless UAS/1UST ignore CANCEL requests.

To header tagsusT be generated for responses in a stateless manner - in a manner that will generate
the same tag for the same request consistently. For information on tag construction see Section 23.3.

In all other respects, a stateless UAS behaves in the same manner as a stateful UAS. A UAS can operate
in either a stateful or stateless mode for each new request.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 35]

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378
1379
1380
1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

8.3 Redirect Servers

In some architectures it may be desirable to reduce the processing load on proxy servers that are responsible
for routing requests, and improve signaling path robustness, by relying on redirection. Redirection allows
servers to push routing information for a request back in a response to the client, thereby taking themselves
out of the loop of further messaging for this transaction while still aiding in locating the target of the request.
When the originator of the request receives the redirection, it will send a new request based on the URI it has
received. By propagating URIs from the core of the network to its edges, redirection allows for considerable
network scalability.

A redirect server is logically constituted of a server transaction layer and a transaction user that has
access to a location service of some kind (see Section 10 for more on registrars and location services). This
location service is effectively a database containing mappings between a single URI and a set of one or more
alternative locations at which the target of that URI can be found.

A redirect server does not issue any SIP requests of its own. After receiving a request otli@khan
CEL, the server gathers the list of alternative locations from the location service and either returns a final
response of class 3xx or it refuses the request. For well-fol@&NCEL requests, ilSHOULD return a
2xx response. This response ends the SIP transaction. The redirect server maintains transaction state for an
entire SIP transaction. It is the responsibility of clients to detect forwarding loops between redirect servers.

When a redirect server returns a 3xx response to a request, it populates the list of (one or more) alterna-
tive locations intoContact headers. Anéxpires” parameter to th&ontact header may also be supplied
to indicate the lifetime of th€ontact data.

The Contact header field contains URIs giving the new locations or user names to try, or may simply
specify additional transport parameters. A 301 (Moved Permanently) or 302 (Moved Temporarily) response
may also give the same location and username that was targeted by the initial request but specify additional
transport parameters such as a different server or multicast address to try, or a change of SIP transport from

UDP to TCP or vice versa.

However, redirect servergusT NOT redirect a request to a URI equal to the one inReguest-URI,
instead, provided that the URI does not point to itself, the redirect sereuLD proxy the request to the
destination URI.

If a client is using an outbound proxy, and that proxy actually redirects requests, a potential arises for infinite
redirection loops.

Note that theContact header fieldnAy also refer to a different entity than the one originally called. For
example, a SIP call connected to GSTN gateway may need to deliver a special informational announcement
such as “The number you have dialed has been changed.”

A Contact response header field can contain any suitable URI indicating where the called party can be
reached, not limited to SIP URIs. For example, it could contain URIs for phones, fax, (@rthey were
defined) or anailto: (RFC 2368, [36]) URL.

The “expires” parameter of th&Contact header field indicates how long the URI is valid. The value of
the parameter is a number indicating seconds. If this parameter is not provided, the valu&xitbe
header field determines how long the URI is valid. Implementatioms treat values larger than 2**32-

1 (4294967295 seconds or 136 years) as equivalent to 2**32-1. Malformed values should be treated as
equivalent to 3600.

Redirect serversmusT ignore features that are not understood (including unrecognized he&ders,
quired extensions, or even method names) and proceed with the redirection of the session in question. If
a particular extension requires that intermediate devices support it, the extenssanbe tagged in the
Proxy-Require field as well (see Section 24.29).

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 36]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

e 9 Canceling a Request

1400 The previous section has discussed general UA behavior for generating requests, and processing responses,
1401 for requests of all methods. In this section, we discuss a general purpose method; ANIEEL .

1402 TheCANCEL request, as the name implies, is used to cancel a previous request sent by a client. Specif-
1403 ically, it asks the UAS to cease processing the request and to generate an error response to that request.
140« CANCEL has no effect on a request to which a UAS has already responded. Because of this, it is most
1405 Useful toCANCEL requests to which can take a long time to respond. For this re€8NCEL is most

1406 Useful forINVITE requests, which can take a long time to generate a response. In that usage, a UAS that
1407 receives &£ ANCEL request for anNVITE, but has not yet sent a response, would “stop ringing”, and then

1408 respond to théNVITE with a specific error response (a 487).

1409 CANCEL requests can be constructed and sent by any type of client, including both proxies and user
1410 agent clients. Section 15 discusses under what conditions a UAC WAMCEL anINVITE request, and

1411 Section 16.9 discusses proxy usag€aiNCEL.

1412 Because a stateful proxy can generate its GAMNCEL, a stateful proxy also responds t€ANCEL,

113 rather than simply forwarding a response it would receive from a downstream element. For that reason,
1412 CANCEL is referred to as a “hop-by-hop” request, since it is responded to at each stateful proxy hop.

s 9.1 Client Behavior

1416 A CANCEL requestsHOULD NOT be sent to cancel a request other tHeWITE.

1417 Since requests other th&VITE are responded to immediately, sendinQA&NCEL for a noniNVITE request

1418 would always create a race condition.

1419 The following procedures are used to constru@ANCEL request. Thd&request-URI, Call-ID, To,

1420 the numeric part o€Seq andFrom header fields in th€ ANCEL requestmMusT be identical to those in

1421 the request being cancelled, including tagsCANCEL constructed by a clientusT have only a single

1422 Via header, whose value matches the Y6a in the request being cancelled. Using the same values for
1423 these headers allows tRANCEL to be matched with the request it cancels (Section 9.2 indicates how such
1424 matching occurs). However, the method part of @®eq heademusT have a value oCANCEL. This

1425 allows it to be identified and processed as a transaction in its own right (See Section 17).

1426 If the request being cancelled contaReute header fields, th€ ANCEL requestMuUsT include these
1427 Route header fields.

1428 This is needed so that stateless proxies are able to @ANCEL requests properly.

1429 The CANCEL requestmMusT NOT contain anyRequire or Proxy-Require header fields.

1430 Once theCANCEL is constructed, the clieHoULD check whether any response (provisional or final)

1431 has been received for the request being cancelled (herein referred to as the "original requeSTANTTEL

1432 requestMusT NOT be sent if no provisional response has been received, rather, thenolismtwait for the

1433 arrival of a provisional response before sending the request. If the original request has generated a final
1434 response, th€ANCEL sHOULD NOT be sent, as it is an effective no-op, SiIfCANCEL has no effect

1435 ON requests that have already generated a final response. When the client decides toGANCHRE, it

1436 Creates a client transaction for tBANCEL and passes it the ANCEL request along with the destination

1437 address, port, and transport. The destination address, port, and transporCfANGE&EL MusT be identical

1438 t0 those used to send the original request.

1439 If it was allowed to send th€ ANCEL before receiving a response for the previous request, the server could
1440 receive theaCANCEL before the original request.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 37]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

1441 Note that both the transaction corresponding to the original request aftiINEEL transaction will

1422 complete independently. However, a UAC canceling a request cannot rely on receiving a 487 (Request
1243 Terminated) response for the original request, as an RFC 2543-compliant UAS will not generate such a
1sa response. If there is no final response for the original request in 64*T1 seconds (T1 is defined in Section
1es 17.1.1.1), the cliensHOULD then consider the original transaction cancelled sinduLD destroy the client

a6 transaction handling the original request.

s 9.2 Server Behavior

128 The CANCEL method requests that the TU at the server side cancel a pending transaction. The transaction
129 t0 be canceled is determined by taking tBANCEL request, and then assuming that the request method
1450 were anything buCANCEL, apply the transaction matching procedures of Section 17.2.3. The matching
1451 transaction is the one to be canceled.

1452 The processing of EBANCEL request at a server depends on the type of server. A stateless proxy will
sz forward it, a stateful proxy might respond to it and generate sGARCEL requests of its own, and a UAS

1452 Will respond to it. See Section 16.9 for proxy treatmenCafiNCEL.

1455 A UAS first processes th€ ANCEL request according to the general UAS processing described in
1456 Section 8.2. However, sinc@ANCEL requests are hop-by-hop and cannot be resubmitted, they cannot be
1457 Challenged by the server in order to get proper credentials Bwudmorization header field. Note also that

14ss CANCEL requests do not contaRequire header fields.

1459 If the CANCEL did not find a matching transaction according to the procedure abov€ANCEL

1460 SHOULD be responded to with a 481 (Call Leg/Transaction Does Not Exist). If the transaction for the
1461 Original request still exists, the behavior of the UAS on receivi@ANCEL request depends on whether it

ez has already sent a final response for the original request. If it haSANECEL request has no effect on the

1463 processing of the original request, no effect on any session state, and no effect on the responses generated
1sa for the original request. If the UAS has not issued a final response for the original request, its behavior
1465 depends on the method of the original request. If the original request WaVahE, the UASSHOULD

1es iIMmediately respond to th&NVITE with a 487 (Request Terminated). The behavior upon reception of a
1467 CANCEL request for any other method defined in this specification is effectively no-op. Extensions to this
1468 Specification that define new methadssT define the behavior of a UAS upon reception @@ANCEL for

1460 those methods.

1470 Regardless of the method of the original request, as long aSAMNCEL matched an existing trans-

1471 action, theCANCEL request itself is answered with a 200 (OK) response. This response is constructed
1472 following the procedures described in Section 8.2.6 noting thalattag of the response to tH@ANCEL

1473 and theTo tag in the response to the original requestuLD be the same. The responseGANCEL is

1474 passed to the server transaction for transmission.

ws 10 Registrations

1 10.1 Overview

1477 SIP offers a discovery capability. If a user wants to initiate a session with another user, SIP must discover
1478 the current host(s) at which the destination user is reachable. This discovery process is accomplished by
1479 SIP proxy servers, which are responsible for receiving a request, determining where to send it based on
1480 knowledge of the location of the user, and then sending it there. To do this, proxies consult an abstract

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 38]

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

service known as lmcation servicewhich provides address bindings for a particular domain. These address
bindings map an incoming SIP URdjp:bob@Biloxi.com , for example, to one or more SIP URIs
that are somehow “closer” to the desired us#p;bob@engineering.Biloxi.com , for example.
Ultimately, a proxy will consult a location service that maps a received URI to the current host(s) into which
a user is logged.

Registration creates bindings in a location service for a particular domain that associate an address-of-
record URI with one or more contact addresses. Thus, when a proxy for that domain receives a request whose
Request-URI matches the address-of-record, the proxy will forward the request to the contact addresses
registered to that address-of-record. Generally, it only makes sense to register an address-of-record at a
domain’s location service when requests for that address-of-record would be routed to that domain. In
most cases, this means that the domain of the registration will need to match the domain in the URI of the
address-of-record.

There are many ways by which the contents of the location service can be established. One way is
administratively. In the above example, Bob is known to be a member of the engineering department through
access to a corporate database. However, SIP provides a mechanism for a UA to create a binding explicitly.
This mechanism is known as registration.

Registration entails sendingREGISTER request to a special type of UAS known as a registrar. The
registrar acts as a front end to the location service for a domain, reading and writing mappings based on the
contents of theREGISTER requests. This location service will then be consulted by a proxy server that is
responsible for routing requests for that domain.

SIP does not mandate a particular mechanism for implementing the location service. The only require-
ment is that a registrar for some domaisT be able to read and write data to the location service, and
a proxy for that domaimusT be capable of reading that same data. A registrar be co-located with a
particular SIP proxy server for the same domain.

10.2 Constructing theREGISTER Request

REGISTER requests add, remove, and query bindingsRBGISTER request may add a new binding
between an address-of-record and one or more contact addresses. Registration on behalf of a particular
address-of-record may be performed by a suitably authorized third party. A client may also remove previous
bindings or query to determine which bindings are currently in place for an address-of-record.

Except as noted, the construction of tREGISTER request and the behavior of clients sending a
REGISTER request is identical to the general UAC behavior described in Section 8.1 and Section 17.1.
The following header fieldsiusT be included:

Request-URI: The Request-URI names the domain of the location service for which the registration is
meant (for example, “sip:chicago.com”). The “userinfo” and “@” components of the SIPMURT
NOT be present.

To: The To header field contains the address of record whose registration is to be created, queried, or
modified. TheTo header field and thRequest-URI field typically differ, as the former contains a
user name. This address-of-recosdsT be a SIP URI.

From: TheFrom header field contains the address-of-record of the person responsible for the registration.
The value is the same as the header field unless the request is a third-party registration.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 39]

1521

1522

1523
1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

bob
+——t
| UA|
|1
+———t
I
[3)INVITE
| carol@chicago.com
chicago.com +————— + Vv
- + 2)Store|Location|4)Query +————— +
|Registrar|=======>| Service|<=======|Proxy|sip.chicago.com
+—— + - +=======>+4———— +
A 5)Resp |
| I
| I
1)REGISTER]| |
| I
+———t |
| VA |<-——"rr————————— +
cube2214a| | 6)INVITE
+——t carol@cube2214a.chicago.com
carol

Figure 2:REGISTER example

Call-ID: All registrations from a UAGSHOULD use the sam€all-ID header value for registrations sent to
a particular registrar.

If the same client were to use differe@all-ID values, a registrar could not detect whether a delayed
REGISTER request might have arrived out of order.

CSeq: TheCSeq value guarantees proper orderingREGISTER requests. A UAMUST increment the
CSeq value by one for eacREGISTER request with the sam@all-1D.

Contact : REGISTER requests contain zero or ma@®ntact header fields, containing address bindings.

UAs MUST NOT send a new registration (that is, containing néantact header fields, as opposed to
a retransmission) until they have received a final response from the registrar for the previous one or the
previousREGISTER request has timed out.

The following Contact header parameters have a special meaniREGISTER requests:

action : The “action” parameter from RFC 2543 has been deprecated. USESULD NOT use the
“action” parameter.

expires : The “expires” parameter indicates how long the UA would like the binding to be valid. The value
is a number indicating seconds. If this parameter is not provided, the valueBfpires header field
is used instead. Implementatiomay treat values larger than 2**32-1 (4294967295 seconds or 136
years) as equivalent to 2**32-1. Malformed values should be treated as equivalent to 3600.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 40]

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

10.2.1 Adding Bindings

TheREGISTER request sent to a registrar includes contact addresses to which SIP requests for the address-
of-record should be forwarded. The address-of-record is included ifotheader field of th®ISTER
request.

The Contact header fields of the request typically contain SIP URIs that identify particular SIP end-
points (for example, “sip:carol@cube2214a.chicago.com”), but threy use any URI scheme. A SIP UA
can choose to register telephone numbers (with the tel URL, [19]) or email addresses (with a mailto URL,
[36]) asContacts for an address-of-record.

For example, Carol, with address-of-record “sip:carol@chicago.com”, would register with the SIP reg-
istrar of the domain chicago.com. Her registrations would then be used by a proxy server in the chicago.com
domain to route requests for Carol’'s address-of-record to her SIP endpoint.

Once a client has established bindings at a registrarat send subsequent registrations containing
new bindings or modifications to existing bindings as necessary. The 2xx responseRE®STER
request will contain, irContact header fields, a complete list of bindings that have been registered for this
address-of-record at this registrar.

Registrations do not need to update all bindings. Typically, a UA only updates its own SIP URI as well
as any non-SIP URIs.

10.2.1.1 Setting the Expiration Interval of Contact Addresses When a client sends REGISTER
request, itMAY suggest an expiration interval that indicates how long the client would like the registration
to be valid. (As described in Section 10.3, the registrar selects the actual time interval based on its local
policy.)

There are two ways in which a client can suggest an expiration interval for a binding: through an
Expires header field or anexpires” Contact header parameter. The latter allows expiration intervals to
be suggested on a per-binding basis when more than one binding is given in aRHBIBTER request,
whereas the former suggests an expiration interval foCalhtact header fields that do not contain the
“expires” parameter.

If neither mechanism for expressing a suggested expiration time is preseREGESTER, a default
suggestion of one hour is assumed.

10.2.1.2 Preferences amon@ontact Addresses If more than oneContact is sent in aREGISTER
request, the registering UA intends to associate all of the URIs given in @@#act header fields with the
address-of-record present in the field. This list can be prioritized with theg® parameter in the&Contact
header fields. Thed” parameter indicates a relative preference for the particGlamtact header field
compared to other bindings present in tREGISTER message or existing within the location service of
the registrar. Section 16.5 describes how a proxy server uses this preference indication.

10.2.2 Removing Bindings

Registrations are soft state and expire unless refreshed, but can also be explicitly removed. A client can
attempt to influence the expiration interval selected by the registrar as described in Section 10.2.1. A UA
requests the immediate removal of a binding by specifying an expiration interval of “0” for that contact
address in ®ISTER request. UAsSHOULD support this mechanism so that bindings can be removed
before their expiration interval has passed.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 41]

1578

1579

1580
1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613
1614

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

TheREGISTER-specificContact header field value of “*” applies to all registrations, butib ST only
be used when thExpires header field is present with a value of “0”.

Use of the “*” Contact header field value allows a registering UA to remove all of its bindings without knowing
their precise values.

If no Contact header fields are present iREGISTER request, the list of bindings is left unchanged.

10.2.3 Fetching Bindings

A success response to aREGISTER request contains the complete list of existing bindings, regardless of
whether the request containe€antact header field.

10.2.4 Refreshing Bindings

Each UA is responsible to refresh the bindings that it has previously established. sAQALD NOTrefresh
bindings set up by other UAs.

The 200 (OK) response from the registrar contains a lis€oftact fields enumerating all current
bindings. The UA compares each contact address to see if it created the contact address, using comparison
rules in Section 23.1.4. If so, it updates the expiration time interval according &xfliees parameter or,
if absent, theexpires field value. The UA then issuesREGISTER request for each of its bindings before
the expiration interval has elapsedmity combine several updates into dREGISTER request.

A UA sHouLD use the same€all-ID for all registrations during a single boot cycle. Registration re-
freshessHOULD be sent to the same network address as the original registration, unless redirected.

10.2.5 Setting the Internal Clock

If the response fOREGISTER request contains Rate header field, the cliemaAy use this header field to
learn the current time in order to set any internal clocks.

10.2.6 Discovering a Registrar

UAs can use three ways to determine the address to which to send registrations: by configuration, using the
address-of-record, and multicast. A UA can be configured, in ways beyond the scope of this specification,
with a registrar address. If there is no configured registrar address, tl10BLD use the host part of the
address-of-record as tfequest-URI and address the request there, using the normal SIP server location
mechanisms [2]. For example, the UA for the user “sip:carol@chicago.com” addressiRE®ISTER
request to “chicago.com”.

Finally, a UA can be configured to use multicast. Multicast registrations are addressed to the well-known
“all SIP servers” multicast address “sip.mcast.net” (224.0.1.75 for IPv4). No well-known IPv6 multicast
address has been allocated; such an allocation will be documented separately when needed. This request
MUST be scoped to ensure it is not forwarded beyond the boundaries of the administrative system. This
MAY be done with either TTL or administrative scopes (see [12]), depending on what is implemented in the
network. SIP UAsvAY listen to that address and use it to become aware of the location of other local users
(see [40]); however, they do not respond to the request.

Multicast registration may be inappropriate in some environments, for example, if multiple businesses share the
same local area network.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 42]

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

10.2.7 Transmitting a Request

Once theREGISTER method has been constructed, and the destination of the message identified, UACs
should follow the procedures described in Section 8.1.2 to hand oRE®ISTER to the transaction layer.

If the transaction layer returns a timeout error becausdrRtB€ISTER vyielded no response, the UAC
SHOULD wait some reasonable time interval before re-attempting a registration to the same registrar; no
specific interval is mandated.

10.2.8 Error Responses

If a UA receives a 423 (Registration Too Brief) responsevialr retry the registration after making the
expiration interval of all contact addresses in REGISTER request equal to or greater than the expiration
interval within theMin-Expires header field of the 423 (Registration Too Brief) response.

10.3 ProcessiniREGISTER Requests

Aregistrar is a UAS that respondsREGISTER requests and maintains a list of bindings that are accessible
to proxy servers within its administrative domain. A registrar handles requests according to Section 8.2 and
Section 17.2, but it accepts orlREGISTER requests. A registrar does not generate 6xx responses.

If a registrar listens at a multicast interfacemidy redirect multicasREGISTER requests to its own
unicast interface with a 302 (Moved Temporarily) response.

A REGISTER requestMUST NOT contain Record-Route or Route header fields; registrarausT
ignore them if they appear.

A registrar must know (for example, through configuration) the set of domain(s) for which it main-
tains bindings.REGISTER requestsvusT be processed by a registrar in the order that they are received.
REGISTER requestsvusT also be processed atomically, meaning tR&EGISTER requests are either
processed completely or not at all. EdREGISTER message must be processed independently of any
other registration or binding changes.

When receiving ®ISTER request, a registrar follows these steps:

1. The registrar inspects tiequest-URI to determine whether it has access to bindings for the domain
identified in theRequest-URI. If not, and if the server also acts as a proxy server, the seAeuLD
forward the request to the addressed domain, following the general behavior for proxying messages
described in Section 16.

2. To guarantee that the registrar supports any necessary extensions, the registrar pRezpsses
header fields as described for UASs in Section 8.2.2.

3. AregistrarsHouULD authenticate the UAC. Mechanisms for the authentication of SIP user agents are
described in Section 20; registration behavior in no way overrides the generic authentication frame-
work for SIP. If no authentication mechanism is available, the registrar take theFrom address as
the asserted identity of the originator of the request.

4. The registraisHouLD determine if the authenticated user is authorized to modify registrations for
this address-of-record. For example, a registrar might consult a authorization database that maps user
names to a list of addresses-of-record for which this identity is authorized to modify bindings. If not,
the registrar returns 403 (Forbidden) and skips the remaining steps.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 43]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

1653 In architectures that support third-party registration, one entity may be responsible for updating the regis-
1654 trations associated with multiple addresses-of-record.

1655 5. The registrar extracts the address-of-record fromTthéeader field of request. If the address-of-

1656 record is not valid for the domain in tiRequest-URI, the registrar sends a 404 (Not Found) response
1657 and skips the remaining steps. The WRIST then be converted to a canonical form. To do that, all
1658 URI parameters are removed (including tieer-param), and any escaped characters are converted
1659 to their unescaped form. The result serves as an index into the list of bindings.

1660 6. The registrar checks whether the request contain€anyact header fields. If not, it skips to the last
1661 step.

1662 Next, the registrar checks if there is oft®ntact field that contains the special value “*” and a

1663 Expires field. If the request has addition&lontact fields or an expiration time other than zero,

1664 the request is invalid, and the server returns 400 (Invalid Request) and skips the remaining steps. If
1665 not, the registrar checks whether tBall-ID agrees with the value stored for each binding. If not, it

1666 removes the binding. If it does agree, it only removes the binding i€CtBeq in the request is higher

1667 than the value stored for that binding and leaves the binding as is otherwise. It then skips to the last
1668 step.

1669 7. The registrar now processes each contact address@otitact header field in turn. For each address,

1670 it determines the expiration interval as follows:

1671 ¢ If the field value has angxpires” parameter, that value is used.

1672 e If there is no such parameter, but the request hd&xgires header field, that value is used.

1673 e If there is neither, a locally-configured default value is used.

1674 The registramAy shorten the expiration interval. If and only if the expiration interval is greater than
1675 zero AND smaller than one hour AND less than a registrar-configured minimum, the registrar

1676 reject the registration with a response of 423 (Registration Too Brief). This respaurssecontain a

1677 Min-Expires header field that states the minimum expiration interval the registrar is willing to honor.
1678 It then skips the remaining steps.

1679 Allowing the registrar to set the registration interval protects it against excessively frequent registration

1680 refreshes while limiting the state that it needs to maintain and decreasing the likelihood of registrations going

1681 stale. The expiration interval of a registration is frequently used in the creation of services. An example is a

1682 follow-me service, where the user may only be available at a terminal for a brief period. Therefore, registrars

1683 should accept brief registrations; a request should only be rejected if the interval is so short that the refreshes

1684 would degrade registrar performance.

1685 For each address, the registrar then searches the list of current bindings using the URI comparison
1686 rules. If the binding does not exist, it is tentatively added. If the binding does exist, the registrar
1687 checks theCall-ID value. If theCall-ID value in the existing binding differs from th@all-ID value

1688 in the request, the binding is removed if the expiration time is zero and updated otherwise. If they
1689 are the same, the registrar compares@iseq value. If the value is higher than that of the existing

1690 binding, it updates or removes the binding as above. If not, the update is aborted and the request fails.
1691 This algorithm ensures that out-of-order requests from the same UA are ignored.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 44]

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710
1711
1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Each binding record records ti@all-ID andCSeq values from the request.

The binding updates are committed (that is, made visible to the proxy) if and only if all binding
updates and additions succeed. If any one of them fails, the request fails with 500 (Server Error)
response and all tentative binding updates are removed.

8. The registrar returns a 200 (OK) response. The respapnsa containContact header fields enu-
merating all current bindings. Ea€ontact valuemusT feature an &xpires” parameter indicating
its expiration interval chosen by the registrar. The respersauLD include aDate header field.

11 Querying for Capabilities

The SIP metho®PTIONS allows a UA to query another UA or a proxy server as to its capabilities. This
allows a client to discover information about the supported methods, content types, extensions, codecs, etc.
without "ringing” the other party. For example, before a client inseRequire header field into atNVITE
listing an option that it is not certain the destination UAS supports, the client can query the destination UAS
with anOPTIONS to see if this option is returned in@upported header field.

The target of the®OPTIONS request is identified by thRequest-URI, which could identify another
UA or a SIP server. If th©PTIONS is addressed to a proxy server, fRequest-URI is set without a user
part, similar to the way equest-URI is set for BREGISTER request.

Alternatively, a server receiving &0PTIONS request with avlax-Forwards header value of @AY
respond to the request regardless ofRegjuest-URI.

This behavior is common with HTTP/1.1. This behavior can be used as a “traceroute” functionality to check the
capabilities of individual hop servers by sending a serie®®TIONS requests with incrementédax-Forwards
values.

As is the case for general UA behavior, the transaction layer can return a timeout errddRPTHONS
yields no response. This may indicate that the target is unreachable and hence unavailable.

An OPTIONS requesiAY be sent as part of an established dialog to query the peer on capabilities that
may be utilized later in the dialog.

11.1 Construction of OPTIONS Request

An OPTIONS request is constructed using the standard rules for a SIP request as discussed Section 8.1.1.

A Contact header fielduay be present in a@PTIONS.

An Accept header fieldsHOULD be included to indicate the type of message body the UAC wishes to
receive in the response. Typically, this is set to a format that is used to describe the media capabilities of a
UA, such as SDP (application/sdp).

The response to a®@PTIONS request is assumed to be scoped toReguest-URI in the original
request. However, only when &PTIONS is sent as part of an established dialog is it guaranteed that
future requests will be received by the server which generate@BWEONS response.

ExampleOPTIONS request:

OPTIONS sip:carol@chicago.com SIP/2.0

Via: SIP/2.0/UDP 192.0.2.4;branch=z9hG4bKhjhs8ass877
To: <sip:carol@chicago.com>

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 45]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

1730 From: Alice <sip:alice@atlanta.com>;tag=1928301774
1731 Call-ID: a84b4c76e66710

1732 CSeq: 63104 OPTIONS

1733 Contact: <sip:alice@192.0.2.4>

1734 Max-Forwards: 70

1735 Accept: application/sdp

1736 Content-Length: 0

a7 11.2 Processing of OPTIONS Request

1738 The response to a@PTIONS is constructed using the standard rules for a SIP response as discussed in
1739 Section 8.2.6. The response code chosen is the same that would have been chosen had the request been an
a0 INVITE. That is, a 200 (OK) would be returned if the UAS is ready to accept a call, a 486 (Busy Here)
171 would be returned if the UAS is busy, etc. This allows@RTIONS request to be used to determine the

1722 basic state of a UAS, which can be an indication of whether the UAC will accelpt\&T E request.

1743 An OPTIONS request received within a dialog generates a 200 (OK) response that is identical to one
1744 constructed outside a dialog and does not have any impact on the dialog.

1745 This use ofOPTIONS has limitations due the differences in proxy handlingd®TIONS andINVITE

a6 requests. While a forketNVITE can result in multiple 200 (OK) responses being returned, a fotked

1747 TIONS will only result in a single 200 (OK) response, since it is treated by proxies using thENWGmE

a8 handling. See Section 13.2.1 for the normative details.

1749 If the response to a@PTIONS is generated by a proxy server, the proxy returns a 200 (OK) listing the
1750 capabilities of the server. The response does not contain a message body.
1751 Allow, Accept, Accept-Encoding, Accept-Language, and Supported header fieldssHouLD be

1752 present in a 200 (OK) response to @PTIONS request. If the response is generated by a proxy, the

173 Allow header field(sHOULD be omitted as it is ambiguous since a proxy is method agndtintact header

1754 fieldsMAY be present in a 200 (OK) response and have the same semantics as in a redirect. That is, they may
1755 list a set of alternative names and methods of reaching the uséarAing header fieldnAy be present.

1756 A message bodwAy be sent, the type of which is determined by faept header in th@©PTIONS

1757 request (application/sdp if th&ccept header was not present). If the types include one that can describe
175¢ Mmedia capabilities, the UAHoULD include a body in the response for that purpose. Details on construction

1759 Of such a body in the case of application/sdp are described in [1].

1760 ExampleOPTIONS response generated by a UAS (corresponding to the request in Section 11.1):

1761 SIP/2.0 200 OK

1762 Via: SIP/2.0/UDP 192.0.2.4;branch=z9hG4bKhjhs8ass877
1763 To: <sip:carol@chicago.com>;tag=93810874

1764 From: Alice <sip:alice@atlanta.com>;tag=1928301774
1765 Call-ID: a84b4c76e66710@100.1.3.3

1766 CSeq: 63104 OPTIONS

1767 Contact: <sip:carol@chicago.com>

1768 Contact: <mailto:carol@chicago.com>

1769 Allow: INVITE, ACK, CANCEL, OPTIONS, BYE

1770 Accept:. application/sdp

1771 Accept-Encoding: gzip

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 46]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

1772 Accept-Language: en

1773 Supported: foo

1774 Content-Type: application/sdp
1775 Content-Length: 274

1776

1777 (SDP not shown)

s 12 Dialogs

1779 A key concept for a user agent is that of a dialog. A dialog represents a peer-to-peer SIP relationship between
1780 @ two user agents that persists for some time. The dialog facilitates sequencing of messages between the
1781 User agents and proper routing of requests between both of them. The dialog represents a context in which to
1782 interpret SIP messages. Section 8 discussed method independent UA processing for requests and responses
1783 outside of a dialog. This section discusses how those requests and responses are used to construct a dialog,
17sa and then how subsequent requests and responses are sent within a dialog.

1785 A dialog is identified at each UA with a dialog ID, which consists dtall-ID value, a local URI and

1786 local tag (together called the local address), and a remote URI and remote tag (together called the remote
1757 address). The dialog ID at each UA involved in the dialog is not the same. Specifically, the local URI and
1788 local tag at one UA are identical to the remote URI and remote tag at the peer UA. The tags are opaque
1789 tokens that facilitate the generation of unique dialog IDs.

1790 A dialog ID is also associated with all responses and with any request that contains a tagoirfidihe:

1791 The rules for computing the dialog ID of a message depend on whether the entity is a UAC or UAS. For a
172 UAC, theCall-ID value of the dialog ID is set to theall-ID of the message, the remote address is set to the

1793 TO field of the message, and the local address is set térira field of the message (these rules apply to

1794 both requests and responses). As one would expect, for a UASallD value of the dialog ID is set to

1795 the Call-ID of the message, the remote address is set tbribim field of the message, and the local address

1796 IS set to theTlo field of the message.

1797 A dialog contains certain pieces of state needed for further message transmissions within the dialog.
1798 This state consists of the dialog ID, a local sequence number (used to order requests from the UA to its
1799 pPeer), a remote sequence number (used to order requests from its peer to the UA), the URI of the remote
1800 target, and a route set, which is an ordered list of URIS. The route set is the set of servers that need to
1801 be traversed to send a request to the peer. A dialog can also be in the “early” state, which occurs when it
1802 IS created with a provisional response, and then transition to the “confirmed” state when the final response
1803 COMeS.

1a 12.1 Creation of a Dialog

1805 Dialogs are created through the generation of non-failure responses to requests with specific methods.
1806 Within this specification, only 2xx and 101-199 responses wiffodag to INVITE establish a dialog.

1807 A dialog established by a non-final response to a request is in the “early” state and it is called an early dia-
1808 l0g. ExtensionsAy define other means for creating dialogs. Section 13 gives more details that are specific
1800 to theINVITE method. Here, we describe the process for creation of dialog state that is not dependent on
1810 the method.

1811 A dialog is identified by a dialog ID. A dialog ID consists of three components, namely a call identifier
1812 component, a local address component and a remote address componenrt &iAassign values to these

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 47]

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831
1832
1833
1834
1835
1836
1837

1838

1839

1840

1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852

1853

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

components as described below.

12.1.1 UAS behavior

When a UAS responds to a request with a response that establishes a dialog (such adid\2b0&) the
UAS muUsT copy allRecord-Route headers from the request into the response (including the URIs, URI
parameters, and arfyecord-Route header parameters, whether they are known or unknown to the UAS)
andMusT maintain the order of those headers. The UAST add aContact header field to the response.
The Contact header field contains an address where the UAS would like to be contacted for subsequent
requests in the dialog (which includes €K for a 2xx response in the case of INVITE). Generally, the
host portion of this URI is the IP address or FQDN of the host. The URI provided iGémeact header
field MusT be a SIP URI and have global scope (i.e., the same SIP URI can be used outside this dialog to
contact the UAS). The same way, the scope of the SIP URI i€trgact header field of théNVITE is not
limited to this dialog either. It can therefore be used to contact the UAC even outside this dialog.

The UAS then constructs the state of the dialog. This stateT be maintained for the duration of the
dialog.

The route semusT be set to the list of URIs in thRecord-Route header field from the request, taken
in order and preserving all URI parameters. IfRecord-Route header field is present in the request, the
route seMuUsST be set to the empty set. This route set, even if empty, overrides any pre-existing route set for
future requests in this dialog. The remote tangetsT be set to the URI from th€ontact header field of

the request.

The remote sequence numhbassT be set to the value of the sequence number ilCteg header field
of the request. The local sequence numbesT be empty. The call identifier component of the dialog ID
MUST be set to the value of th@all-ID in the request. The local address component of the dialaguBT
be set to thdo field in the response to the request (which therefore includes the tag), and the remote address
component of the dialog IMUST be set to thd-rom field in the request. A UASAUST be prepared to
receive a request without a tag in them field, in which case the tag is considered to have a value of null.

This is to maintain backwards compatibility with RFC 2543, which did not maréae tags.

12.1.2 UAC behavior

When a UAC receives a response that establishes a dialog, it constructs the state of the dialog. This state

MUST be maintained for the duration of the dialog.

The route semusT be set to the list of URIs in thRecord-Route header field from the response,
taken in reverse order and preserving all URI parameters. Reunrd-Route header field is present in the
response, the route set/ST be set to the empty set. This route set, even if empty, overrides any pre-existing
route set for future requests in this dialog. The remote tamyetT be set to the URI from th€ontact
header field of the response. The local sequence numbg&T be set to the value of the sequence number in
the Cseq header field of the request. The remote sequence numbgT be empty (it is established when
the UA sends a request within the dialog). The call identifier component of the dialag 9 be set to the
value of theCall-ID in the request. The local address component of the dialaguBT be set to thé-rom
field in the request, and the remote address component of the dialag $D be set to thelo field of the
response. A UAQUUST be prepared to receive a response without a tag ifeh@eld, in which case the
tag is considered to have a value of null.

This is to maintain backwards compatibility with RFC 2543, which did not mantiatags.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 48]

1854

1855

1856

1857

1858

1859

1860

1861

1862
1863
1864
1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878
1879
1880
1881
1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

12.2 Requests within a Dialog

Once a dialog has been established between two UAs, either oMhgnnitiate new transactions as needed
within the dialog. However, a dialog imposes some restrictions on the use of simultaneous transactions.

A TU MUST NOT initiate a new regular transaction within a dialog while a regular transaction is in
progress (in either direction) within that dialog. If there is a tWITE client or server transaction in
progress the TWuUST wait until this transaction enters the completed or the terminated state to initiate the
new transaction.

OPEN ISSUE #113: Should we relax the constraint on non-overlapping regular transactions?

A route refresh request sent within a dialog is defined as a request that can modify the route set of
the dialog. For dialogs that have been established wittNSAiTE, the only route refresh request defined
is redNVITE (see Section 14). Other extensions may define different route refresh requests for dialogs
established in other ways.

Note that artACK is NOT a route refresh request.

12.2.1 UAC Behavior

12.2.1.1 Generating the Request A request within a dialog is constructed by using many of the com-
ponents of the state stored as part of the dialog.

TheTo header field of the requestusT be set to the remote address, andRham header fieldwusT
be set to the local address (both including tags, assuming the tags are not null).

The Call-ID of the requestusT be set to theCall-ID of the dialog. Requests within a dialogysT
contain strictly monotonically increasing and contigu@Seq sequence numbers (increasing-by-one) in
each direction. Therefore, if the local sequence number is not empty, the value of the local sequence humber
MUST be incremented by one, and this valuesT placed into theCseq header. If the local sequence
number is empty, an initial valugausT be chosen using the guidelines of Section 8.1.1.5. The method field
in the Cseq heademusT match the method of the request.

With a length of 32 bits, a client could generate, within a single call, one request a second for about 136 years
before needing to wrap around. The initial value of the sequence number is chosen so that subsequent requests within
the same call will not wrap around. A non-zero initial value allows clients to use a time-based initial sequence
number. A client could, for example, choose the 31 most significant bits of a 32-bit second clock as an initial
sequence number.

The UAC uses the remote target and route set to buildRénguest-URI andRoute header field of the
request.

If the route set is empty, the UAGUST place the remote target URI into tiRequest-URI. The UAC
MUST NOT add aRoute header field to the request.

If the route set is not empty, and the first URI in the route set containdr tharameter (see Sec-
tion 23.1.1), the UAGuUST place the remote target URI into tRRequest-URI andMusT a Route header
field containing the route set values in order, including all parameters.

If the route set is not empty and its first URI does not containitiparameter, the UAGUST place
the first URI from the route set into tiRequest-URI, stripping any parameters that are not allowed in a
Request-URI. The UACMUST add aRoute header field containing the remainder of the route set values in
order, including all parameters. The UAGST then place the the remote target URI into Beute header
field as the last value.

For example, if the remote target is sip:user@remoteua and the route set contains

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 49]

1896

1897

1898

1899

1900
1901
1902
1903
1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916
1917

1918

1919
1920
1921
1922

1923

1924

1925
1926
1927

1928

1929

1930

1931

1932

1933

1934

1935

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

<sip:proxyl>,<sip:proxy2>,<sip:proxy3;Ir>,<sip:proxy4>
The request will be formed with the followingequest-URI andRoute header field:

METHOD sip:proxyl
Route: <sip:proxy2>,<sip:proxy3;Ir>,<sip:proxy4>,<sip:user@remoteua>

If the first URI of the route set does not contain th@arameter, the proxy indicated does not understand the
routing mechanisms described in this document and will act as specified in RFC 2543, repla&legukst-URI
with the firstRoute header field value it receives while forwarding the message. PlacirRafeest-URI at the
end of theRoute header field preserves the information in tRequest-URI across the strict router (it will be
returned to th&Request-URI when the request reaches a loose-router).

A UAC sHouLD include aContact header in any route refresh requests within a dialog, and unless
there is a need to change it, the UslOULD be the same as used in previous requests within the dialog. As
discussed in Section 12.2.2Cantact header in a route refresh request updates the remote target URI. This
allows a UA to provide a new contact address, should its address change during the duration of the dialog.

However, requests that are not route refresh requests do not affect the remote target URI for the dialog.

Once the request has been constructed, the address of the server is computed and the request is sent,
using the same procedures for requests outside of a dialog (Section 8.1.1).

12.2.1.2 Processing the Response3he UAC will receive responses to the request from the transaction
layer. If the client transaction returns a timeout this is treated as a 408 (Request Timeout) response.

The behavior of a UAC that receives a 3xx response for a request sent within a dialog is the same as if
the request had been sent outside a dialog. This behavior is described in Section 13.2.2.

Note, however, that when the UAC tries alternative locations, it still uses the route set for the dialog to build the
Route header of the request.

When a UAC recieves a 2xx response to a route refresh resquestsit replace the dialog’'s remote

target URI with the URI from th&€ontact header field in that response, if present.

If the response for the a request within a dialog is a 481 (Call/Transaction Does Not Exist) or a 408
(Request Timeout), the UAGHOULD terminate the dialog. A UAGHOULD also terminate a dialog if no
response at all is received for the request (the client transaction would inform the TU about the timeout.)

For INVITE initiated dialogs, terminating the dialog consists of sendiBY &.

12.2.2 UAS behavior

Requests sent within a dialog, as any other requests, are atomic. If a particular request is accepted by the
UAS, all the state changes associated with it are performed. If the request is rejemtedf the state
changes is performed.

Note that some requests such¥ITEs affect several pieces of state.

The UAS will receive the request from the transaction layer. If the request has a tagTio tleader
field, the UAS core computes the dialog identifier corresponding to the request and compares it with existing
dialogs. If there is a match, this is a mid-dialog request. In that case, the UAS applies the same processing
rules for requests outside of a dialog, discussed in Section 8.2.

If the request has a tag in ti® header field, but the dialog identifier does not match any existing di-
alogs, the UAS may have crashed and restarted, or it may have received a request for a different (possibly
failed) UAS (the UASs can construct tiie tags so that a UAS can identify that the tag was for a UAS

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 50]

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951
1952
1953

1954
1955
1956
1957
1958
1959
1960
1961
1962

1963
1964
1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

for which it is providing recovery). Another possibility is that the incoming request has been simply mis-
srouted. Based on thi tag, the UASMAY either accept or reject the request. Accepting the request for
acceptabléelo tags provides robustness, so that dialogs can persist even through crashes. UAs wishing to
support this capability must take into consideration some issues such as choosing monotonically increasing
CSeq sequence humbers even across reboots, reconstructing the route set, and accepting out-of-range RTP
timestamps and sequence numbers.

If the UAS wishes to reject the request, because it does not wish to recreate the dialogft itespond
to the request with a 481 (Call/Transaction Does Not Exist) status code and pass that to the server transaction.

Requests that do not change in any way the state of a dialog may be received within a dialog (for
example, atDPTIONS request). They are processed as if they had been received outside the dialog.

Requests within a dialogiAy containRecord-Route and Contact header fields. However, these re-
quests do not cause the dialog’s route set to be modified, although they may modify the remote target
URI. Specifically, requests which are not refresh requests do not modify the dialog's remote target URI,
and requests which are route refresh requests do. This specification only defines one route refresh request:
re-INVITE (see Section 14).

Route refresh requests only update the dialog’s remote target URI, and not the route set formReddond:
Route. Updating the latter would introduce severe backwards compatibility problems with RFC 2543-compliant
systems.

If the remote sequence number is emptyiisT be set to the value of the sequence number in the
Cseq header in the request. If the remote sequence number was not empty, but the sequence number of the
request is lower than the remote sequence number, the request is out of ordevsante rejected with
a 500 (Server Internal Error) response. If the remote sequence number was not empty, and the sequence
number of the request is greater than the remote sequence number, the request is in order. It is possible
for the CSeq header to be higher than the remote sequence number by more than one. This is not an error
condition, and a UASHOULD be prepared to receive and process requests @ftbg values more than
one higher than the previous received request. The MAST then set the remote sequence number to the
value of the sequence number in tiseq header in the request.

If a proxy challenges a request generated by the UAC, the UAC has to resubmit the request with credentials. The
resubmitted request will have a n&@geq number. The UAS will never see the first request, and thus, it will notice
a gap in theCseq number space. Such a gap does not represent any error condition.

12.3 Termination of a Dialog

Dialogs can end in several different ways, depending on the method. When a dialog is established with
INVITE, itis terminated with 8YE. No other means to terminate a dialog are described in this specification,
but extensions can define other ways.

13 Initiating a Session

13.1 Overview

When a user agent client desires to initiate a session (for example, audio, video, or a game), it formulates
anINVITE request. ThéNVITE request asks a server to establish a session. This request is forwarded by
proxies, eventually arriving at one or more UAS that can potentially accept the invitation. These UASs will
frequently need to query the user about whether to accept the invitation. After some time, those UAS can
accept the invitation (meaning the session is to be established) by sending a 2xx response. If the invitation
is not accepted, a 3xx, 4xx, 5xx or 6xx response is sent, depending on the reason for the rejection. Before

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 51]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

1978 Ssending a final response, the UAS can also send a provisional response (1xx), either reliably or unreliably,
1979 t0 advise the UAC of progress in contacting the called user.

1980 After possibly receiving one or more provisional responses, the UA will get one or more 2xx responses or
1981 One non-2xx final response. Because of the protracted amount of time it can take to receive final responses
1982 t0 INVITE, the reliability mechanisms faiNVITE transactions differ from those of other requests (like

19s3 OPTIONS). Once it receives a final response, the UAC needs to seddC#nfor every final response it

1984 receives. The procedure for sending thiSK depends on the type of response. For final responses between
1985 300 and 699, th&CK processing is done in the transaction layer and follows one set of rules (See Section
1986 17). For 2xx responses, tWeCK is generated by the UAC core.

1987 A 2xx response to aiNVITE establishes a session, and it also creates a dialog between the UA that
1988 Issued théNVITE and the UA that generated the 2xx response. Therefore, when multiple 2xx responses are
1989 received from different remote UAs (because IR¥ITE forked), each 2xx establishes a different dialog.

1900 All these dialogs are part of the same call.

1991 This section provides details on the establishment of a session INSHGE.

w2 13.2 Caller Processing
w93 13.2.1 Creating the Initial INVITE

1904 Since the initiaINVITE represents a request outside of a dialog, its construction follows the procedures of
1995 Section 8.1.1. Additional processing is required for the specific caBe\iTE.

1996 An Allow header field (Section 24.SHoOULD be present in théNVITE. It indicates what methods can

1997 be invoked within a dialog, on the UA sending tiVITE, for the duration of the dialog. For example, a

1998 UA capable of receivingNFO requests within a dialog [393HouULD include anAllow header listing the

1000 INFO method.

2000 A Supported header field (Section 24.3%HouULD be present in théNVITE. It enumerates all the

2000 extensions understood by the UAC.

2002 An Accept (Section 24.1) header fieMay be present in thitNVITE. It indicates which content-types

2003 are acceptable to the UA, in both the response received by it, and in any subsequent requests sent to it within
2004 dialogs established by thBIVITE. The Accept header is especially useful for indicating support of various

2005 Session description formats.

2006 The UAMAY add anExpires header field (Section 24.19) to limit the validity of the invitation. If the

2007 time indicated in th&xpires header field is reached and no final answer forlMéI TE has been received

2008 the UAC coresHOULD generate £ ANCEL request for the origindNVITE.

2009 A UAC mAY also find useful to add, among othe&ybject (Section 24.38)Qrganization (Section

2010 24.25) andJser-Agent (Section 24.43) header fields. They all contain information related tONVETE.

2011 The UACMAY choose to add a message body toltH®ITE. Section 8.1.1.10 deals with how to con-

2012 struct the header fieldsGontent-Type among others — needed to describe the message body.

2013 There are special rules for message bodies that contain a session description - their corresponding
2014 Content-Disposition is “session”. SIP uses an offer/answer model where one UA sends a session de-
2015 Scription, called the offer, which contains a proposed description of the session. The offer indicates the
2016 desired communications means (audio, video, games), parameters of those means (such as codec types) and
2017 addresses for receiving media from the answerer. The other UA responds with another session description,
208 called the answer, which indicates which communications means are accepted, the parameters which ap-
2019 ply to those means, and addresses for receiving media from the offerer. The offer/answer model defines
2020 restrictions on when offers and answers can be made. This results in restrictions on where the offers and

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 52]

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051
2052
2053
2054
2055

2056

2057

2058

2059

2060

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

answers can appear in SIP messages. In this specification, offers and answers can only ddp¢aEIn
andPRACK requests and responses. The usage of offers and answers is further restricted. For the initial
INVITE transaction, the rules are:

e The initial offer MusT be in either ariNVITE or, if not there, in the first reliable message from the
callee back to the caller. In this specification, that is either the first reliable provisional response or the
final 2xx response.

¢ If the initial offer is in anINVITE, the answemusT be in a reliable message from callee back to
caller which is correlated to th&VITE. For this specification, that is either a reliable provisional
response or the final 2xx response to I TE.

¢ If the initial offer is in the first reliable message from the callee back to caller, the amswser be in
the acknowledgement for that messaBRACK for a reliable provisional response ACK for a 2xx
response).

e After having sent or received an answer to the first offer, the WAE generate subsequent offers
in requestsPRACK alone for this specification), but only if it has received answers to any previous
offers, and has not send any offers to which it hasn’t gotten an answer.

e Once the UAS has sent or received an answer to the initial offeny#T NOT generate subsequent
offers in any responses to th&VITE. Since only the UAC can serfRACK, this means the a UAS
based on this specification alone can never generate subsequent offers.

Extensions to SIP which define new methoasy specify whether offers and answers can appear in
requests of that method or its responses. However, those extemsimtsadhere to the protocol rules
specified in [2], and1usT adhere to the additional constraints in the list above.

Concretely, the above rules specify two exchanges for UAs which don't support reliable provisional
responses - the offer is in thRVITE, and the answer in the 2xx, or the offer is in the 2xx, and the answer
is in the ACK. When reliable provisional responses is supported, several more flows are possible. One
possibility is to have the offer in thENVITE, and the answer in a reliable provisional response, with no
further SDP exchanges.

All user agents that suppdiiVITE and/orPRACK mMusT support all exchanges that are possible based
on the above rules and on their supportRRACK.

The Session Description Protocol (SDP) [IMysST be supported by all user agents as a means to
describe sessions, and its usage for constructing offers and ansug&rdollow the procedures defined in
1].
- The restrictions of the offer-answer model just described only apply to bodies Wloasent-Disposition
header field is “session”. Therefore, it is possible that botHRNNETE and theACK contain a body mes-

sage (e.g., th&NVITE carries a photoGontent-Disposition: render) and thé&CK a session description
(Content-Disposition: session)).

If the Content-Disposition header field is missing, bodies G6bntent-Type application/sdp imply the
disposition “session”, while other content types imply “render”.

Once thdNVITE has been created, the UAC follows the procedures defined for sending requests outside
of a dialog (Section 8). This results in the construction of a client transaction that will ultimately send the
request and deliver responses to the UAC.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 53]

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095
2096
2097

2098

2099

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

13.2.2 ProcessingNVITE Responses

Once thdNVITE has been passed to thid¢VITE client transaction, the UAC waits for responses forltiie
VITE. Responses are matched to their correspondNMiTE because they have the sa@all-1D, the same
From header field, the sami® header field, excluding the tag, and the sad$®q. Rules for comparisons
of these headers are described in Section 24. INNGTE client transaction returns a timeout rather than a
response the TU acts as if a 408 (Request Timeout) response had been received.

13.2.2.1 1xx responses Zero, one or multiple provisional responses may arrive before one or more
final responses are received. Provisional responses ftN\AITE request can create “early dialogs”. If a
provisional response has a tag in feefield, and if the dialog ID of the response does not match an existing
dialog, one is constructed using the procedures defined in Section 12.1.2.

The early dialog will only be needed if the UAC needs to send a request to its peer within the dialog
before the initiaINVITE transaction completes. This will be the case for all reliable provisional responses,
which require transmission ?# RACK. Header fields present in a provisional response are applicable as
long as the dialog is in the early state (e.g.,Adlow header field in a provisional response contains the
methods that can be used in the dialog while this is in the early state).

If the 1xx is reliable and contains a session description, the WAGT generate an answer if the
description is an offer. If the description is an answer, the sesstwuLD be established based on the
parameters of the offer and answer.

13.2.2.2 3xxresponses A 3xx response may containGontact header field providing new addresses
where the callee might be reachable. Depending on the status code of the 3xx response (see Section 25.3)
the UACMAY choose to try those new addresses.

13.2.2.3 4xx, 5xx and 6xx responses A single non-2xx final response may be received forltle
VITE. 4xx, 5xx and 6xx responses may contaiG@@ntact header field indicating the location where addi-
tional information about the error can be found.

All early dialogs are considered terminated upon reception of the non-2xx final response.

After having received the non-2xx final response the UAC core considers the INVITE transaction com-
pleted. TheNVITE client transaction handles generationA@Ks for the response (see Section 17).

13.2.2.4 2xx responses Multiple 2xx responses may arrive at the UAC for a sinil&/ITE request
due to a forking proxy. Each response is distinguished byatg@arameter in th@o header field, and each
represents a distinct dialog, with a distinct dialog identifier.

If the dialog identifier in the 2xx response matches the dialog identifier of an existing dialog, the dialog
MUST be transitioned to the “confirmed” state, and the route set for the dialsy be recomputed based
on the 2xx response using the procedures of Section 12.1.2. Otherwise, a new dialog in the “confirmed”
state is constructed in the same fashion.

The route set only is recomputed for backwards compatibility. RFC 2543 did not mandate mirrdRagartl-
Route headers in a 1xx, only 2xx. However, we cannot update the entire state of the dialog, since mid-dialog
requests may have been sent within the early call leg, modifying the sequence numbers, for example.

The UAC coremusT generate a\CK request for each 2xx received from the transaction layer. The
header fields of thACK are constructed in the same way as for any request sent within a dialog (see Section

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 54]

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

12) with the exception of th€Seq and the header fields related to authentication. The sequence number of
the CSeq header fielduusT be the same as tHBVITE being acknowledged, but t&Seq methodmusT

be ACK. The ACK MUST contain the same credentials as tN&/ITE. If the 2xx contains an offer (based

on the rules above), th&CK MUST carry an answer in its body. If the offer in the 2xx response is not
acceptable, the UAC comeusT generate a valid answer in the€K and then send BYE immediately.

Once theACK has been constructed, the procedures of [2] are used to determine the destination address,
port and transport. However, the request is passed to the transport layer directly for transmission, rather than
a client transaction. This is because the UAC core handles retransmissionsA@fKhaot the transaction
layer. TheACK MUST be passed to the client transport every time a retransmission of the 2xx final response
that triggered théCK arrives.

The UAC core considers thH&lVITE transaction completed 64*T1 seconds after the reception of the
first 2xx response. At this point all the early dialogs that have not transitioned to established dialogs are
terminated. Once theNVITE transaction is considered completed by the UAC core, no more new 2xx
responses are expected to arrive.

If, after acknowledging any 2xx response tol&lVITE, the caller does not want to continue with that
dialog, then the callemusT terminate the dialog by sendingB¥ E request as described in Section 15.

13.3 Callee Processing
13.3.1 Processing of théNVITE

The UAS core will receivéNVITE requests from the transaction layer. It first performs the request process-
ing procedures of Section 8.2, which are applied for both requests inside and outside of a dialog.

Assuming these processing states complete without generating a response, the UAS core performs the
additional processing steps:

1. If the request is atNVITE that contains afxpires header field the UAS core inspects this header
field. If the INVITE has already expired a 487 (Request Terminated) resgseLD be generated.
In any case, if thdNVITE expires before the UAS has generated a final response a 487 (Request
Terminated) responseHOULD be generated.

2. Ifthe request is a mid-dialog request, the method-independent processing described in Section 12.2.2
is first applied. It might also modify the session; Section 14 provides details.

3. Iftherequest has atag in tfie header field but the dialog identifier does not match any of the existing
dialogs, the UAS may have crashed and restarted, or may have received a request for a different
(possibly failed) UAS. Section 12.2.2 provides guidelines to achieve a robust behaviour under such a
situation.

Processing from here forward assumes thatRNETE is outside of a dialog, and is thus for the purposes
of establishing a new session.

ThelINVITE may contain a session description, in which case the UAS is being presented with an offer
for that session. It is possible that the user is already a participant in that session, even thaNghTEe
is outside of a dialog. This can happen when a user is invited to the same multicast conference by multiple
other participants. If desired, the UA®AY use identifiers within the session description to detect this
duplication. For example, SDP contains a session id and version number in the oyifield. If the user
is already a member of the session, and the session parameters contained in the session description have

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 55]

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163
2164
2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

not changed, the UABIAY silently accept théNVITE (that is, send a 2xx response without prompting the
user).

The INVITE may not contain a session description at all, in which case the UAS is being asked to
participate in a session, but the UAC has asked that the UAS provide the offer of the sessiusT It
provide the offer in its first reliable message back to the UAC.

The callee can indicate progress, accept, redirect, or reject the invitation. In all of these cases, it formu-
lates a response using the procedures described in Section 8.2.6.

13.3.1.1 Progress The UAS may not be able to answer the invitation immediately, and might choose

to indicate some kind of progress to the caller (for example, an indication that a phone is ringing). This

is accomplished with a provisional response between 101 and 199. These provisional responses establish
early dialogs and therefore follow the procedures of Section 12.1.1 in addition to those of Section 8.2.6. A
UAS MAY send as many provisional responses as it likes. Each of tnesg indicate the same dialog ID.
However, these will not be delivered reliably unless reliable provisional responses are used.

If the INVITE contained an offer, the UABAY generate an answer in a reliable provisional response
(assuming these are supported by the UAC). That results in the establishment of the session before com-
pletion of the call. Similarly, if a reliable provisional response is the first reliable message sent back to the
caller, and théNVITE did not contain an offer, on@usT appear in that reliable provisional response.

If the UAS will require an extended period of time to answer IR ITE, it will need to ask for an
“extension” in order to prevent proxies from cancelling the transaction. A proxy has the option of canceling
a transaction when there is a gap of 3 minutes between messages in a transaction. To prevent cancellation,
the UASMUST send a non-100 provisional response at least that often. This respeosa D be sent
reliably, if supported by the UAC. If not, the UASHOULD send provisional responses every minute, to
handle the possibility of lost provisional responses.

An INVITE transaction can go on for extended durations when the user is placed on hold, or when interworking
with PSTN systems which allow communications to take place without answering the call. The latter is common in
Interactive Voice Response (IVR) systems.

13.3.1.2 The INVITE is redirected If the UAS decides to redirect the call, a 3xx response is sent. A
300 (Multiple Choices), 301 (Moved Permanently) or 302 (Moved Temporarily) resgHBeLD contain

a Contact header field containing URIs of new addresses to be tried. The response is passeNWTEe
server transaction, which will deal with its retransmissions.

13.3.1.3 The INVITE is rejected A common scenario occurs when the callee is currently not willing
or able to take additional calls at this end system. A 486 (Busy Here)uLD be returned in such scenario.
If the UAS knows that no other end system will be able to accept this call a 600 (Busy Everywhere) response
SHOULD be sent instead. However, it is unlikely that a UAS will be able to know this in general, and thus
this response will not usually be used. The response is passedINMMHIEE server transaction, which will
deal with its retransmissions.

A UAS rejecting an offer contained in aNVITE sHOULD return a 488 (Not Acceptable Here) response.
Such a responseHouLD include awarning header field explaining why the offer was rejected.

13.3.1.4 The INVITE is accepted The UAS core generates a 2xx response. This response establishes
a dialog, and therefore follows the procedures of Section 12.1.1 in addition to those of Section 8.2.6.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 56]

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197
2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210
2211
2212
2213
2214

2215
2216

2217

2218

2219

2220

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

If the UAS had placed a session description in any reliable provisional response that is unacknowl-
edged when theNVITE is accepted, the UABUST delay sending the 2xx until the provisional response is
acknowledged. Otherwise, the reliability of the 1xx cannot be guaranteed.

A 2xx response to alNVITE sHouLD contain theAllow header field and th8upported header field,
andMAY contain theAccept header field. Including these header fields allows the UAC to determine the
features and extensions supported by the UAS for the duration of the call, without probing.

If the INVITE request contained an offer, and the UAS had not yet sent an answer, thie/ 8% contain
an answer. If theNVITE did not contain an offer, the 2xmusT contain an offer if the UAS had not yet
sent an offer.

Once the response has been constructed it is passed lIMHEE server transaction. Note, however,
that thelNVITE server transaction will be destroyed as soon as it receives this final response. Therefore, itis
necessary to pass periodically the response to the transport uiiCarrives. The 2xx response is passed
to the transport with an interval that starts at T1 seconds and doubles for each retransmission until it reaches
T2 seconds (T1 and T2 are defined in Section 17). Response retransmissions ceaseA@i€neguest is
received with the same dialog ID as the response. This is independent of whatever transport protocols are
used to send the response.

Since 2xx is retransmitted end-to-end, there may be hops between UAS and UAC which are UDP. To ensure

reliable delivery across these hops, the response is retransmitted periodically even if the transport at the UAS is
reliable.

If the server retransmits the 2xx response for 64*T1 seconds without receivisGlanit considers the
dialog completed, the session terminated, and therefeteduLD send éBYE.

14 Modifying an Existing Session

A successfullNVITE request (see Section 13) establishes both a dialog between two user agents and a
session (using the offer/answer model). Section 12 explains how to modify an existing dialog using a route
refresh request (for example, changing the remote target &fRhe dialog). This section describes how

to modify the actual session. This modification can involve changing addresses or ports, adding a media
stream, deleting a media stream, and so on. This is accomplished by sendingNMi€® request within

the same dialog that established the sessionINMITE request sent within an existing dialog is known as
areiNVITE.

Note that a single rédNVITE can modify the dialog and the parameters of the session at the same time.

Either the caller or callee can modify an existing session.

The behavior of a UA on detection of media failure is a matter of local policy. However, automated
generation of rdNVITE or BYE is NOT RECOMMENDED to avoid flooding the network with traffic when
there is congestion. In any case, if these messages are sent automaticaltydhey be sent after some
randomized interval.

Note that the paragraph above refers to automatically geneBatéd and relNVITEs. If the user hangs up
upon media failure the UA would sendB¥ E request as usual.

14.1 UAC Behavior

The same offer-answer model that applies to session descriptidh8/ITEs (Section 13.2.1) applies to
redINVITEs. As a result, a UAC that wants to add a media stream, for example, will create a new offer that
contains this media stream, and send that ilNAAITE request to its peer. Itis important to note that the full

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 57]

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

description of the session, not just the change, is sent. This supports stateless session processing in various
elements, and supports failover and recovery capabilities. Of course, adAGend a rdNVITE with no
session description, in which case the first reliable response to th&/i&E will contain the offer.

If the session description format has the capability for version numbers, the dffecerLD indicate
that the version of the session description has changed.

TheTo, From, Call-ID, CSeq, andRequest-URI of a reINVITE are set following the same rules as
for regular requests within an existing dialog, described in Section 12.

A UAC mAY choose not to addlert-Info header fields or bodies witBiontent-Disposition "alert” to
redINVITEs because UASs do not typically alert the user upon reception ofiNME-E.

Note that, as opposed to inititlVITES (see Section 13), iNVITES contain tags in th€o header field
and are sent using the route set for the dialog. Therefore, a single final (2xx or non-2xx) response is received
for redNVITEs.

Note that a UAQWUST NOT initiate a newINVITE transaction within a dialog while another transaction
(INVITE or nonINVITE) is in progress in either direction.

1. If there is an ongoingNVITE client transaction, the TMusT wait until the transaction reaches the
completedbr terminatedstate before initiating the neiNVITE.

2. If there is an ongoing\NVITE server transaction, the TMUST wait until the transaction reaches the
confirmedor terminatedstate before initiating the neiNVITE.

3. Ifthere is an ongoing NoMNVITE client or server transaction, the TWUST wait until the transaction
reaches theompletedor terminatedstate before initiating the neilNVITE.

However, a UAMAY initiate a regular transaction while aNVITE transaction is in progress.

If a UA receives a non-2xx final response to alR/TE, the session parametewsJST remain un-
changed, as if no rtNVITE had been issued. Note that, as stated in Section 12.2.1.2, if the non-2xx final
response is a 481 (Call/Transaction Does Not Exist), or a 408 (Request Timeout), or no response at all is
received for the réNVITE (that is, a timeout is returned by thEVITE client transaction), the UAC wiill
terminate the dialog.

The rules for transmitting a rlNVITE and for generating aACK for a 2xx response to riNVITE are
the same as for aNVITE (Section 13.2.1).

14.2 UAS Behavior

Section 13.3.1 describes the steps to follow in order to distinguish incomifgWad-Es from incoming
initial INVITEs. This section describes the procedures to follow upon reception ofNMVI&E for an
existing dialog.

A UAS that receives a seconVITE before it sends the final response to a filé¢ITE with a lower
CSeq sequence number on the same dialgsT return a 500 (Server Internal Error) response to the second
INVITE andMusT include aRetry-After header field with a randomly chosen value of between 0 and 10
seconds.

A UAS that receives aiNVITE on a dialog while adNVITE it had sent on that dialog is in progress
MUST return a 491 (Request Pending) response to the recBiWE and MuSsT include aRetry-After
header field with a value chosen as follows:

1. If the UAS is the owner of th€all-ID of the dialog ID, theRetry-After header field has a randomly
chosen value of between 2.1 and 4 seconds in units of 10 ms.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 58]

2262

2263

2264
2265
2266
2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292
2293
2294

2295

2296

2297

2298
2299
2300
2301
2302
2303
2304

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

2. If the UAS isnot the owner of theCall-ID of the dialog ID, theRetry-After header field has a ran-
domly chosen value of between 0 and 2 seconds in units of 10 ms.

If a UA receives a rdNVITE for an existing dialog, iMusT check any version identifiers in the session
description or, if there are no version identifiers, the content of the session description to see if it has changed.
If the session description has changed, the WAST adjust the session parameters accordingly, possibly
after asking the user for confirmation.

Versioning of the session description can be used to accommodate the capabilities of new arrivals to a conference,
add or delete media or change from a unicast to a multicast conference.

If the new session

description is not acceptable, the UAS can reject it by returning a 488 (Not Acceptable Here) response
for the reINVITE. This responssHoULD include aWarning header field.

If a UAS generates a 2xx response and never receive&h it SHOULD generate 8YE to terminate
the dialog.

A UAS MAY choose not to generate 180 (Ringing) responses forlVEFE because UACs do not
typically render this information to the user. For the same reason, WSschoose not to usAlert-Info
header fields or bodies witBontent-Disposition "alert” in responses to a riNVITE.

A UAS providing an offer in a 2xx (because th€VITE did not contain an offersHouULD construct
the offer as if the UAS were making a brand new call, subject to the constraints of sending an offer which
updates an existing session, as described in [1] in the case of SDP. Specifically, this mearssithat it
include as many media formats and media types that the UA is willing to support. ThevdAS ensure
that the session description overlaps with its previous session description in media formats, transports, or
other parameters that require support from the peer. This is to avoid the need for the peer to reject the session
description. If, however, it is unacceptable to the UAC, the UBMOULD generate an answer with a valid
session description, and then serB¥E to terminate the session.

15 Terminating a Session

This section describes the procedures for terminating a SIP dialog. For two-party sessions that are otherwise
unbound in time, the termination of the dialog implies the termination of the session. Other types of sessions,
such as multicast sessions, are not terminated when a participant terminates the SIP dialog that he used to
join the session. However, the SIP dia®igouLD be terminated even though its termination does not imply

the termination of the session. A UA joining a multicast sessiam terminate the SIP dialog immediately

after thelNVITE transaction used to join the session has completed.
Either the caller or callee may terminate a dialog for any reason. A caller terminates a dialog either with
BYE or CANCEL depending on the state of the dialog. A callee IB€E to terminate a confirmed dialog.

If the callee wants to terminate an early dialog, it just returns a non-2xx final response RNMIA&.

Sections 13 and 12 document some cases where dialog termination is normative behavior. If a UA
decides to terminate the dialog,MtusT follow the procedures here to initiate signaling action to convey

that.

When a UAC sends alNVITE request to create a session, if a 1xx response with a tag ifotfield
is received, an early dialog is created. When a 2xx response is received, the dialog becomes confirmed. For
a confirmed dialog, if the UAC desires to terminate the session, the £iA&@ULD follow the procedures
described in Section 15.1.1 to terminate the session. If the callee for a new session wishes to terminate the
dialog, it uses the procedures of Section 15.1.1 MusT NOT do so until it has received ahCK or until
the server transaction times out.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 59]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

2305 This does not mean a user cannot hang up right away; it just means that the software in his phone needs to
2306 maintain state for a short while in order to clean up properly.
2307 If the UAC desires to end the session before a confirmed dialog has been createdyitp send a

208 CANCEL for the INVITE request that requested establishment of the session that is to be terminated. The
2300 UAC constructs and sends tBRANCEL following the procedures described in Section 9. TRWSNCEL

2310 Will normally result in a 487 (Request Terminated) response to be returned lNWHEE, indicating suc-

2311 cessful cancellation. However, it is possible that @&NCEL and a 2xx response to thVITE “pass on

22312 the wire”. In this case, the UAC will receive a 2xx to théVITE. It SHOULD then terminate the call by

2213 following the procedures described in Section 15.1.1.

2314 A UAC can terminate a specific early dialog by following the procedures described in Section 15.1.1.
2315 This would only terminate one particular early dialog.

26 15.1 Terminating a Dialog with aBYE Request

2217 15.1.1 UAC Behavior

2218 A user agent client uses tHBYE request, sent within a dialog, to indicate to the server that it wishes to
2219 terminate the session. This will also terminate the dialo@® Y& requesivAY be issued by either caller or
2320 callee. ABYE requestSHOULD NOT be sent before the creation of a dialog (either early or confirmed). In
2221 that case the UAGHoULD follow the procedures described in Section 9 instead.

2322 Proxies ensure that @ANCEL request is routed in the same way as IN¥ITE was. However, a proxy

2323 performing load balancing may routd3& E without aRoute header field in a different way than theéVITE, since

2324 both requests have differe@Seq sequence numbers.

2325 The To, From, Call-ID, CSeq, andRequest-URI of a BYE are set following the same rules as for
2326 regular requests sent within a dialog, described in Section 12.

2327 Once theBYE is constructed, it creates a new niNVITE client transaction, and passes it tB¥E

238 request. The UAHOULD stop sending media as soon asB¥E request is passed to the client transaction.
2329 If the response for thBYE is a 481 (Call/Transaction Does Not Exist) or a 408 (Request Timeout) or ho
230 response at all is received for tlEYE (that is, a timeout is returned by the client transaction), the UAC
2331 considers the dialog down.

232 15.1.2 UAS Behavior

2333 A UAS first processes thBYE request according to the general UAS processing described in Section 8.2.
223 A UAS core receiving 8YE request checks if it matches an existing dialog. IfB¥E does not match an

2335 existing dialog, the UAS corsHOULD generate a 481 (Call/Transaction Does Not Exist) response and pass
2336 that to the server transaction.

2337 This rule means thatBYE sent without tags by a UAC will be rejected. This is a change from RFC 2543, which
2338 allowedBYE without tags.
2339 A UAS core receiving 8BYE request for an existing dialogusT follow the procedures of Section

2340 12.2.2 to process the request. Once done, the MAST cease transmitting media streams for the session
2241 being terminated. The UAS comeusT generate a 2xx response to tB¥E, andMusT pass that to the

2342 Server transaction for transmission.

2343 The UASMuUST still respond to any pending requests received for that dialog, (which can only be an
2244 INVITE). It is RECOMMENDED that a 487 (Request Terminated) response is generated to those pending
2345 requests.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 60]

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

16 Proxy Behavior

16.1 Overview

SIP proxies are elements that route SIP requests to user agent servers and SIP responses to user agent clients.
A request may traverse several proxies on its way to a UAS. Each will make routing decisions, modifying
the request before forwarding it to the next element. Responses will route through the same set of proxies
traversed by the request in the reverse order.

Being a proxy is a logical role for a SIP element. When a request arrives, an element that can play the
role of a proxy must first decide if it needs to respond to the request on its own. For instance, the request
could be malformed or the element may need credentials from the client before acting as a proxy. The
elementmAY respond with any appropriate error code. When responding directly to a request, the element
is playing the role of a UAS andlusT behave as described in Section 8.2.

A proxy can operate in either a stateful or stateless mode for each new request. When stateless, a proxy
acts as a simple forwarding element. It forwards each request downstream to a single element determined
by making a routing decision based on the request. It simply forwards every response it receives upstream.
A stateless proxy discards information about a message once it has been forwarded.

On the other hand, a stateful proxy remembers information (specifically, transaction state) about each
incoming request and any requests it sends as a result of processing the incoming request. It uses this
information to affect the processing of future messages associated with that request. A statefulgroxy
chose to “fork” a request, routing it to multiple destinations. Any request that is forwarded to more than one
locationMUsT be handled statefully.

In some circumstances, a proxay forward requests using stateful transports (such as TCP) without
being transaction stateful. For instance, a prexgy forward a request from one TCP connection to another
transaction statelessly as long as it places enough information in the message to be able to forward the
response down the same connection the request arrived on. Requests forwarded between different types of
transports where the proxy’s TU must take an active role in ensuring reliable delivery on one of the transports
MUST be forwarded transaction statefully.

A stateful proxyMAY transition to stateless operation at any time during the processing of a request,
so long as it did not do anything that would otherwise prevent it from being stateless initially (forking, for
example, or generation of a 100 response). When performing such a transition, all state is simply discarded.
The proxysHouLD NOTsend aCANCEL.

Much of the processing involved when acting statelessly or statefully for a request is identical. The next
several subsections are written from the point of view of a stateful proxy. The last section calls out those
places where a stateless proxy behaves differently.

16.2 Stateful Proxy

When stateful, a proxy is purely a SIP transaction processing engine. Its behavior is modeled here in terms
of the Server and Client Transactions defined in Section 17. A stateful proxy has a server transaction
associated with one or more client transactions by a higher layer proxy processing component (see figure 3),
known as a proxy core. An incoming request is processed by a server transaction. Requests from the server
transaction are passed to a proxy core. The proxy core determines where to route the request, choosing
one or more next-hop locations. An outgoing request for each next-hop location is processed by its own
associated client transaction. The proxy core collects the responses from the client transactions and uses
them to send responses to the server transaction.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 61]

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

A stateful proxy creates a new server transaction for each new request received. Any retransmissions of
the request will then be handled by that server transaction per Section 17.

This is a model of proxy behavior, not of software. An implementation is free to take any approach that
replicates the external behavior this model defines.

For all new requests, including any with unknown methods, an element intending to proxy the request
MUST:

1. Validate the request (Section 16.3)

2. Make a routing decision (Section 16.4)

3. Forward the request to each chosen destination (Section 16.5)
4

. Process all responses (Section 16.6)

16.3 Request Validation

Before an element can proxy a requesimiitsT verify the message’s validity. A valid message must pass
the following checks:

. Reasonable Syntax

. Max-Forwards

1
2
3. (Optional) Loop Detection
4. Proxy-Require

5

. Proxy-Authorization

If any of these checks fail, the elememt ST behave as a user agent server (see Section 8.2) and respond
with an error code.

Notice that a proxy is not required to detect merged requestsiasa NOT treat merged requests as an
error condition. The endpoints receiving the requests will resolve the merge as described in Section 8.2.2.2.

1. Reasonable Syntax check

The requestusT be well-formed enough to be handled with a server transaction. Any components
involved in the remainder of these Request Validation steps or the Request Processing/mestiba
well-formed. Any other components, well-formed or n�oULD be ignored and remain unchanged
when the message is forwarded. For instance, an elestemt/LD NOT reject a request because of

a malformedDate header field. Likewise, a proxyHoOULD NOT remove a malforme®ate header

field before forwarding a request.

This protocol is designed to be extended. Future extensions may define new methods and header fields
at any time. An elememniusT NOT refuse to proxy a request because it contains a method or header
field it does not know about.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 62]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

client
transaction

proxy "higher"
layer

uonoesuen
JEINES
client

transaction

client
transaction

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 63]

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438
2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

2. Max-Forwards check

TheMax-Forwards header field (Section 24.22) is used to limit the number of elements a SIP request
can traverse.

If the request does not contairMax-Forwards header field, this check is passed.

If the request containsMax-Forwards header field with a field value greater than zero, the check is
passed.

If the request containsMax-Forwards header field with a field value of zero (0), the elemenisT
NoT forward the request. If the request was@PTIONS, the elementiAy act as the final recipient
and respond per Section 11. Otherwise, the elemerstr return a 483 (Too many hops) response.

3. Optional Loop Detection check

An elementmAY check for forwarding loops before forwarding a request. If the request contains a
Via header field with a sent-by value that equals a value placed into previous requests by the proxy,
the request has been forwarded by this element before. The request has either looped or is legitimately
spiraling through the element. To determine if the request has looped, the elemeperform the

branch parameter calculation described in Step 3 of Section 16.5 on this message and compare it to
the parameter received in thdia header field. If the parameters match, the request has looped. If
they differ, the request is spiraling, and processing continues. If a loop is detected, the element
return a 482 (Loop Detected) response.

In earlier versions of this memo, loop detection veQUIRED. This requirement has been relaxed in
favor of theMax-Forwards mechanism.

4. Proxy-Require check

Future extensions to this protocol may introduce features that require special handling by proxies.
Endpoints will include &roxy-Require header field in requests that use these features, telling the
proxy it should not process the request unless the feature is understood.

If the request containsRroxy-Require header field (Section 24.29) with one or more option-tags this

element does not understand, the elemessT return a 420 (Bad Extension) response. The response
MUST include anUnsupported (Section 24.42) header field listing those option-tags the element did
not understand.

5. Proxy-Authorization check

If an element requires credentials before forwarding a request, the raequestbe inspected as
described in Section 20.3. That section also defines what the element must do if the inspection fails.

16.4 Making a Routing Decision

At this point, the proxy must decide where to forward the request. This can be modeled as computing a set
of destinations for the request. This set will either be predetermined by the contents of the request or will be
obtained from an abstract location service. Each destination is represented as a URI, and is is referred to as
a “next-hop location”.

First, the proxymusT inspect theRequest-URI of the request. If thd&Request-URI of the request
contains a value this proxy previously placed intBecord-Route header field (see Section 16.5 item 6),

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 64]

2458

2459

2460

2461
2462
2463
2464

2465
2466
2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477
2478

2479

2480

2481

2482
2483
2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

the proxyMmusT replace theRequest-URI in the request with the last value from tR®ute header field,
and remove that value from thRoute header field. The proxyusT then proceed as if it received this
modified request.

This will only happen when the element sending the request to the proxy (which may have been an endpoint)
is a strict router. This rewrite on receive is necessary to enable backwards compatibility with those elements. It
also allows elements following this specification to preserveRbguest-URI through strict-routing proxies (see
Section refsec:dialog:uac:generate).

This requirement does not obligate a proxy to keep state in order to detect URIs it previously plaeedrid-
Route header fields. Instead, a proxy need only place enough information in those URIs to recognize them as values
it provided when they later appear.

If the Request-URI has a URI whose scheme is not understood by the proxy, the gte®wLD reject
the request with a 416 (Unsupported URI Scheme) response. Rélgeiest-URI contains amaddr
parameter, the proxyiusT check to see if its value is in the set of addresses or domains the proxy is
configured to be responsible for. If thequest-URI has an maddr parameter with a value the proxy is
responsible for, and the request was received using the port and transport indicated (explicitly or by default)
in the Request-URI, the proxymusT strip the maddr and any non-default port or transport parameter and
continue processing as if those values had not been present in the request. Otherwistedfutbst-URI
contains armaddr parameter, th®equest-URI MUSsT be placed into the destination set as the only next
hop URI, and the proxyusT proceed to Section 16.5.

A request may arrive with amaddr matching the proxy, but on a port or transport different from that indicated
in the URI. Such a request needs to be forwarded to the proxy using the indicated port and transport.

If the domain of theRequest-URI indicates a domain this element is not responsible fer®ULD set
the next hop URI to th&®equest-URI. That next hopmusT be placed into the destination set as the only
next hop, and the elememtusT proceed to the task of Request Processing (Section 16.5).

There are many circumstances in which a proxy might receive a request for a domain it is not responsible for.
A firewall proxy handling outgoing calls (the way HTTP proxies handle outgoing requests) is an example of where
this is likely to occur.

If the destination set for the request has not been predetermined as described above, this implies that the
element is responsible for the domain in RRequest-URI, and the elementiAy use whatever mechanism
it desires to determine where to send the request. However, if the request conRuongeaheader, the
proxy MUST only choose a single destination for the requeshy of these mechanisms can be modeled as
accessing an abstract Location Service. This may consist of obtaining information from a location service
created by a SIP Registrar, reading a database, consulting a presence server, utilizing other protocols, or
simply performing an algorithmic substitution on tRequest-URI. When accessing the location service
constructed by the registrar, titequest-URI MUST first be canonicalized as described in Section 10.3
before being used as an index. The output of these mechanisms is used to construct the destination set.

If the Request-URI does not provide sufficient information for the proxy to determine the destination
set, itSHOULD return a 485 (Ambiguous) response. This resp@seuLD contain aContact header field
containing URIs of new addresses to be tried. For exampl&N®ITE to sip:John.Smith@company.com
may be ambiguous at a proxy whose location service has multiple John Smiths listed. See Section 25.4.23
for details.

Any information in or about the request or the current environment of the elewrenbe used in the
construction of the destination set. For instance, different sets may be constructed depending on contents or

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 65]

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515
2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

the presence of header fields and bodies, the time of day of the request’s arrival, the interface on which the
request arrived, failure of previous requests, or even the element’s current level of utilization.

As potential destinations are located through these services, their next hops are added to the destination
set (although, as pointed out above, the destinatiomgstr NOT ever contain more than one destination if
the request containsRoute header). Next-hop locations may only be placed in the destination set once.
If a next-hop location is already present in the set (based on the definition of equality for the URI type), it
MUST NOT be added again.

If the received request contained Route header fields, a proxyAy continue to add destinations to
the set after beginning Request ProcessingiAlt use any information obtained during that processing to
determine new locations. For instance, a proxy may choose to incorporate contacts obtained in a redirect
response (3xx) into the destination set. If a proxy uses a dynamic source of information while building the
destination set (for instance, if it consults a SIP RegistragHibuLD monitor that source for the duration
of processing the request. New locati@souLD be added to the destination set as they become available.
As above, any given URWUST NOT be added to the set more than once.

Allowing a URI to be added to the set only once reduces unnecessary network traffic, and in the case of incor-
porating contacts from redirect requests prevents infinite recursion.

For example, a trivial location service is a "no-op”, where the destination URI is equal to the incoming
request URI. The request is sent to a specific next hop proxy for further processing. During request process-
ing of Section 16.5, Item 5, the identity of that next hop, expressed as a SIP URI, is inserted as the top most
Route header into the request.

If the Request-URI indicates a resource at this proxy that does not exist, the pnagr return a 404
(Not Found) response.

If the destination set remains empty after applying all of the above, the pnaygr return an error
response, whicBHouLD be the 480 (Temporarily Unavailable) response.

16.5 Request Processing

As soon as the destination set is non-empty, a ptxy begin forwarding the request. A stateful proxy

MAY process the set in any orderMay process multiple destinations serially, allowing each client transac-
tion to complete before starting the nextmiay start client transactions with every destination in parallel. It
alsoMAY arbitrarily divide the set into groups, processing the groups serially and processing the destinations
in each group in parallel.

A common ordering mechanism is to use the qvalue parameter of destinations obtained from Contact
header fields (see Section 24.10). Destinations are processed from highest gvalue to lowest. Destinations
with equal gvalues may be processed in parallel.

A stateful proxy must have a mechanism to maintain the destination set as responses are received and
associate the responses to each forwarded request with the original request. For the purposes of this model,
this mechanism is a “response context” created by the proxy layer before forwarding the first request.

For each destination, the proxy forwards the request following these steps:

1. Make a copy of the received request
2. Update the Request-URI
3. Add a Via header field

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 66]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

. Update the Max-Forwards header field

2541
2542 . Update the Route header field if present
. Optionally add additional header fields

2544

2545 . send the new request

4
5

2543 6. Optionally add a Record-route header field value
7
8
9

2546 . Settimer C

2547 Each of these steps is detailed below:

2548 1. Copy request

2549 The proxy starts with a copy of the received request. The sopgT initially contain all of the header

2550 fields from the received request. Only those fields detailed in the processing described below may be
2551 removed. The copgHOULD maintain the ordering of the header fields as in the received request. The
2552 proxy MUST NOT reorder field values with a common field name (See Section 7.3.1).

2553 An actual implementation need not perform a copy; the primary requirement is that the processing of each

2554 next hop begin with the same request.

2555 2. Request-URI

2556 TheRequest-URI in the copy’s start linemusT be replaced with the URI for this destination. If the

2557 URI contains any parameters not allowed in a Request-URI, NheyT be removed.

2558 This is the essence of a proxy’s role. This is the mechanism through which a proxy routes a request
2559 toward its destination.

2560 In some circumstances, the receiM@dquest-URI is placed into the destination set without being

2561 modified. For that destination, the replacement above is effectively a no-op.

2562 3. Via

2563 The proxyMusT insert aVia header field into the copy before the existi@g header fields. The

2564 construction of this header field follows the same guidelines of Section 8.1.1.7. This implies that
2565 the proxy will compute its own branch parameter, which will be globally unique for that branch, and
2566 contain the requisite magic cookie.

2567 Proxies choosing to detect loops have an additional constraint in the value they use for construction of
2568 the branch parameter. A proxy choosing to detect I@pSULD create a branch parameter separable

2569 into two parts by the implementation. The first par ST satisfy the constraints of Section 8.1.1.7 as

2570 described above. The second is used to perform loop detection and distinguish loops from spirals.
2571 Loop detection is performed by verifying that, when a request returns to a proxy, those fields having
2572 an impact on the processing of the request have not changed. The value placed in this part of the
2573 branch parametersHouLD reflect all of those fields (including arfigoute, Proxy-Require and

2574 Proxy-Authorization header fields). This is to ensure that if the request is routed back to the proxy
2575 and one of those fields changes, it is treated as a spiral and not a loop (Section 16.3 item 3) A
2576 common way to create this value is to compute a cryptographic hash @b tfreom, Call-ID header

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 67]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

2577 fields, theRequest-URI of the request received (before translation) and the sequence number from
2578 the CSeq header field, in addition to arfroxy-Require andProxy-Authorization header fields that

2579 may be present. The algorithm used to compute the hash is implementation-dependent, but MD5 [31],
2580 expressed in hexadecimal, is a reasonable choice. (Base64 is not permissititekésr. o

2581 If a proxy wishes to detect loops, théranch” parameter it suppliemusT depend on all information

2582 affecting processing of a request, including the inconfRegiuest-URI and any header fields affecting the

2583 request’s admission or routing. This is necessary to distinguish looped requests from requests whose routing

2584 parameters have changed before returning to this server.

2585 The request methodusT NOT be included in the calculation of thanch parameter. In particular,

2586 CANCEL andACK requests (for non-2xx responses)sT have the sambranch value as the cor-

2587 responding request they cancel or acknowledge. Breach parameter is used in correlating those
2588 requests at the server handling them (see Section 17.2.3 and 9.2).

2589 4. Max-Forwards

2590 If the copy does not contain a Max-Forwards header field, the pymgT add one with a field value
2591 which sHouLD be 70.

2592 Some existing UAs will not provide Blax-Forwards header field in a request.

2503 If the copy contains Max-Forwards header field, the proxy must decrement its value by one (1).

2504 5. Route

2505 A proxy MAY have a local policy that mandates that a request visit a specific set of proxies before being
2596 delivered to the destination. A proxyusT ensure that all such proxies are loose routers. Generally,
2597 this can only be known with certainty if the proxies are within the same administrative domain. This
2508 set of proxies is represented by a set of URIs (each of which contaitrgads@meter). This setusT

2599 be pushed into thRoute header field ahead of any existing values, if present. I1fRbate header

2600 field is empty, itMUST be added, containing that list of URIs.

2601 If the proxy has a local policy that mandates that the request visit one specific proxy, an alternative to
2602 pushing aRoute value into theRoute header field is to bypass the forwarding logic of item 8 below,

2603 and instead just send the request to the address, port and transport for that specific proxy. If the request
2604 hasRoute headers, this alternativeusT NOT be used unless it known that next hop proxy is a loose
2605 router. Otherwise, this approaetay be used, but thRoute insertion mechanism above is preferred

2606 for its robustness, flexibility, generality and consistency of operation.

2607 In absence of a policy for forwarding a request through specific next hops, the proxy inspect

2608 the topmosRoute header field value. If that value indicates this proxy, the praxygT remove the

2609 value from the copy (removing the Route header field if that was the only value).

2610 If a Route header field remains after the previous step, the praxgT inspect the URI in its first

2611 value. If that URI does not containliaparameter, the proxyiusT modify the request as follows:

2612 e The proxymusT place theRequest-URI into theRoute header field as the last value.

2613 e The proxymusT then place the firdRoute header field value into tiRequest-URI and remove

2614 that value from th&Route header field.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 68]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

2615 Appending theRequest-URI to theRoute header field is part of a mechanism used to pass the information
2616 in that Request-URI through strict-routing elements. "Popping” the fiRbute header field value into the

2617 Request-URI formats the message the way a strict-routing element expects to receive it (with its own URI in
2618 theRequest-URI and the next location to visit in the firRoute header field value).

2619 6. Record-Route

2620 If this proxy wishes to remain on the path of future requests in a dialog created by this request, it
2621 MUST insert aRecord-Route header field into the copy before any existiRgcord-Route header

2622 field, even if aRoute header field is already present.

2623 Requests establishing a dialog may contain preloaded Route header fields.

2624 If this request is already part of a dialog, the preyouLD insert aRecord-Route header field value

2625 if it wishes to remain on the path of future requests in the dialog. In normal endpoint operation as
2626 described in Section 12 theBecord-Route header field values will not have any effect on the route
2627 sets used by the endpoints.

2628 The proxy will remain on the path if it choses to not inseRecord-Route header field value into requests

2629 that are already part of a dialog. However, it would be removed from the path when an endpoint that has failed

2630 reconstitutes the dialog.

2631 A proxy MAY insert aRecord-Route header field into any request. If the request does not initiate
2632 a dialog, the endpoints will ignore the value. See Section 12 for details on how endpoints use the
2633 Record-Route header field values to constrigbute header fields.

2634 Each proxy in the path of a request chooses whether to &igkcard-Route header field indepen-

2635 dently - the presence ofRecord-Route header field in a request does not obligate this proxy to add
2636 a value.

2637 The URI placed in th&ecord-Route header field valuetusT be a SIP URI. This URMUST contain

2638 anlr parameter (see Section 23.1.1T.his URIMAY be different for each destination the request is
2639 forwarded to. The URSHOULD NOT contain the transport parameter unless the proxy has knowledge
2640 (such as in a private network) that the next downstream element that will be in the path of subsequent
2641 requests supports that transport.

2642 The URI this proxy provides will be used by some other element to make a routing decision. This proxy, in

2643 general, has no way to know what the capabilities of that element are, so it must restrict itself to the mandatory

2644 elements of a SIP implementation: SIP URIs and either the TCBDP transports.

2645 The URI placed in thdRecord-Route header fieldvusT resolve to this element when the server

2646 location procedures of [2] are applied to it. This ensures subsequent requests are routed back to this
2647 element.

2648 If the URI placed in theRecord-Route header field needs to be be rewritten when it passes back
2649 through in a response, the URIUST be distinct enough to locate at that time. (The request may
2650 spiral through this proxy, resulting in more than dRecord-Route header field value being added).

2651 Item 8 of Section 16.6 recommends a mechanism to make the URI sufficiently distinct.

2652 The proxymAY include Record-Route header field parameters in the value it provides. These will
2653 be returned in some responses to the request (200 (OK) resporisBdTé& for example) and may

2654 be useful for pushing state into the message.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 69]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

2655 If a proxy needs to be in the path of any type of dialog (such as one straddling a firewsiq utLD

2656 add aRecord-Route header field to every request with a method it does not understand since that
2657 method may have dialog semantics.

2658 The URI a proxy places into Becord-Route header field is only valid for the lifetime of any dialog

2659 created by the transaction in which it occurs. A dialog-stateful proxy, for examiple, refuse to

2660 accept future requests with that value in fRequest-URI after the dialog has terminated. Non-

2661 dialog-stateful proxies, of course, have no concept of when the dialog has terminated, buathey

2662 encode enough information in the value to compare it against the dialog identifier of future requests
2663 andMAY reject requests not matching that information. EndpoinissT NOT use a URI obtained

2664 from aRecord-Route header field outside the dialog in which it was provided. See Section 12 for
2665 more information on an endpoint’s useR&cord-Route header fields.

2666 Generally, the choice about whether to record-route or not is a tradeoff of features vs. performance.
2667 Faster request processing and higher scalability is achieved when proxies do not record route. How-
2668 ever, provision of certain services may require a proxy to observe all messages in a dialog. It is
2669 RECOMMENDED that proxies do not automatically record route. They should do so only if specifi-
2670 cally required.

2671 TheRecord-Route process is designed to work for any SIP request that initiates a dialog. The only
2672 such request in this specificationINSVITE. Extensions to the protocodAy define others, and the

2673 mechanisms described here will apply.

2674 7. Adding Additional Header Fields
2675 The proxymMAY add any other appropriate header fields to the copy at this point.

2676 8. Forward Request

2677 A stateful proxy creates a new client transaction for this request as described in Section 17.1. The
2678 proxy MAY have a local policy to send the request to a specific IP address, port, and transport, inde-
2679 pendent of the values of tHRoute andRequest-URI. Such a policymusT NOT be used if the proxy

2680 is not certain that the IP address, port, and transport correspond to a server that is a loose router. How-
2681 ever, this mechanism for sending the request through a specific next h@x iIRECOMMENDED,

2682 instead &Route header field should be used for that purpose as described above.

2683 In the absence of such an overriding mechanism, the proxy applies the procedures listed in [2] as
2684 follows to determine where to send the request. If the proxy has reformatted the request to send to
2685 a strict-routing element as described in Section 5, the proxgT apply those proceedures to the

2686 Request-URI of the request. Otherwise, the proxusT apply the proceedures to the first value in

2687 the Route header field, if present, else tRequest-URI. The proceedures will produce an ordered

2688 set of addresses. As described in [2], the prax)sT attempt to contact the first address by instructing

2689 the client transaction to send the request thelgthe client transaction reports failure to send the

2690 request or a timeout from its state machine, the stateful proxy continues to the next address in that
2691 ordered set. Each attempt is a new client transaction, and therefore represents a new branch, so that the
2692 processing described above for each branch would need to be repeated. This results in a requirement
2693 to use a different branch ID parameter for each attempt. If the ordered set is exhausted, the request
2694 cannot be forwarded to this element in the destination set. The proxy does not need to place anything
2695 in the response context, but otherwise acts as if this element of the destination set returned a 408
2696 (Request Timeout) final response.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 70]

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708
2709
2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

9.

Set timer C

In order to handle the case where I[&WITE request never generates a final response, a transaction
timeout value is used. This is accomplished through a timer, called timer C, whish be set for

each client transaction when B4VITE request is proxied. The timerusT be larger than 3 minutes.
Section 16.6 bullet 2 discusses how this timer is updated with provisional responses, and Section 16.7
discusses processing when it fires.

16.6 Response Processing

When a response is received by an element, it first tries to locate a client transaction (Section 17.1.3) match-
ing the response. If none is found, the elemgoisT process the response (even if it is an informational
response) as a stateless proxy (described below). If a match is found, the response is handed to the client
transaction.

Forwarding responses for which a client transaction (or more generally any knowledge of having sent an associ-
ated request) is not found improves robustness. In particular, it ensures that “late” 2xx resptS¢SExequests
are forwarded properly.

As client transactions pass responses to the proxy layer, the following processitgake place:

. Find the appropriate response context
. Update timer C for provisional responses

1
2
3.
4
5

Remove the topmost Via

. Add the response to the response context

. Check to see if this response should be forwarded

The following processingiusT be performed on each response that is forwarded. It is likely that more
than one response to each request will be forwarded: at least each provisional and one final response.

1.
2.
3.

Aggregate authorization header fields if necessary;
forward the response;

generate any necess®@ANCEL requests.

If no final response has been forwarded after every client transaction associated with the response context
has been terminated, the proxy must choose and forward the “best” response from those it has seen so far.
Each of the above steps are detailed below:

1.

Find Context

The proxy locates the “response context” it created before forwarding the original request using the
key described in Section 16.5. The remaining processing steps take place in this context.

. Update timer C for provisional responses

For anINVITE transaction, if the response is a provisional response with status codes 101 to 199
inclusive (i.e., anything but 100), the proxyusT reset timer C for that client transaction. The timer
MAY be reset to a different value, but this valuesT be greater than 3 minutes.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 71]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

2732 3. Via

2733 The proxy removes the topmaogta header field from the response.

2734 If no Via header fields remain in the response, the response was meant for this elementsand

2735 NOT be forwarded. The remainder of the processing described in this section is not performed on this
2736 message, the UAC processing rules described in Section 8.1.3 are followed instead (transport layer
2737 processing has already occurred).

2738 This will happen, for instance, when the element gener@®NCEL requests as described in Sec-

2739 tion 10.

2740 4. Add response to context ;

2741 Final responses received are stored in the response context until a final response is generated on the
2742 server transaction associated with this context. The response may be a candidate for the best final
2743 response to be returned on that server transaction. Information from this response may be needed in
2744 forming the best response even if this response is not chosen.

2745 If the proxy chooses to recurse on any contacts in a 3xx response by adding them to the destination
2746 set, itMUST remove them from the response before adding the response to the response context. If
2747 the proxy recurses on all of the contacts in a 3xx response, the proayLD NOT add the resulting

2748 contactless response to the response context.

2749 Removing the contact before adding the response to the response contact prevents the next element up-

2750 stream from retrying a location this proxy has already attempted.

2751 3xx responses may contain a mixture of SIP and non-SIP URIs. A proxy may choose to recurse on the SIP

2752 URIs and place the remainder into the response context to be returned potentially in the final response.

2753 If a proxy receives a 416 (Unsupported URI Scheme) response to a request Rdupsest-URI

2754 scheme was not SIP, but the scheme in the original received request was SIP (that is, the proxy changed
2755 the scheme from SIP to something else when it proxied a request), thegmaxyLb add a new URI

2756 to the destination set. This URHOULD be a SIP URI version of the non-SIP URI that was just tried.

2757 In the case of the tel URL, this is accomplished by placing the telephone-subscriber part of the tel
2758 URL into the user part of the SIP URI, and setting the hostpart to the domain where the prior request
2759 was sent.

2760 As with a 3xx response, if a proxy “recurses” on the 416 by trying a SIP URI instead, the 416 response
2761 SHOULD NOT be added to the response context.

2762 5. Check response for forwarding

2763 Until a final response has been sent on the server transaction, the following respoisgedse for-
2764 warded immediately:

2765 e Any provisional response other than 100 (Trying)

2766 e Any 2xx response

2767 If a 6xx response is received, it is not immediately forwarded, but the stateful pra®yLD cancel
2768 all pending transactions as described in Section 10.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 72]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

2769 This is a change from RFC 2543, which mandated that the proxy was to forward the 6xx response imme-

2770 diately. For anNVITE transaction, this approach had the problem that a 2xx response could arrive on another

2771 branch, in which case the proxy would have to forward the 2xx. The result was that the UAC could receive

2772 a 6xx response followed by a 2xx response, which should never be allowed to happen. Under the new rules,

2773 upon receiving a 6xx, a proxy will issueGANCEL request, which will generally result in 487 responses from

2774 all outstanding client transactions, and then at that point the 6xx is forwarded upstream.

2775 After a final response has been sent on the server transaction, the following respossese for-

2776 warded immediately:

2777 e Any 2xx response to alNVITE request

2778 A stateful proxymusT NOT immediately forward any other responses. In particular, a stateful proxy
2779 MUST NOT forward any 100 (Trying) response. Those responses that are candidates for forwarding
2780 later as the “best” response have been gathered as described in step “Add Response to Context”.
2781 Any response chosen for immediate forwardimgsT be processed as described in steps “Aggregate
2782 Authorization Header Fields” through “Record-Route”.

2783 This step, combined with the next, ensures that a stateful proxy will forward exactly one final response
2784 to a noniNVITE request, and either exactly one non-2xx response or one or more 2xx responses to
2785 anINVITE request.

2786 6. Choosing the best response

2787 A stateful proxyMusT send a final response to a response context’s server transaction if no final
2788 responses have been immediately forwarded by the above rules and all client transactions in this
2789 response context have been terminated.

2790 The stateful proxymusT choose the “best” final response among those received and stored in the
2791 response context.

2792 If there are no final responses in the context, the praxgT send a 408 (Request Timeout) response

2793 to the server transaction.

2794 Otherwise, the proxyusT forward one of the responses from the lowest response class stored in the
2795 response context. The proxyay select any response within that lowest class. The pgxguULD

2796 give preference to responses that provide information affecting resubmission of this request, such as
2797 401, 407, 415, 420, and 484.

2798 A proxy which receives a 503 (Service Unavailable) respasiseuLd NOT forward it upstream

2799 unless it can determine that any subsequent requests it might proxy will also generate a 503. In other
2800 words, forwarding a 503 means that the proxy knows it cannot service any requests, not just the one
2801 for theRequest-URI in the request which generated the 503.

2802 The forwarded responseusT be processed as described in steps “Aggregate authorization Header
2803 Fields” through “Record-Route”.

2804 For example, if a proxy forwarded a request to 4 locations, and received 503, 407, 501, and 404
2805 responses, it may choose to forward the 407 (Proxy Authentication Required) response.

2806 1xx and 2xx responses may be involved in the establishment dialogs. When a request does not contain
2807 a To tag, the To tag in the response is used by the UAC to distinguish multiple responses to a dialog
2808 creating request. A proxyiUST NOT insert a tag into th@o header field of a 1xx or 2xx response if

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 73]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

2809 the request did not contain one. A promysT NOT modify the tag in théfo header field of a 1xx or

2810 2XX response.

2811 Since a proxy may not insert a tag into fieeheader field of a 1xx response to a request that did not

2812 contain one, it cannot issue non-100 provisional responses on its own. However, it can branch the
2813 request to a UAS sharing the same element as the proxy. This UAS can return its own provisional
2814 responses, entering into an early dialog with the initator of the request. The UAS does not have to be
2815 a discreet process from the proxy. It could be a virtual UAS implemented in the same code space as
2816 the proxy.

2817 3-6xx responses are delivered hop-hop. When issuing a 3-6xx response, the element is effectivly
2818 acting as a UAS, issuing its own response, usually based on the responses received from downstream
2819 elements. An elemergHOULD preserve the To tag when simply forwarding a 3-6xx response to a
2820 request that did not contain a To tag.

2821 A proxy MusT NOT modify the To tag in any forwarded response to a request that contains a To tag.
2822 While it makes no difference to the upstream elements if the proxy replaced the To tag in a forwarded

2823 3-6xx response, preserving the original tag may assist with debugging.

2824 When the proxy is aggregating information from several responses, choosing a To tag from among them

2825 is arbitrary, and generating a new To tag may make debugging easier. This happens, for instance, when

2826 combining 401 (Unauthorized) and 407 (Proxy Authentication Required) challenges, or combining Contact

2827 values from unencrypted and unauthenticated 3xx responses.

2828 7. Aggregate Authorization Header Fields

2829 If the selected response is a 401 (Unauthorized) or 407 (Proxy Authentication Required), the proxy
2830 MUST collect anyWWW-Authenticate and Proxy-Authenticate header fields from all other 401

2831 (Unauthorized) and 407 (Proxy Authentication Required) responses received so far in this response
2832 context and add them to this response before forwarding. BASAN-Authenticate and Proxy-

2833 Authenticate header field added to the responsesT preserve that header field value. The result-

2834 ing 401 (Unauthorized) or 407 (Proxy Authenication Required) response may have S&EVevs

2835 Authenticate AND Proxy-Authenticate header fields.

2836 This is necessary because any or all of the destinations the request was forwarded to may have re-
2837 quested credentials. The client must receive all of those challenges and supply credentials for each of
2638 them when it retries the request. Motivation for this behavior is provided in Section 22.

2839 8. Record-Route

2840 If the selected response contairRecord-Route header field value originally provided by this proxy,

2841 the proxyMAY chose to rewrite the value before forwarding the response. This allows the proxy to
2842 provide different URISs for itself to the next upstream and downstream elements. A proxy may choose
2843 to use this mechanism for any reason. For instance, it is useful for multi-homed hosts.

2844 The new URI provided by the proxyusT satisfy the same constraints on URIs place®atord-

2845 Route header fields in requests (see Step 6 of Section 16.5) with the following modifications:

2846 The URISHOULD NOT contain the transport parameter unless the proxy has knowledge that the next
2847 upstream (as opposed to downstream) element that will be in the path of subsequent requests supports
2848 that transport.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 74]

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

10.

When a proxy does decide to modify tRecord-Route header field in the response, one of the
operations it must perform is to locate tRecord-Route that it had inserted. If the request spiraled,

and the proxy insertedRecord-Route in each iteration of the spiral, locating the correct header field

in the response (which must be the proper iteration in the reverse direction) is tricky. The rules above
recommend that a proxy wishing to rewriiecord-Route header field values insert sufficiently
distinct URIs into theRecord-Route header field so that the right one may be selected for rewriting.

A RECOMMENDED mechanism to achieve this is for the proxy to append a unique identifier for the
proxy instance to to the user portion of the URNhen the response arrives, the proxy modifies the
first Record-Route whose identifier matches the proxy instance. The modification results in a URI
without this piece of data appended to the user portion of the URI. Upon the next iteration, the same
algorithm (find the topmodRecord-Route header field with the parameter) will correctly extract the
nextRecord-Route header field inserted by that proxy.

. Forward response

After performing the processing described in steps “Aggregate Authorization Header Fields” through
“Record-Route”, the proxy may perform any feature specific manipulations on the selected response.
Unless otherwise specified, the praxysT NOT remove the message body or any header fields other
than theVia header field discussed in Section 3. In particular, the praxgT NOT remove any
“received” parameter it may have added to the riéia header field while processing the request
associated with this response. The proxysT pass the response to the server transaction associated
with the response context. This will result in the response being sent to the location now indicated
in the topmostVia header field value. If the server transaction is no longer available to handle the
transmission, the elemeritusT forward the response statelessly by sending it to the server transport.
The server transaction may indicate failure to send the response or signal a timeout in its state machine.
These errors should be logged for diagnostic purposes as appropriate, but the protocol requires no
remedial action from the proxy.

The proxymMusT maintain the response context until all of its associated transactions have been ter-
minated, even after forwarding a final response.

Generat€ ANCELs

If the forwarded response was a final response, the pyraxgT generate £ANCEL request for all

pending client transactions associated with this response context. A pHDXYLD also generate a
CANCEL request for all pending client transactions associated with this response context when it
receives a 6xx response. A pending client transaction is one that has received a provisional response,
but no final response and has not had an assoc@AMICEL generated for it. GeneratingANCEL

requests is described in Section 9.1.

The requirement t&€ ANCEL pending client transactions upon forwarding a final response does not
guarantee that an endpoint will not receive multiple 200 (OK) responses B\AAE. 200 (OK)
responses on more than one branch may be generated bef@AMNE@EL requests can be sent and
processed. Further, it is reasonable to expect that a future extension may override this requirement to
issueCANCEL requests.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 75]

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

a8 16.7 Processing Timer C

2880 If timer C should fire, the proxyusT either reset the timer with any value it chooses, or gener@tald-
2800 CEL for that particular request.

01 16.8 Handling Transport Errors

2802 If the transport layer notifies a proxy of an error when it tries to forward a request (see Section 19.4), the
2803 Proxy MUST behave as if the forwarded request received a 400 (Bad Request) response.

2894 If the proxy is notified of an error when forwarding a response, it drops the response. ThespmxyD

2805 NOT cancel any outstanding client transactions associated with this response context due to this notification.

2896 If a proxy cancels its outstanding client transactions, a single malicious or misbehaving client can cause all
2897 transactions to fail through its Via header field.

208 16.9 CANCEL Processing

2800 A stateful proxy may generate@ANCEL to any other request it has generated at any time (subject to re-
2000 Ceiving a provisional response to that request as described in section 9.1). Ayrexycancel any pending

2001 Client transactions associated with a response context when it receives a m&8NaEL request.

2002 A stateful proxymAy generateCANCEL requests for pendindNVITE client transactions based on the

2003 period specified in théNVITE's Expires header field elapsing. However, this is generally unnecessary
2004 Since the endpoints involved will take care of signaling the end of the transaction.

2905 While aCANCEL request is handled in a stateful proxy by its own server transaction, a hew response
2006 context is not created for it. Instead, the proxy layer searches its existing response contexts for the server
2007 transaction handling the request associated with@BICEL. If a matching response context is found, the

2008 €lementmusT immediately return a 200 (OK) response to @&NCEL request. In this case, the element is

2000 acting as a user agent server as defined in Section 8.2. Furthermore, the elerseigienerataCANCEL

2010 requests for all pending client transactions in the context as described in Section 10.

2011 If a response context is not found, the element does not have any knowledge of the request to apply
2012 the CANCEL to. It MmusT forward theCANCEL request (it may have statelessly forwarded the associated
2013 request previously).

212 16.10 Stateless Proxy

2015 When acting statelessly, a proxy is a simple message forwarder. Much of the processing performed when
2016 acting statelessly is the same as when behaving statefully. The differences are detailed here.

2917 A stateless proxy does not have any notion of a transaction, or of the response context used to describe
2018 Stateful proxy behavior. Instead, the stateless proxy takes messages, both requests and responses, directly
2019 from the transport layer (See section 19). As a result, stateless proxies do not retransmit messages on their
2000 OWN. They do, however, forward all retransmission they receive (they do not have the ability to distinguish

2021 @ retransmission from the original message). Furthermore, when handling a request statelessly, an element
2002 MUST NOT generate its own 100 (Trying) or any other provisional response.

2923 A stateless proxy must validate a request as described in Section 16.3
2924 A stateless proxy must make a routing decision as described in Section 16.4 with the following excep-
2025 tion:

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 76]

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947
2948
2949
2950
2951
2952
2953

2954
2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

e A stateless proxyiusT choose one and only one destination from the destination set. This choice
MUST only rely on fields in the message and time-invariant properties of the server. In particular, a
retransmitted requestusT be forwarded to the same destination each time it is processed. Further-
more, CANCEL and non-Routed\CK requestavusT generate the same choice as their associated
INVITE.

A stateless proxy must process the request before forwarding as described in Section 16.5 with the
following exceptions:

e The requirement for unique branch IDs across time applies to stateless proxies as well. However, a
stateless proxy cannot simply use a random number generator to compute the first component of the
branch ID, as described in Section 16.5 bullet 3. This is because retransmissions of a request need
to have the same value, and a stateless proxy cannot tell a retransmission from the original request.
Therefore, the component of the branch parameter that makes it uwiggrebe the same each time
a retransmitted request is forwarded. Thus for a stateless proxyrameh parametemusT be
computed as a combinatoric function of message parameters which are invariant on retransmission.

e The stateless proxyAY use any technique it likes to guarantee uniqueness of its branch IDs across
transactions. However, the following procedur&isCOMMENDED. The proxy examines the branch
ID of the received request. If it begins with the magic cookie, the first component of the branch ID of
the outgoing request is computed as a hash of the received branch ID. Otherwise, the first component
of the branch ID is computed as a hash of the topriastthe To header field, th&rom header field,
theCall-ID header field, th€Seq number (but not method), and tRequest-URI from the received
request. One of these fields will always vary across two different transactions.

e The request is sent directly to the transport layer instead of through a client transaction. If the next-
hop destination parameters don't provide an explicit destination, the element applies the procedures
of [2] to the Request-URI to determine where to send the request.

Since a stateless proxy must forward retransmitted requests to the same destination and add identical branch
parameters to each of them, it can only use information from the message itself and time-invariant configuration
data for those calculations. If the configuration state is not time-invariant (for example, if a routing table is updated)
any requests that could be affected by the change may not be forwarded statelessly during an interval equal to the

transaction timeout window before or after the change. The method of processing the affected requests in that
interval is an implementation decision. A common solution is to forward them transaction statefully.

Stateless proxie®usT NOT perform special processing fQ/ANCEL requests. They are processed by
the above rules as any other requests. In particular, a stateless proxy applies thiosdenieeader field
processing t&€ANCEL requests that it applies to any other request.

Response processing as described in Section 16.6 does not apply to a proxy behaving statelessly. When
a response arrives at a stateless proxy, the proxy inspects the sent-by value in the first (tdjantnastiler
field. If that address matches the proxy (it equals a value this proxy has inserted into previous requests) the
proxy MUST remove that value from the response and forward the result to the location indicated in the next
Via header field. Unless specified otherwise, the praxysT NOT remove any other header fields or the
message body. If the address does not match the proxy, the messagde silently discarded.

16.11 Summary of Proxy Route Processing

In the absence of local policy to the contrary, the processing a proxy performs on a request containing a
route header can be summarized in the following steps.

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 77]

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

e 1 The proxy will inspect th&kequest-URI. If it indicates a resource owned by this proxy, the proxy
will replace it with the results of running a location service. Otherwise, the proxy will not change the
Request-URI.

e 2 The proxy will inspect the URI in the topmoRibute header field value. If it indicates this proxy,
the proxy removes it from thRoute header field (this route node has been reached).

e 3 The proxy will forward the request to the resource indicated by the URI in the todRwage
header field value or in thRequest-URI if no Route header field is present. The proxy determines
the address, port and transport to use when forwarding the request by applying the proceedures in [2]
to that URI.

If no strict-routing elements are encountered on the path of the requeRetheest-URI will always
indicate the target of the request.

16.11.1 Examples

16.11.1.1 Basic SIP Trapezoid This scenario is the basic sip trapeziod, U1 P1 = P2 = U2, with
both proxies record-routing. Here is the flow.
U1 sends:

INVITE sip:callee@domain.com SIP/2.0
Contact: sip:caller@ul.example.com

to P1. P1is an outbound proxy. P1 is not responsible for domain.com, so it looks it up in DNS and
sends it there. It also add€Reecord-Route header field value:

INVITE sip:callee@domain.com SIP/2.0
Contact: sip:caller@ul.example.com
Record-Route: <sip:pl.example.com;lr>

P2 gets this. Itis responsible for domain.com so it runs a location service and rewrfkecphest-URI.
There are ndRoute headers, so it sends to the result of the location lookup. It also aBésard-Route
header field value:

INVITE sip:callee@u2.domain.com SIP/2.0
Contact: sip:caller@ul.example.com
Record-Route: <sip:p2.domain.com;lr>
Record-Route: <sip:pl.example.com;lr>

The callee at u2.domain.com gets this and responds with a 200 OK:
SIP/2.0 200 OK
Contact: sip:callee@u2.domain.com

Record-Route: <sip:p2.domain.com;lr>
Record-Route: <sip:pl.example.com;lr>

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 78]

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

The callee at u2 also sets its dialog state’s remote target URI to sip:caller@ul.example.com and its route
set to

(<sip:p2.domain.com;Ir>,<sip:pl.example.com;lr>)

This is forwarded by P2 to P1 to Ul as normal. Now, U1l sets its dialog state’s remote target URI to
sip:callee@u2.domain.com and its route set to

(<sip:pl.example.com;lr>,<sip:p2.domain.com;lr>)

Since all the route set elements containlthgarameter, U1 constructs the following for the BYE:

BYE sip:callee@u2.domain.com SIP/2.0
Route: <sip:pl.example.com;lr>,<sip:p2.domain.com;lr>

As any other element (including proxies) would do, it sends this request to the location obtained by
looking up the topmodRoute header field value in DNS. This goes to P1. P1 notices that it is not responsible
for the resource indicated in thiequest-URI so it doesn’t change it. It does see that it is the first value in
the Route header field, so it removes that value, and forwards the request to P2;

BYE sip:callee@u2.domain.com SIP/2.0
Route: <sip:p2.domain.com;ir>

P2 also notices it is not responsible for the resource indicated dyaheest-URI (it is responsible for
domain.com, not u2.domain.com), so it doesn’t change it. It does see itself in tHedutt header field
value, so it removes it and forwards the following to u2.domain.com based on a DNS lookup against the
Request-URI:

BYE sip:callee@u2.domain.com SIP/2.0

16.11.1.2 Traversing a strict-routing proxy In this scanario, a dialog is established across three prox-
ies, each of which addRecord-Route header field values. The second proxy implements the strict-routing
proceedures specified in RFC2543 and the bis drafts up to bis-05.

Ul->P1->P2->P3->U2

The INVITE arriving at U2 contains

INVITE sip:callee@u2.domain.com SIP/2.0
Contact: sip:caller@ul.example.com
Record-Route: <sip:p3.domain.com;ir>
Record-Route: <sip:p2.middle.com>
Record-Route: <sip:pl.example.com;lr>

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 79]

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

Which U2 responds to with a 200 OK. Later, U2 sends the following BYE to P3 based on ttroiirtst
header field value.

BYE sip:caller@ul.example.com SIP/2.0
Route: <sip:p3.domain.com;ir>
Route: <sip:p2.middle.com>
Route: <sip:pl.example.com;lr>
P3 is not responsible for the resource indicated inRequest-URI so it will leave it alone. It notices
that it is the element in the firRoute header field value so it removes it. It then prepares to send the request
based on the now firfRoute header field value of sip:p2.middle.com, but it notices that this URI does not
contain thdr parameter, so before sending, it reformats the request to be:
BYE sip:p2.middle.com SIP/2.0
Route: <sip:pl.example.com;ir>
Route: <sip:caller@ul.example.com>
P2 is a strict router, so it forwards the following to P1:

BYE sip:pl.example.com;lr SIP/2.0
Route: <sip:caller@ul.example.com>

P1 sees the request-URI is a value it placed into a Record-Route header field, so before further process-
ing, it rewrites the request to be

BYE sip:caller@ul.example.com SIP/2.0

Since P1 is not responsible for ul.example.com and thereRonte header field, P1 will forward the
request to ul.example.com based onRleguest-URI:

BYE sip:caller@ul.example.com SIP/2.0

16.11.1.3 RewritingRecord-Route header field values In this scenario, U1 and U2 are in different

private namespaces and they enter a dialog through a proxy P1 which acts as a gateway between the names-
paces.

Ul->P1->U2

U1 receives:

INVITE sip:callee@gateway.leftprivatespace.com SIP/2.0
Contact: <sip:caller@ul.leftprivatespace.com>

P1 its location service and sends the following to U2:

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 80]

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080
3081
3082
3083
3084
3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

INVITE sip:callee@rightprivatespace.com SIP/2.0
Contact: <sip:caller@ul.leftprivatespace.com>
Record-Route: <sip:gateway.rightprivatespace.com;lr>

U2 sends this 200 OK back to the gateway:

SIP/2.0 200 OK
Contact: <sip:callee@u2.rightprivatespace.com>
Record-Route: <sip:gateway.rightprivatespace.com;lr>

P1 rewrites itRecord-Route header parameter to provide a value that U1 will find useful, and sends
the following to U1:

SIP/2.0 200 OK
Contact: <sip:callee@u2.rightprivatespace.com>
Record-Route: <sip:gateway.leftprivatespace.com;lr>

Later, U1 sends the following BYE to P1:

BYE sip:callee@u?2.rightprivatespace.com SIP/2.0
Route: <sip:gateway.leftprivatespace.com;lr>

which P1 forwards to U2 as

BYE sip:callee@u2.rightprivatespace.com SIP/2.0

17 Transactions

SIP is a transactional protocol: interactions between components take place in a series of independent
message exchanges. Specifically, a SIP transaction consists of a single request, and any responses to that
request (which include zero or more provisional responses and one or more final responses). In the case
of a transaction where the request wadM¥ITE (known as ariNVITE transaction), the transaction also
includes theACK only if the final response was not a 2xx response. If the response was a 2RCkhis

not considered part of the transaction.

The reason for this separation is rooted in the importance of delivering all 200 (OK) responsésIYdHA to
the UAC. To deliver them all to the UAC, the UAS alone takes responsibility for retransmitting them (see Section
13.3.1.4) , and the UAC alone takes responsibility for acknowledging themA@th(see Section 13.2.2.4). Since
this ACK is retransmitted only by the UAC, it is effectively considered its own transaction.

Transactions have a client side and a server side. The client side is known as a client transaction, and the
server side, as a server transaction. The client transaction sends the request, and the server transaction sends
the response. The client and server transactions are logical functions that are embedded in any number of
elements. Specifically, they exist within user agents and stateful proxy servers. Consider the example of
Section 4. In this example, the UAC executes the client transaction, and its outbound proxy executes the
server transaction. The outbound proxy also executes a client transaction, which sends the request to a

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 81]

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

server transaction in the inbound proxy. That proxy also executes a client transaction, which in turn, sends
the request to a server transaction in the UAS. This is shown pictorially in Figure 4.

F———————— + Fm———————— + Fm———————— + Fm———————— +
| +-+|Request [+-+ +-+|Request [+-+ +-+|Request [+-+ |
| ICl|===——= >[|S] |C|[=——==—= >[|S]|Cl[=—————= >[IS] |
[llel e flel e llel |
N | 11 11| 14 11 I | 4
[lell vl el {ivl lell vl
[Inll llel Il llel Inlllel |
N L 14 {14 I 11| |4 B
| | I | | 1 By
L | | | L | A 1 M B
N 14 | | 14 | O 14 N
[lall llal falllal fall - llal |
[Il dinl Inll dInf Inll]|
| [s||Responsel|s| |s||Responsel|s| |s||Response||s| |
| < [+—+ +—+|<—————- [+—+ +—+|<—————— [+—+
+—— + +——— + +——— + +——— +
UAC Outbound Inbound UAS
Proxy Proxy

Figure 4: Transaction relationships

A stateless proxy does not contain a client or server transaction. The transaction exists between the
UA or stateful proxy on one side of the stateless proxy, and the UA or stateful proxy on the other side.
As far as SIP transactions are concerned, stateless proxies are effectively transparent. The purpose of the
client transaction is to receive a request from the element the client is embedded in (call this element the
“Transaction User” or TU; it can be a UA or a stateful proxy), and reliably deliver the request to that server
transaction. The client transaction is also responsible for receiving responses, and delivering them to the
TU, filtering out any retransmissions or disallowed responses (such as a resp@a€)tan the case of
anINVITE transaction, that includes generation of &€K request for any final response excepting a 2xx
response.

Similarly, the purpose of the server transaction is to receive requests from the transport layer, and deliver
them to the TU. The server transaction filters any request retransmissions from the network. The server
transaction accepts responses from the TU, and delivers them to the transport layer for transmission over the
network. In the case of dNVITE transaction, it absorbs tHeCK request for any final response excepting
a 2xx response.

The 2xx response, and tWe&CK for it, have special treatment. This response is retransmitted only by a
UAS, and itsACK generated only by the UAC. This end-to-end treatment is needed so that a caller knows
the entire set of users that have accepted the call. Because of this special handling, retransmissions of the
2xx response are handled by the UA core, not the transaction layer. Similarly, generatioAGklier the
2xx is handled by the UA core. Each proxy along the path merely forwards each 2xx resptdséTia,
and its correspondingCK.

A reliable provisional response, and tARACK for it, also have special treatment. Reliable provisional

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 82]

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

responses are also only retransmitted by the UAS core, aRRIAEK generated by the UAC core. Unlike

ACK, howeverPRACK is a normal noriNVITE transaction, which means that it will generate its own final
response. The reason for this seemingly inexplicable difference beRR&GEK andACK is that reliability

of provisional responses was added on later as an extra feature, and therefore needed to be done within the
confines of SIP extensibility. SIP extensibility only allowed the additions of new methods which behaved
like any other nodNVITE method.

17.1 Client Transaction

The client transaction provides its functionality through the maintenance of a state machine.

The TU communicates with the client transaction through a simple interface. When the TU wishes to
initiate a new transaction, it creates a client transaction, and passes it the SIP request to send, and an IP
address, port, and transport to send it to. The client transaction begins execution of its state machine. Valid
responses are passed up to the TU from the client transaction.

There are two types of client transaction state machines, depending on the method of the request passed
by the TU. One handles client transactions HdWITE request. This type of machine is referred to as an
INVITE client transaction. Another type handles client transactions for all requests éXS4piE and
ACK. This is referred to as a ndNVITE client transaction. There is no client transaction A@K. If the
TU wishes to send aACK, it passes one directly to the transport layer for transmission.

TheINVITE transaction is different from those of other methods because of its extended duration. Nor-
mally, human input is required in order to respond tdldNITE. The long delays expected for sending a
response argue for a three way handshake. Requests of other methods, on the other hand, are expected to
complete rapidly. In fact, because of its reliance on just a two way handshakesHls D respond im-
mediately to nonNVITE requests. Protocol extensions which require longer durations for generation of a
response (such as a new method that does require human interaetmo) D instead use two transactions
- one to send the request, and another in the reverse direction to convey the result of the request.

17.1.1 INVITE Client Transaction

17.1.1.1 Overview ofNVITE Transaction ThelNVITE transaction consists of a three-way handshake.

The client transaction sends 84VITE, the server transaction sends responses, and the client transaction
sends aACK. For unreliable transports (such as UDP), the client transaction will retransmit requests at an
interval that starts at T1 seconds and doubles after every retransmission. T1 is an estimate of the RTT, and
it defaults to 500 ms. Nearly all of the transaction timers described here scale with T1, and changing T1 is
how their values are adjusted. The request is not retransmitted over reliable transports. After receiving a 1xx
response, any retransmissions cease altogether, and the client waits for further responses. The server trans-
action can send additional 1xx responses, which are not transmitted reliably by the server transaction. If the
provisional response needs to be sent reliably, this is handled by the TU. Eventually, the server transaction
decides to send a final response. For unreliable transports, that response is retransmitted periodically, and
for reliable transports, it is sent once. For each final response that is received at the client transaction, the
client transaction sends &CK, the purpose of which is to quench retransmissions of the response.

17.1.1.2 Formal Description The state machine for tH&IVITE client transaction is shown in Figure 5.
The initial state, “calling” MusT be entered when the TU initiates a new client transaction withNafiTE
request. The client transactioamusT pass the request to the transport layer for transmission (see Section

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 83]

3159

3160

3161

3162

3163

3164

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

[INVITE from TU
Timer A fires |INVITE sent

Reset A, \Y Timer B fires
INVITE sent +——————————— + or Transport Err.
- | |-——————— +inform TU
| | Calling | |
- >| |- >|
= + 2xX |
| | 2xxto TU |
| 1xx |
300-699 +——————————————— + |1xxto TU
ACK sent | | |
resp.to TU | 1xx \% |
| Ixxto TU ——————————— + |
R | |
| | |Proceeding |-———————————— >
|+ 5 l2x |
| = +2xxtoTU |
| 300-699 | |
| ACK sent, | |
| resp. to TU| |
| | | NOTE:
| 300-699 Vv |
| ACK sent +—————————— +Transport Err. | transitions
| +———————- | [Infform TU | labeled with
|] | Completed |-————————————~ >| the event
| +———— >| | | over the action
| F————— = + | to take
I o |
| | | Timer D fires |
+—— + |- |
| |
v I
- + |
I | I
| Terminated|<—————————————- +
I |
+——— +

Figure 5:INVITE client transaction

19). If an unreliable transport is being used, the client transadioouLD start timer A with a value
of T1, andsHoOULD NOT start timer A when a reliable transport is being used (Timer A controls request
retransmissions). For any transport, the client transastiosT start timer B with a value of 64*T1 seconds
(Timer B controls transaction timeouts).

When timer A fires, the client transacti@HouLD retransmit the request by passing it to the transport
layer, andsHOULD reset the timer with a value of 2*T1. The formal definition refransmitwithin the

Rosenberg,Schulzrinne,Camarillo,Johnston,Peterson,Sparks,Handley,Schooler Expires Aug 2002 [Page 84]

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

INTERNET-DRAFT draft-ietf-sip-rfc2543bis-07.ps February 4, 2002

context of the transaction layer, is to take the message previously sent to the transport layer, and pass it to
the transport layer once more.

When timer A fires 2*T1 seconds later, the requasbuLD be retransmitted again (assuming the client
transaction is still in this state). This processouLD continue, so that the request is retransmitted with
intervals that double after each transmission. These retransmissians.D only be done while the client
transaction is in the “calling” state.

The default value for T1 is 500 ms. T1 is an estimate of the RTT between the client and server transac-
tions. The optional RTT estimation procedure of Section 18 be followed, in which case the resulting
estimatemAy be used instead of 500 ms. If no RTT estimation is used, other veilese used in private
networks where it is known that RTT has a different value. On the public InternetaA¥ Ibe chosen larger,
but sSHouLD NOTbe smaller.

If the client transaction is still in the “calling”state when timer B fires, the client transasticmuLD
inform the TU that a timeout has occurred. The client transastioaT NOT generate alCK. The value of
64*T1 is equal to the amount of time required to send seven requests in the case of an unreliable transport.

If the client transaction receives a provisional response while in the "calling” state, it transitions to the
“proceeding” state. In the “proceeding” state, the client transastioduLD NOT retransmit the request any
longer. Furthermore, the provisional responsesT be passed to the TU. Any further provisional responses
MUST be passed up to the TU while in the “proceeding” state. Passing of all provisional responses is
necessary since the TU will handle reliability of these messages, and therefore even retransmissions of a
provisional response must be passed upwards.

When in either the "calling” or “proceeding” states, reception of a response with status code from 300-
699 MUST cause the client transaction to transition to “completed”. The client transaeti®T pass the
received response up to the TU, and the client transastioaT generate arACK request, even if the
transport is reliable (guidelines for constructing @K from the response are given in Section 17.1.1.3)
and then pass th&CK to the transport layer for transmission. TREK MUST be sent to the same address,
port and transport that the original request was sent to. The client transaetiar D start timer D when it
enters the “completed” state, with a value of at least 32 seconds for unreliable transports, and a value of zero
seconds