
Network Working Group S. Hanna
Requests for Comments: 2730 Sun Microsystems, Inc.
Category: Standards Track B. Patel
 Intel Corp.
 M. Shah
 Microsoft Corp.
 December 1999

 Multicast Address Dynamic Client Allocation Protocol (MADCAP)

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1999). All Rights Reserved.

Abstract

 This document defines a protocol, Multicast Address Dynamic Client
 Allocation Protocol (MADCAP), that allows hosts to request multicast
 addresses from multicast address allocation servers.

1. Introduction

 Multicast Address Dynamic Client Allocation Protocol (MADCAP) is a
 protocol that allows hosts to request multicast address allocation
 services from multicast address allocation servers. This protocol is
 part of the Multicast Address Allocation Architecture being defined
 by the IETF Multicast Address Allocation Working Group. However, it
 may be used separately from the rest of that architecture as
 appropriate.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [9].

 Constants used by this protocol are shown as [NAME-OF-CONSTANT], and
 summarized in Appendix B.

Hanna, et al. Standards Track [Page 1]

RFC 2730 MADCAP December 1999

1.2. Definitions

 This specification uses a number of terms that may not be familiar to
 the reader. This section defines some of these and refers to other
 documents for definitions of others.

 MADCAP client or client
 A host requesting multicast address allocation services via MADCAP.

 MADCAP server or server
 A host providing multicast address allocation services via MADCAP.

 Multicast
 IP Multicast, as defined in [11] and modified in [12].

 Multicast Address
 An IP multicast address or group address, as defined in [11] and
 [13]. An identifier for a group of nodes.

 Multicast Scope
 A range of multicast addresses configured so that traffic sent to
 these addresses is limited to some subset of the internetwork. See
 [3] and [13].

 Scope ID
 The lowest numbered address in a multicast scope. This definition
 applies only within this document.

 Scope Zone
 One multicast scope may have several instances, which are known as
 Scope Zones or zones, for short.

 For instance, an organization may have multiple sites. Each site
 might have its own site-local Scope Zone, each of which would be an
 instance of the site-local Scope. However, a given interface on a
 given host would only ever be in at most one instance of a given
 scope. Messages sent by a host in a site-local Scope Zones to an
 address in the site-local Scope would be limited to the site-local
 Scope Zone containing the host.

 Zone Name
 A human readable name for a Scope Zone. An ISO 10646 character
 string with an RFC 1766 [6] language tag. One zone may have several
 zone names, each in a different language. For instance, a zone for
 use within IBM’s locations in Switzerland might have the names "IBM
 Suisse", "IBM Switzerland", "IBM Schweiz", and "IBM Svizzera" with
 language tags "fr", "en", "de", and "it".

Hanna, et al. Standards Track [Page 2]

RFC 2730 MADCAP December 1999

 Multicast Scope List
 A list of multicast scope zones.

 Since it can be difficult to determine which multicast scope zones
 are in effect, MADCAP clients can ask MADCAP servers to supply a
 Multicast Scope List listing all of the zones available to the
 client. For each scope zone, the list includes the range of
 multicast addresses for this scope, a maximum TTL or hop count to
 be used for this scope, and one or more zone names for this scope
 zone.

 This definition applies only within this document.

1.3. Motivation and Protocol Requirements

 For multicast applications to be deployed everywhere, there is a need
 to define a protocol that any host may use to allocate multicast
 addresses. Here are the requirements for such a protocol.

 Quick response: The host should be able to allocate a multicast
 address and begin to use it promptly.

 Low network load: Hosts that are not allocating or deallocating
 multicast addresses at the present time should not need to send or
 receive any network traffic.

 Support for intermittently connected or power managed systems: Hosts
 should be able to be disconnected from the network, powered off, or
 otherwise inaccessible except during the brief period during which
 they are allocating a multicast address.

 Multicast address scopes: The protocol must be able to allocate both
 the administratively scoped and globally scoped multicast addresses.

 Efficient use of address space: The multicast address space is fairly
 small. The protocol should make efficient use of this scarce
 resource.

 Authentication: Because multicast addresses are scarce, it is
 important to protect against hoarding of these addresses. One way to
 do this is by authenticating clients. This is also a key prerequisite
 for establishing policies.

Hanna, et al. Standards Track [Page 3]

RFC 2730 MADCAP December 1999

 Policy neutral: Allocation policies (such as who can allocate
 addresses) should not be dictated by the protocol.

 Conferencing support: When allocating an address for use in a
 conferencing environment, members of the conference should be able to
 modify a multicast address lease used for the conference.

1.4. Relationship with DHCP

 MADCAP was originally based on DHCP. There are still some
 similarities and it may be possible to share some code between a DHCP
 implementation and a MADCAP implementation. However, MADCAP is
 completely separate from DHCP, with no dependencies between the two
 and many significant differences.

1.5. Protocol Overview

 MADCAP is built on a client-server model, where hosts request address
 allocation services from address allocation servers. When a MADCAP
 client wishes to request a service, it unicasts or multicasts a
 message to one or more MADCAP servers, each of which optionally
 responds with a message unicast to the client.

 All messages are UDP datagrams. The UDP data contains a fixed length
 header and a variable length options field. Options are encoded in a
 type-length-value format with two octets type and value fields. The
 fixed fields are version, msgtype (message type), addrfamily (address
 family), and xid (transaction identifier).

 Retransmission is handled by the client. If a client sends a message
 and does not receive a response, it may retransmit its request a few
 times using an exponential backoff. To avoid executing the same
 client request twice when a retransmitted request is received,
 servers cache responses for a short period of time and resend cached
 responses upon receiving retransmitted requests.

 Each request contains a msgtype, an xid, and a Lease Identifier
 option. Clients must ensure that this triple is probably unique
 across all MADCAP messages received by a MADCAP server over a period
 of [XID-REUSE-INTERVAL] (10 minutes). This allows the MADCAP server
 to use this triple as the key in its response cache.

 Messages sent by servers include the xid included in the original
 request so that clients can match up responses with requests.

 The msgtype field is a single octet that defines the "type" of a
 MADCAP message. Currently defined message types are listed in Table
 2. They are: DISCOVER, OFFER, REQUEST, RENEW, ACK, NAK, RELEASE, and

Hanna, et al. Standards Track [Page 4]

RFC 2730 MADCAP December 1999

 GETINFO. DISCOVER, REQUEST, RENEW, RELEASE, and GETINFO messages are
 only sent by a client. OFFER, ACK, and NAK messages are only sent by
 a server.

 The REQUEST, RENEW, and RELEASE messages are used to request, renew,
 or release a lease on one or more multicast addresses. A client
 unicasts one of these messages to a server and the server responds
 with an ACK or a NAK.

 The GETINFO message is used to request information, such as the
 multicast scope list, or to find MADCAP servers. A client may unicast
 an GETINFO message to a MADCAP server. However, it may not know the
 IP address of any MADCAP server. In that case, it will multicast an
 GETINFO message to a MADCAP Server Multicast Address and all servers
 that wish to respond will send a unicast ACK or NAK back to the
 client.

 Each multicast scope has an associated MADCAP Server Multicast
 Address. This address has been reserved by the IANA as the address
 with a relative offset of -1 from the last address of a multicast
 scope. MADCAP clients use this address to find MADCAP servers.

 The DISCOVER message is a message used to discover MADCAP servers
 that can probably satisfy a REQUEST. DISCOVER messages are always
 multicast. Servers that can probably satisfy a REQUEST corresponding
 to the parameters supplied in the DISCOVER message temporarily
 reserve the addresses needed and send a unicast OFFER back to the
 client. The client selects a server with which to continue and sends
 a multicast REQUEST including the server’s Server Identifier to the
 same multicast address used for the DISCOVER. The chosen server
 responds with an ACK or NAK and the other servers stop reserving the
 addresses they were temporarily holding.

 For detailed descriptions of typical protocol exchanges, consult
 Appendix A.

 MADCAP is a mechanism rather than a policy. MADCAP allows local
 system administrators to exercise control over configuration
 parameters where desired. For example, MADCAP servers may be
 configured to limit the number of multicast addresses allocated to a
 single client. Properly enforcing such a limit requires cryptographic
 security, as described in the Security Consideration section.

 MADCAP requests from a single host may be sent on behalf of different
 applications with different needs and requirements. MADCAP servers
 MUST NOT assume that because one request from a MADCAP client
 supports a particular optional feature (like Retry After), future
 requests from that client will also support that optional feature.

Hanna, et al. Standards Track [Page 5]

RFC 2730 MADCAP December 1999

2. Protocol Description

 The MADCAP protocol is a client-server protocol. In general, the
 client unicasts or multicasts a message to one or more servers, which
 optionally respond with messages unicast to the client.

 A reserved port number dedicated for MADCAP is used on the server
 (port number 2535, as assigned by IANA). Any port number may be used
 on client machines. When a MADCAP server sends a message to a MADCAP
 client, it MUST use a destination port number that matches the source
 port number provided by the client in the message that caused the
 server to send its message.

 The next few sections describe the MADCAP message format and message
 types. A full list of MADCAP options is provided in section 3.

2.1. Message Format

 Figure 1 gives the format of a MADCAP message and Table 1 describes
 each of the fields in the MADCAP message. The numbers in parentheses
 indicate the size of each field in octets. The names for the fields
 given in the figure will be used throughout this document to refer to
 the fields in MADCAP messages.

 All multi-octet quantities are in network byte-order.

 Any message whose UDP data is too short to hold this format (at least
 12 bytes) MUST be ignored.

Hanna, et al. Standards Track [Page 6]

RFC 2730 MADCAP December 1999

 +-+-+-+-+-+-+-+-+
 | version (1) |
 +---------------+
 | msgtype (1) |
 +---------------+
 | addrfamily |
 | (2) |
 +---------------+
 | |
 | xid (4) |
 | |
 | |
 +---------------+
 | |
 | options |
 | (variable) |
 | ... |
 +---------------+

 Figure 1: Format of a MADCAP message

 FIELD OCTETS DESCRIPTION
 ----- ------ -----------

 version 1 Protocol version number (zero for this specification)
 msgtype 1 Message type (DISCOVER, GETINFO, etc.)
 addrfamily 2 Address family (IPv4, IPv6, etc.)
 xid 4 Transaction ID
 options var Options field

 Table 1: Description of fields in a MADCAP message

2.1.1. The version field

 The version field must always be zero for this version of the
 protocol. Any messages that include other values in this field MUST
 be ignored.

2.1.2. The msgtype field

 The msgtype field defines the "type" of the MADCAP message.

 For more information about this field, see section 2.2.

Hanna, et al. Standards Track [Page 7]

RFC 2730 MADCAP December 1999

2.1.3. The addrfamily field

 The addrfamily field defines the default address family (such as IPv4
 or IPv6) for this MADCAP message, using the address family numbers
 defined in by the IANA (including those defined in [10]). Unless
 otherwise specified, all addresses included in the message will be
 from this family.

2.1.4. The xid field

 The xid field is a transaction identifier. This number MUST be chosen
 by the client so that the combination of xid, msgtype, and Lease
 Identifier is unique across all MADCAP messages received by a MADCAP
 server over a period of [XID-REUSE-INTERVAL] (10 minutes).

 The xid field is used by the client and server to associate messages
 and responses between a client and a server. Before a client sends a
 message, it chooses a number to use as an xid. The technique used to
 choose an xid is implementation-dependent, but whatever technique is
 used MUST make it unlikely that the same combination of xid, msgtype,
 and Lease Identifier will be used for two different messages within
 [XID-REUSE-INTERVAL] (even across multiple clients which do not
 communicate among themselves). This allows enough time for the
 message to be dropped from all server response caches (as described
 in the next few paragraphs) and for any network delays to be
 accomodated.

 The RECOMMENDED technique for choosing an xid is to choose a random
 four octet number as the first xid in a session and increment this
 value each time a new xid is needed. The random number chosen need
 not be cryptographically random. The random number may be chosen via
 any suitable technique, such as the one described in section A.6 of
 RFC 1889 [14].

 When a server responds to a client message, it MUST use the same xid
 value in the response that the client used in the request. This
 allows the client to associate responses with the message that they
 are responding to.

 When retransmitting messages (as described in section 2.3), the
 client MUST retransmit them without changing them, thereby using the
 same xid and and Lease Identifier.

 If a server receives a message with the same xid, msgtype, and Lease
 Identifier as one received within [RESPONSE-CACHE-INTERVAL], it MUST
 treat this message as a retransmission of the previously received one
 and retransmit the response, if any. After [RESPONSE-CACHE-INTERVAL],
 the server may forget about the previously received message and treat

Hanna, et al. Standards Track [Page 8]

RFC 2730 MADCAP December 1999

 any retransmissions of this message as if they were new messages. Of
 course, a server need not cache a message if it ends up ignoring that
 message. However, performance gains may be achieved by doing so.

 This avoids retransmissions causing multiple allocations, since
 requests are not idempotent. An appropriate value for [RESPONSE-
 CACHE-INTERVAL] would be sixty seconds, but it may have any value
 from zero seconds to 300 seconds (five minutes) and may be adjusted
 dynamically according to resource constraints on the server.
 However, using a value less than sixty seconds is NOT RECOMMENDED
 because this is the normal client retransmission period.

2.1.5. The options field

 The options field consists of a list of tagged parameters that are
 called "options". All options consist of a two octet option code and
 a two octet option length, followed by the number of octets specified
 by the option length. In the case of some options, the length field
 is a constant but must still be specified.

 The option field MUST contain a sequence of options with the last one
 being the End option (option code 0). Any message whose options field
 does not conform to this syntax MUST be ignored.

 Any MADCAP client or server sending a MADCAP message MAY include any
 of the options listed in section 3, subject to the restrictions in
 Table 5 and elsewhere in this document. They MAY also include other
 MADCAP options that are defined in the future. A MADCAP client or
 server MUST NOT include more than one option with the same option
 type in one MADCAP message.

 All MADCAP clients and servers MUST recognize all options listed in
 this document and behave in accordance with this document when
 receiving and processing any of these options. Any unrecognized
 options MUST be ignored and the rest of the message processed as if
 the unknown options were not present. If a MADCAP server receives a
 message that does not conform to the requirements of this document
 (for instance, not including all required options), an Invalid
 Request error MUST be generated and processed in the manner described
 in section 2.6. If a MADCAP client receives a message that does not
 conform to the requirements of this document, it MUST ignore the
 message.

 The order of options within a message has no significance and any
 order MUST be supported in an equivalent manner, with the exception
 that the End option must occur once per message, as the last option
 in the option field.

Hanna, et al. Standards Track [Page 9]

RFC 2730 MADCAP December 1999

 New MADCAP option codes may only be defined by IETF Consensus, as
 described in section 5.

2.2. Message Types

 The msgtype field defines the "type" of a MADCAP message. Legal
 values for this field are:

 Value Message Type
 ----- ------------
 1 DISCOVER
 2 OFFER
 3 REQUEST
 4 RENEW
 5 ACK
 6 NAK
 7 RELEASE
 8 GETINFO

 Table 2: MADCAP message types

 Throughout this document, MADCAP messages will be referred to by the
 type of the message; e.g., a MADCAP message with a message type of 8
 will be referred to as an GETINFO message.

 Here are descriptions of the MADCAP message types. Table 5, which
 appears at the beginning of section 3, summarizes which options are
 allowed with each message type.

 MADCAP clients and servers MUST handle all MADCAP message types
 defined in this document in a manner consistent with this document.

 If a MADCAP server receives a message whose message type it does not
 recognize, an Invalid Request error MUST be generated and processed
 in the manner described in section 2.6. If a MADCAP client receives a
 message whose message type it does not recognize, it MUST ignore the
 message.

 Note, however, that under some circumstances this document requires
 or suggests that clients or servers ignore messages with certain
 message types even though they may be recognized. For instance,
 clients that do not send DISCOVER messages SHOULD ignore OFFER
 messages. Also, secure servers SHOULD ignore DISCOVER messages and
 all servers SHOULD ignore DISCOVER messages that they cannot satisfy.

 New MADCAP message types may only be defined by IETF Consensus, as
 described in section 5.

Hanna, et al. Standards Track [Page 10]

RFC 2730 MADCAP December 1999

2.2.1. GETINFO

 The GETINFO message is used by a MADCAP client that wants to acquire
 configuration parameters, especially a multicast scope list. This
 message also allows a client to determine which servers are likely to
 be able to handle future requests.

 The MADCAP client sends out an GETINFO message. The message may be
 unicast to a particular MADCAP server or multicast to a MADCAP Server
 Multicast Address. For more details about the MADCAP Server Multicast
 Address, see section 2.10.

 If a server receives an GETINFO message and it can process the
 request successfully, it MUST unicast an ACK message to the client.
 All GETINFO messages MUST include an Option Request List option. The
 server SHOULD try to include the specified options in its response,
 but is not required to do so (especially if it does not recognize
 them).

 If a server receives an GETINFO message and it does not process the
 request successfully, it MUST generate and process an error in the
 manner described in section 2.6.

 If a client sends an GETINFO message and does not receive any ACK
 messages in response, it SHOULD resend its GETINFO message, as
 described in section 2.3.

 When a MADCAP client sends an GETINFO message, it MAY include the
 Requested Language option, which specifies which language the client
 would prefer for the zone names in the Multicast Scope List. The
 proper way to handle this tag with respect to zone names is discussed
 in the definition of the Multicast Scope List option.

2.2.2. DISCOVER

 The DISCOVER message is a multicast message sent by a MADCAP client
 that wants to discover MADCAP servers that can probably satisfy a
 REQUEST.

 MADCAP clients are not required to use the DISCOVER message. They
 MAY employ other methods to find MADCAP servers, such as sending a
 multicast GETINFO message, caching an IP address that worked in the
 past or being configured with an IP address. Using the DISCOVER
 message has the particular advantage that it allows clients to
 receive responses from all servers that can satisfy the request.

Hanna, et al. Standards Track [Page 11]

RFC 2730 MADCAP December 1999

 The MADCAP client begins by sending a multicast DISCOVER message to a
 MADCAP Server Multicast Address. Any servers that wish to assist the
 client respond by sending a unicast OFFER message to the client. If a
 server can only process the request with a shorter lease time or
 later start time than the client requested, it SHOULD send an OFFER
 message with the lease time or start time that it can offer.
 However, it MUST NOT offer a lease time shorter than the minimum
 lease time specified by the client or a start time later than the
 maximum start time specified by the client.

 For more details about the MADCAP Server Multicast Address, see
 section 2.10.

 If a client sends a DISCOVER message and does not receive any OFFER
 messages in response, the client SHOULD retransmit its DISCOVER
 message, as described in section 2.3.

 If a client sends a DISCOVER message and receives one or more OFFER
 messages in response, it SHOULD select the server it wants to use (if
 any) and send a multicast REQUEST message identifying that server
 within [DISCOVER-DELAY] after receiving the first OFFER message. See
 section 2.2.4 for more information about the REQUEST message.

 The mechanism used by the client in selecting the server it wants to
 use is implementation dependent. The client MAY choose the first
 acceptable response or it MAY wait some period of time (no more than
 [DISCOVER-DELAY]) and choose the best response received in that
 period of time (if the first response has a smaller lease time than
 requested, for instance).

 The value of [DISCOVER-DELAY] is also implementation dependent, but
 the RECOMMENDED value is the current retransmit timer, as specified
 in section 2.3. Waiting too long (approaching [OFFER-HOLD]) may cause
 servers to drop the addresses they have reserved.

 When a MADCAP client sends a DISCOVER message, it MAY include the
 Lease Time, Minimum Lease Time, Start Time, Maximum Start Time,
 Number of Addresses Requested, and List of Address Ranges options,
 describing the addresses it wants to receive. However, it need not
 include any of these options. If one of these options is not
 included, the server will provide the appropriate default (maximum
 available for Lease Time, no minimum for Minimum Lease Time, as soon
 as possible for Start Time, no maximum for Maximum Start Time, one
 for Number of Addresses Requested, and any addresses available for
 List of Address Ranges). The Multicast Scope option MUST be included
 in the DISCOVER message so that the server knows what scope should be
 used. The Current Time option MUST be included if the Start Time or
 Maximum Start Time options are included. The Lease Identifier option

Hanna, et al. Standards Track [Page 12]

RFC 2730 MADCAP December 1999

 MUST always be included.

2.2.3. OFFER

 The OFFER message is a unicast message sent by a MADCAP server in
 response to a DISCOVER message that it can probably satisfy.

 A MADCAP server is never required to send an OFFER message in
 response to a DISCOVER message. For instance, it may not be able to
 satisfy the client’s request or it may have been configured to
 respond only to certain types of DISCOVER messages or not to respond
 to DISCOVER messages at all.

 If a MADCAP server decides to send an OFFER message, it MUST include
 the Lease Time and Multicast Scope options, describing the addresses
 it is willing to provide. However, it need not include the List of
 Address Ranges option. If the List of Address Ranges Allocated option
 is not included, it is assumed that the server is willing to provide
 the number of addresses that the client requested. If the Start Time
 option is not included, it is assumed that the server is willing to
 provide the start time requested by the client (if any). The Current
 Time option MUST be included if the Start Time option is included.

 If a server can process the request with a shorter lease time or
 later start time than the client requested, it SHOULD send an OFFER
 message with the lease time or start time that it can offer.
 However, it MUST NOT offer a lease time shorter than the minimum
 lease time specified by the client or a start time later than the
 maximum start time specified by the client.

 If the server sends an OFFER message, it SHOULD attempt to hold
 enough addresses to complete the transaction. If it receives a
 multicast REQUEST message with the same Lease Identifier option as
 the DISCOVER message for which it is holding these addresses and a
 Server Identifier option that does not match its own, it SHOULD stop
 holding the addresses. The server SHOULD also stop holding the
 addresses after an appropriate delay [OFFER-HOLD] if the transaction
 is not completed. The value of this delay is implementation-specific,
 but a value of at least 60 seconds is RECOMMENDED.

 As with all messages sent by the server, the xid field MUST match the
 xid field included in the client request to which this message is
 responding. The Lease Identifier option MUST be included, with the
 value matching the one included in the client request. The Server
 Identifier option MUST be included, with the value being the server’s
 IP address. And the packet MUST NOT be retransmitted.

Hanna, et al. Standards Track [Page 13]

RFC 2730 MADCAP December 1999

2.2.4. REQUEST

 The REQUEST message is used by a MADCAP client that wants to allocate
 one or more multicast addresses. It is not used for renewing an
 existing lease. The RENEW message is used for that.

 If a REQUEST message is completing a transaction initiated by a
 DISCOVER message, the following procedure MUST be followed so that
 all MADCAP servers know which server was selected. The client MUST
 multicast a REQUEST message to the same MADCAP Server Multicast
 Address that the DISCOVER message was sent to. The same Lease
 Identifier used in the DISCOVER message MUST be used in the REQUEST
 message. Also, the Server Identifier option MUST be included, using
 the Server Identifier of the server selected.

 If a REQUEST message is not completing a transaction initiated by a
 DISCOVER message, the REQUEST message MUST be unicast to the MADCAP
 server that the client wants to use. In this case, the Server
 Identifier option MAY be included, but need not be.

 If the selected server can process the request successfully, it
 SHOULD unicast an ACK message to the client. Otherwise, it SHOULD
 generate and process an error in the manner described in section 2.6.
 If a server can process the request with a shorter lease time or
 later start time than the client requested, it SHOULD send an ACK
 message with the lease time or start time that it can offer. However,
 it MUST NOT offer a lease time shorter than the minimum lease time
 specified by the client or a start time later than the maximum start
 time specified by the client.

 When a MADCAP client sends a REQUEST message, it MAY include the
 Lease Time, Minimum Lease Time, Start Time, Maximum Start Time,
 Number of Addresses Requested, and List of Address Ranges options,
 describing the addresses it wants to receive. However, it need not
 include any of these options. If one of these options is not
 included, the server will provide the appropriate default (maximum
 available for Lease Time, no minimum for Minimum Lease Time, as soon
 as possible for Start Time, no maximum for Maximum Start Time, one
 for Number of Addresses Requested, and any addresses available for
 List of Address Ranges). The Multicast Scope option MUST be included
 in the REQUEST message so that the server knows what scope should be
 used. The Current Time option MUST be included if the Start Time or
 Maximum Start Time options are included.

 If a client sends a REQUEST message and does not receive any ACK or
 NAK messages in response, the client SHOULD resend its REQUEST
 message, as described in section 2.3.

Hanna, et al. Standards Track [Page 14]

RFC 2730 MADCAP December 1999

 If the server responds with a NAK or fails to respond within a
 reasonable (implementation-dependent) delay [NO-RESPONSE-DELAY], the
 client MAY try to find another server by sending a DISCOVER message
 with another xid or sending a REQUEST message with another xid to
 another server. The RECOMMENDED value for [NO-RESPONSE-DELAY] is 60
 seconds.

2.2.5. ACK

 The ACK message is used by a MADCAP server to respond affirmatively
 to an GETINFO, REQUEST, or RELEASE message. The server unicasts the
 ACK message to the client from which it received the message to which
 it is responding.

 The set of options included with an ACK message differs, depending on
 what sort of message it is responding to.

 If the ACK message is responding to an GETINFO message, it SHOULD
 include any options requested by the client using the Option Request
 List option.

 If the ACK message is responding to a REQUEST message, it MUST
 include Lease Time, Multicast Scope, and List of Address Ranges
 options. It MAY include a Start Time option. If a Start Time option
 is included, a Current Time option MUST also be included. If no Start
 Time option is included, the lease is assumed to start immediately.

 If the ACK message is responding to a RENEW message, it MUST include
 Lease Time, Multicast Scope, and List of Address Ranges options. It
 MAY include a Start Time option. If a Start Time option is included,
 a Current Time option MUST also be included. If no Start Time option
 is included, the lease is assumed to start immediately.

 If the ACK message is responding to a RELEASE message, it MUST only
 include Server Identifier and Lease Identifier options.

 As with all messages sent by the server, the xid field MUST match the
 xid field included in the client request to which this message is
 responding. The Lease Identifier option MUST be included, with the
 value matching the one included in the client request. The Server
 Identifier option MUST be included, with the value being the server’s
 IP address. And the packet MUST NOT be retransmitted.

2.2.6. NAK

 The NAK message is used by a MADCAP server to respond negatively to a
 message. The server unicasts the NAK message to the client from which
 it received the message to which it is responding.

Hanna, et al. Standards Track [Page 15]

RFC 2730 MADCAP December 1999

 As with all messages sent by the server, the xid field MUST match the
 xid field included in the client request to which this message is
 responding. The Lease Identifier option MUST be included, with the
 value matching the one included in the client request. The Server
 Identifier option MUST be included, with the value being the server’s
 IP address. The Error option MUST be included with an error code
 indicating what went wrong. And the packet MUST NOT be retransmitted.

2.2.7. RENEW

 The RENEW message is used by a MADCAP client that wants to renew a
 multicast address lease, changing the lease time or start time.

 The client unicasts the RENEW message to a MADCAP server. If the
 server can process the request successfully, it SHOULD unicast an ACK
 message to the client. Otherwise, it MUST generate and process an
 error in the manner described in section 2.6.

 The lease to be renewed is whichever one was allocated with a Lease
 Identifier option matching the one provided in the RENEW message.

 When a MADCAP client sends a RENEW message, it MAY include the Lease
 Time, Minimum Lease Time, Start Time, and Maximum Start Time options,
 describing the new lease it wants to receive. However, it need not
 include any of these options. If one of these options is not
 included, the server will provide the appropriate default (maximum
 available for Lease Time, no minimum for Minimum Lease Time, as soon
 as possible for Start Time, and no maximum for Maximum Start Time).
 The Current Time option MUST be included if the Start Time or Maximum
 Start Time options are included.

 If a client sends a RENEW message and does not receive any ACK or NAK
 messages in response, the client SHOULD resend its RENEW message, as
 described in section 2.3.

 If the server responds with a NAK or fails to respond within a
 reasonable (implementation-dependent) delay [NO-RESPONSE-DELAY], the
 client MAY send a RENEW message with another xid to another server,
 provided that the Server Mobility feature was used in the original
 REQUEST message and that this feature is required for the subsequent
 RENEW message sent to another server. For more information about the
 Server Mobility feature, see section 2.13.1. The RECOMMENDED value
 for [NO-RESPONSE-DELAY] is 60 seconds.

Hanna, et al. Standards Track [Page 16]

RFC 2730 MADCAP December 1999

2.2.8. RELEASE

 The RELEASE message is used by a MADCAP client that wants to
 deallocate one or more multicast addresses before their lease
 expires.

 The client unicasts the RELEASE message to the MADCAP server from
 which it allocated the addresses. If the selected server can process
 the request successfully, it MUST unicast an ACK message to the
 client. Otherwise, it MUST generate and process an error in the
 manner described in section 2.6.

 The lease to be released is whichever one was allocated with a Lease
 Identifier option matching the one provided in the RELEASE message.
 It is not possible to release only part of the addresses in a single
 lease.

 If a client sends a RELEASE message and does not receive any ACK or
 NAK messages in response, the client SHOULD resend its RELEASE
 message, as described in section 2.3.

 If the server responds with a NAK or fails to respond within a
 reasonable (implementation-dependent) delay [NO-RESPONSE-DELAY], the
 client MAY send a RELEASE message with another xid to another server,
 provided that the Server Mobility feature was used in the original
 REQUEST message and that this feature is required for the subsequent
 RELEASE message sent to another server. For more information about
 the Server Mobility feature, see section 2.13.1. The RECOMMENDED
 value for [NO-RESPONSE-DELAY] is 60 seconds.

2.3. Retransmission

 MADCAP clients are responsible for all message retransmission. The
 client MUST adopt a retransmission strategy that incorporates an
 exponential backoff algorithm to determine the delay between
 retransmissions. The delay between retransmissions SHOULD be chosen
 to allow sufficient time for replies from the server to be delivered
 based on the characteristics of the internetwork between the client
 and the server.

 The RECOMMENDED algorithm is to use a 4 second delay before the first
 retransmission and to double this delay for each successive
 retransmission, with a maximum delay of 16 seconds and a maximum of
 three retransmissions. If an initial transmission was sent at time
 (in seconds) t and no responses were received, subsequent
 transmissions would be at t+4, t+12, and t+28. If no response has
 been received by t+60, the client would stop retransmitting and take
 another course of action (such as logging an error or sending a

Hanna, et al. Standards Track [Page 17]

RFC 2730 MADCAP December 1999

 message to another address.

 The client MAY provide an indication of retransmission attempts to
 the user as an indication of the progress of the process. The client
 MAY halt retransmission at any point.

2.4. The Lease Identifier

 The Lease Identifier option is included in each MADCAP message. Its
 value is used to identify a lease and MUST be unique across all
 leases requested by all clients in a multicast address allocation
 domain.

 The first octet of the Lease Identifier is the Lease Identifier type.
 Table 3 lists the Lease Identifier types defined at this time and
 sections 2.4.1 and 2.4.2 describe these Lease Identifier types.

 New MADCAP Lease Identifier types may only be defined by IETF
 Consensus, as described in section 5.

 Lease Identifier Type Name
 --------------------- ----
 0 Random Lease Identifier
 1 Address-Specific Lease Identifier

 Table 3: MADCAP Lease Identifier Types

 The MADCAP server does not need to parse the Lease Identifier. It
 SHOULD use the Lease Identifier only as an opaque identifier, which
 must be unique for each lease. The purpose of defining different
 Lease Identifier types is to allow MADCAP clients that already have a
 globally unique address to avoid the possibility of Lease Identifier
 collisions by using this address together with a client-specific
 identifier. MADCAP clients that do not have a globally unique address
 SHOULD use Lease Identifier type 0.

 In addition to associating client and server messages (along with the
 msgtype and xid fields, as described in the next section), the Lease
 Identifier is used to determine which lease a RENEW or RELEASE
 request refers to. MADCAP servers SHOULD match the Lease Identifier
 included in a RENEW or RELEASE message with the Lease Identifier used
 in an initial REQUEST message. If the Lease Identifier does not
 match, a MADCAP server MUST generate and process a Lease Identifier
 Not Recognized error in the manner described in section 2.6.

Hanna, et al. Standards Track [Page 18]

RFC 2730 MADCAP December 1999

 For conferencing applications, it may be desirable to allow
 conference participants to modify a lease used for the conference.
 The Shared Lease Identifier feature code is used to support this
 requirement. If this feature code was requested by the client and
 implemented by the server when the lease was allocated, the server
 SHOULD disable any authentication requirements and allow any client
 that knows the Lease Identifier to modify the lease.

 As described in the Security Considerations section, MADCAP security
 is not terribly useful without admission control in the multicast
 routing infrastructure. However, if MADCAP security is desired when
 using the Shared Lease Identifier feature, the confidentiality of the
 Lease Identifier MUST be maintained by encrypting all messages that
 contain it. A Lease Identifier that includes a long cryptographically
 random number (at least eight octets in length) MUST be used in this
 circumstance so that it is not easy to guess the Lease Identifier.

2.4.1. Random Lease Identifier

 The first octet of a Random Lease Identifier is the Lease Identifier
 type (0 to indicate Random Lease Identifier). After this come a
 sequence of octets, which SHOULD represent a long random number (at
 least 16 octets) from a decent random number generator.

 A Random Lease Identifier does not include any indication of its
 length. It is assumed that this may be determined by external means,
 such as a length field preceding the Lease Identifier.

 Lease ID
 Type Random Number
 +---------+-------------...
 | 0 |
 +---------+-------------...

2.4.2. Address-Specific Lease Identifier

 The first octet of an Address-Specific Lease Identifier is the Lease
 Identifier type (1 to indicate Address-Specific Lease Identifier).
 After this comes a two octet IANA-defined address family number
 (including those defined in [10]), an address from the specified
 address family, and a client-specific identifier (such as a sequence
 number or the current time).

 An Address-Specific Lease Identifier does not include any indication
 of its length. It is assumed that this may be determined by external
 means, such as a length field preceding the Lease Identifier.

Hanna, et al. Standards Track [Page 19]

RFC 2730 MADCAP December 1999

 Lease ID Address Family Address Client-specific
 Type Number Identifier
 +---------+---------+---------+-----...-----+-----...-----+
 | 1 | addrfamily | address | cli-spec id |
 +---------+---------+---------+-----...-----+-----...-----+

2.5. Associating Client and Server Messages

 Messages between clients and servers are associated with one another
 using the Lease Identifier and the xid field. As described in section
 2.1.4, the client MUST choose an xid so that it is unlikely that the
 same combination of xid, msgtype, and Lease Identifier will be used
 for two different messages within [XID-REUSE-INTERVAL] (even across
 multiple clients which do not communicate among themselves). The
 Lease Identifier option, msgtype, and xid field MUST be included in
 each message sent by the client or the server.

 The client MUST check the Lease Identifier option and xid field in
 each incoming message to ensure that they match the Lease Identifier
 and xid for an outstanding transaction. If not, the message MUST be
 ignored. The server MUST check the Lease Identifier option and xid
 field in each incoming message to establish the proper context for
 the message. If a server cannot process a message because it is
 invalid for its context, the server MUST generate and process an
 Invalid Request error, as described in section 2.6. A transaction
 can be an attempt to allocate a multicast address (consisting of
 DISCOVER, OFFER, REQUEST, ACK, and NAK messages), an attempt to renew
 a lease (consisting of RENEW, ACK, and NAK messages), an attempt to
 release a previously allocated multicast address (consisting of
 RELEASE, ACK, and NAK messages), or an attempt to acquire
 configuration parameters (consisting of GETINFO, ACK, and NAK
 messages).

2.6. Processing Errors

 If a MADCAP server encounters an error while processing a message,
 there are two different ways to process this error. If it is clear
 that the message is not a NAK, the server SHOULD respond with a NAK
 containing the appropriate Error option. However, the server MAY
 decide to completely ignore chronic offenders. If the message is a
 NAK or it is not clear whether the message is a NAK (for instance,
 the message is garbled or has an incorrect version number), the
 server SHOULD ignore the message. This avoids NAK loops.

 If a MADCAP client encounters an error while processing a message, it
 MUST ignore the message.

Hanna, et al. Standards Track [Page 20]

RFC 2730 MADCAP December 1999

2.7. Multicast Scopes

 RFC 2365 [3] provides for dividing the multicast address space into a
 number of administrative scopes. Routers should be configured so that
 each scope corresponds to a particular partition of the network into
 disjoint regions. Messages sent to a multicast address that falls
 within a certain administrative scope should only be delivered to
 hosts that have joined that multicast group *and* fall within the
 same region as the sender. For instance, packets sent to an address
 in the organization-local scope should only be delivered to hosts
 that have joined that group and fall within the same organization as
 the sender.

 Different sets of scopes may be in effect at different places in the
 network and at different times. Before attempting to allocate an
 address from an administrative scope (other than global or link-level
 scope, which are always in effect), a MADCAP client SHOULD determine
 that the scope is in effect at its location at this time. Several
 techniques that a MADCAP client may use to determine the set of
 administrative scopes in effect (the scope list) are: manual
 configuration or configuration via MADCAP (using the Multicast Scope
 List option).

 If a MADCAP client is unable to determine its scope list using one of
 these techniques, it MAY temporarily assume a scope list consisting
 of a single scope. If it is using IPv4, it SHOULD use IPv4 Local
 Scope (239.255.0.0/16), with a maximum TTL of 16. If it is using
 IPv6, it SHOULD use SCOP 3, with a maximum hop count of 16. Using
 this temporary scope list, it MAY attempt to contact a MADCAP server
 that can provide a scope list for it.

 When a MADCAP client requests an address with a DISCOVER or REQUEST
 message, it MUST specify the administrative scope from which the
 address should be allocated. This scope is indicated with the
 Multicast Scope option. Likewise, the server MUST include the
 Multicast Scope option in all OFFER messages and all ACK messages
 sent in response to REQUEST messages.

2.8. Multicast TTL

 Another way to limit propagation of multicast messages is by using
 TTL scoping. This technique has several disadvantages in comparison
 to administratively scoped multicast addresses (as described in [3]),
 but it is currently in widespread usage.

 With TTL scoping, areas of the network are designated as scopes.
 Routers on the edges of these areas are configured with TTL
 thresholds so that multicast packets are not forwarded unless their

Hanna, et al. Standards Track [Page 21]

RFC 2730 MADCAP December 1999

 remaining TTL exceeds this threshold. A packet which should be
 restricted to a given TTL scope should have an initial TTL less than
 that scope’s TTL threshold. Similar techniques may be used with IPv6,
 using the Hop Count field instead of the TTL field.

 MADCAP may be used in an environment where administrative scoping is
 not in use and TTL scoping is. Under these circumstances, a MADCAP
 server MAY return a scope list that includes scopes with TTLs less
 than 255. The MADCAP client MAY then allocate addresses from these
 scopes, but MUST NOT set the TTL field of any packet sent to such an
 address to a value greater than the maximum TTL indicated in the
 scope list. In such an environment, it is recommended that the MADCAP
 Server Multicast Addresses associated with the IPv4 Local Scope (or
 SCOP 3 for IPv6) be configured using TTL thresholds so that packets
 sent to these addresses with TTL of 16 are not sent outside an
 appropriate boundary. This will allow MADCAP clients to use their
 default behavior for finding MADCAP servers.

 In an environment where administrative scoping is in use, the maximum
 TTLs in the scope list SHOULD be 255. The admin scope zone boundary
 routers will prevent leakage of MADCAP packets beyond appropriate
 limits.

2.9. Locating MADCAP Servers

 There are several ways for a MADCAP client to locate a MADCAP server.
 For instance, the client may be configured with an IP address.

 The RECOMMENDED technique is for the client to send an GETINFO
 message to a MADCAP Server Multicast Address and wait for ACK
 responses. This technique is described in more detail in the next
 section.

2.10. MADCAP Server Multicast Address

 Each multicast scope has an associated MADCAP Server Multicast
 Address. This address has been reserved by the IANA as the address
 with a relative offset of -1 from the last address of a multicast
 scope.

 A MADCAP client looking for servers that can provide multicast
 allocation services MAY send an GETINFO message to a MADCAP Server
 Multicast Address. Any MADCAP servers listening to this address
 SHOULD respond with a unicast ACK message to the client if they wish
 to offer a response.

Hanna, et al. Standards Track [Page 22]

RFC 2730 MADCAP December 1999

 The MADCAP Server Multicast Address used by a client MAY be
 established by configuration. If a client has no such configuration,
 it SHOULD use the MADCAP Server Multicast Address associated with
 IPv4 Local Scope (or SCOP 3 for IPv6) with maximum TTL of 16, unless
 otherwise configured.

2.11. Going Beyond the Local Scope

 If a client receives no response to a message sent to a MADCAP Server
 Multicast Address (after retransmission), it MAY send the message to
 a larger scope and repeat this process as necessary. However, the
 client MUST NOT send a MADCAP message to the MADCAP Server Multicast
 Address associated with the global scope.

 This technique allows MADCAP servers to provide services for scopes
 in which they do not reside. However, this is a dangerous and
 complicated technique and is NOT RECOMMENDED at this time.
 Therefore, MADCAP clients SHOULD only send multicast messages to the
 MADCAP Server Multicast Address corresponding to the IPv4 Local Scope
 (or SCOP 3, if using IPv6), unless configured otherwise.

 MADCAP servers that wish to provide services for scopes in which they
 do not reside MUST make special efforts to ensure that their services
 meet clients’ needs for largely conflict-free allocation and accurate
 scope list information. In particular, coordinating with other
 servers that provide services for this scope may be difficult. Also,
 establishing which scope the client is in may be difficult. If a
 MADCAP server is not prepared to provide services for scopes in which
 it does not reside, it SHOULD ignore DISCOVER and REQUEST messages
 whose scope does not match or enclose the scope of the MADCAP Server
 Multicast Address on which the request was received. It SHOULD also
 ignore GETINFO messages that are not received on the MADCAP Server
 Multicast Address for IPv4 Local Scope.

2.12. Clock Skew

 The Current Time option is used to detect and handle clock skew
 between MADCAP clients and servers. This option MUST be included in
 any MADCAP message that includes an absolute time (such as the Start
 Time option). It MAY be included in any DISCOVER, OFFER, REQUEST,
 RENEW, or ACK message.

 Clock skew is a situation where two systems have clocks that are not
 synchronized. Many protocols (such as DHCP) ignore clock skew by
 using relative times. MADCAP could use a similar technique, but this
 leads to nasty situations due to the way multicast addresses are
 used.

Hanna, et al. Standards Track [Page 23]

RFC 2730 MADCAP December 1999

 For example, assume that at 1 PM UTC a client whose clock is one hour
 fast requests a lease for one hour starting in one hour. If we were
 using relative times for MADCAP, the server, whose clock is set
 correctly, would reserve a multicast address for 2 to 3 PM UTC and
 grant the request. If the client was the only one using the lease,
 everything would be OK. The client would start using the lease in one
 hour and continue for one hour. This would coincide with the time the
 server had reserved (although the client would think it was 3 to 4 PM
 UTC).

 However, multicast addresses are usually used by several parties at
 once. The client would probably use SAP (or some other mechanism for
 conveying SDP) to advertise a session using the multicast address
 just leased. SDP uses absolute times, since it may be sent via email,
 web, or other store-and-forward mechanisms. So the client would
 advertise the session as running from 3 to 4 PM UTC. Any clients
 whose clocks are set correctly would use the address during this
 interval. Since the server only reserved the address from 2 to 3 PM
 UTC, this might cause the address to be used for multiple sessions
 simultaneously.

 MADCAP cannot solve all clock skew problems. That is the domain of
 NTP [4]. However, it does attempt to detect substantial clock skew
 between MADCAP clients and servers so that this clock skew does not
 cause massive collisions in multicast address usage later on.

 The Current Time option contains the sender’s opinion of the current
 time in UTC at or about the time the message was assembled. Because
 of delays in transmission and processing, this value will rarely
 match the receiver’s opinion of the current time at the time the
 option is processed by the receiver. However, difference greater than
 a minute or two probably indicate clock skew between the sender and
 the receiver.

 MADCAP servers SHOULD expect and tolerate a small amount of clock
 skew with their clients by ensuring that multicast addresses are
 allocated for an extra period of time [EXTRA-ALLOCATION-TIME] on
 either side of the lease given to the client. However, large amounts
 of clock skew require special handling. The value of [EXTRA-
 ALLOCATION-TIME] MUST be a configurable parameter, since local
 circumstances may vary. The RECOMMENDED default is one hour.

 However, large amounts of clock skew will cause problems later when
 sessions are advertised. If a MADCAP server detects clock skew
 greater than [CLOCK-SKEW-ALLOWANCE], it MUST generate and process an
 Excessive Clock Skew error, as described in section 2.6. The server
 MAY also log a message. The value of [CLOCK-SKEW-ALLOWANCE] MUST be a
 configurable parameter, since local circumstances may vary. The

Hanna, et al. Standards Track [Page 24]

RFC 2730 MADCAP December 1999

 RECOMMENDED default is 30 minutes.

2.13. Optional Features

 Each MADCAP client or server MAY implement one or more optional
 features. Optional features of MADCAP are identified with a two
 octet feature code.

 A MADCAP client MAY request, require, or indicate support for an
 optional feature by including a Feature List option in a message. For
 more information about optional features, see the description of the
 Feature List option.

 Table 4 lists the feature codes defined at this time and sections
 2.13.1 and 2.13.2 describe how these features work.

 New MADCAP feature codes may only be defined by IETF Consensus, as
 described in section 5.

 Feature Code Feature Name
 ------------ ------------
 0 Server Mobility
 1 Retry After
 2 Shared Lease Identifier

 Table 4: MADCAP Feature Codes

2.13.1. Server Mobility

 The Server Mobility feature allows an address allocated on one MADCAP
 server to be renewed or released on a different MADCAP server. This
 requires communication and coordination among MADCAP servers. The
 primary benefits are immunity to the failure of a single MADCAP
 server and perhaps greater performance through load balancing.

 In order to take advantage of the Server Mobility feature, a MADCAP
 client must ensure that the feature is implemented by both the server
 that is used for the original allocation and the server that is used
 for the renewal or release. The best way to ensure this is to include
 the Server Mobility feature in the required list of a Feature List
 option in the REQUEST message used to allocate the address (and the
 DISCOVER message, if one is used). When the time comes to renew or
 release the address, the client SHOULD send a unicast RENEW or
 RELEASE message to the server from which it allocated the address.
 However, if this server is unavailable, the client MAY send the RENEW
 or RELEASE message to any other server that includes the Server
 Mobility feature in its list of supported features. The client can
 find such a server by (for instance) sending an GETINFO message with

Hanna, et al. Standards Track [Page 25]

RFC 2730 MADCAP December 1999

 an Option Request List option that includes the Feature List option
 code.

 If the MADCAP client does not want to require this feature when
 allocating addresses, it may include the feature in the requested
 list of a Feature List option and see if the server includes the
 feature in the required list of a Feature List option in the ACK
 message.

 Even if the Server Mobility feature is used, there is no guarantee
 that a server will be available to perform the renewal or release or
 that the renewal or release will succeed. Server connectivity may
 have failed, for instance.

2.13.2. Retry After

 The Retry After feature allows a MADCAP server to ask the MADCAP
 client to retry its request later, as may be required when allocating
 large numbers of addresses or allocating addresses for a long period
 of time.

 For instance, if a MADCAP client requests 1000 addresses,
 administrative approval may be required or allocation of more
 addresses from another MASC domain may be necessary. This may take
 several hours or several days. If the MADCAP client and server both
 support the Retry After feature, the MADCAP server can send back an
 ACK message with a Retry Time option indicating when the addresses
 may be ready. The client can retry its request after the Retry Time
 to get the addresses.

 If a MADCAP client includes the Retry After feature in the supported
 list of a Feature List option in a REQUEST message, a MADCAP server
 that supports the Retry After feature MAY decide to begin a lengthy
 allocation process. In this case, the MADCAP server will include an
 empty List of Address Ranges option in its ACK message, a Feature
 List option that includes the Retry After feature in the required
 list, and a Retry Time option with a time after which the client
 should retry the REQUEST.

 The client MUST NOT include the Retry After feature in the requested
 or required list of a Feature List option, since the decision about
 whether Retry After is desirable should be left to the MADCAP server.

Hanna, et al. Standards Track [Page 26]

RFC 2730 MADCAP December 1999

 At some later time (preferably after the time indicated in the Retry
 Time option), the client SHOULD send a REQUEST message with all the
 same options as the original REQUEST message (especially the Lease
 Identifier option), but with a new xid value. The server MAY return
 a normal ACK or NAK message at this point or it MAY continue the
 transaction to a later time by including an empty List of Address
 Ranges option in its ACK message, a Feature List option that includes
 the Retry After feature in the required list, and a Retry Time option
 with a later time after which the client should retry the REQUEST.

 At any point after receiving the initial ACK message with the Retry
 Time option, the client MAY terminate the allocation process and any
 accompanying lease by sending to the server performing the allocation
 (or another server if the Server Mobility feature is also in effect)
 a RELEASE message with the Lease Identifier included in the original
 REQUEST message.

 The Retry After feature may also be used when renewing a lease. In
 this case, the description above applies except that the client sends
 a RENEW message instead of a REQUEST message.

 If a client sends a RENEW message with a Lease Identifier that
 matches a lease which is currently undergoing allocation with the
 Retry After feature in response to a REQUEST message, the server MUST
 generate and process an Invalid Request error in the manner described
 in section 2.6. Also, if a client sends a RENEW message with a Lease
 Identifier that matches a lease which is currently undergoing
 allocation with the Retry After feature in response to a RENEW
 message, but the options supplied with the two RENEW messages do not
 match, the server MUST generate and process an Invalid Request error
 in the manner described in section 2.6.

 Note that the Retry After feature may complicate the application API.
 For this reason, a MADCAP client may request the Retry After feature
 for some messages and not for others. This should not cause problems
 for a robust MADCAP server. In general, servers should not expect
 consistent behavior from clients except as required by this
 specification. This also applies to clients’ expectations.

2.13.3. Shared Lease Identifier

 For conferencing applications, it may be desirable to allow
 conference participants to modify a lease used for the conference.
 The Shared Lease Identifier feature code is used to support this
 requirement.

Hanna, et al. Standards Track [Page 27]

RFC 2730 MADCAP December 1999

 If this feature code was requested by the client and implemented by
 the server when the lease was allocated, the server SHOULD disable
 any authentication requirements pertaining to this lease, allowing
 any client that knows the Lease Identifier to modify the lease.

 A MADCAP client wishing to use the Shared Lease Identifier feature
 should include this feature in the requested or required lists of the
 Feature List option of a REQUEST message when first allocating the
 lease. If the feature was required, the server SHOULD try to
 implement it for this request and include the feature in the required
 list of the response. If the server can not implement the feature for
 this request, it MUST generate and process a Required Feature Not
 Supported error in the manner described in section 2.6. If the
 feature was requested, the server SHOULD try to implement the feature
 and include the feature in the required list of the response.
 However, if the server cannot implement the feature, it may simply
 skip it.

 Subsequent requests pertaining to a lease for which the Shared Lease
 Identifier feature was implemented at allocation time MAY include the
 Shared Lease Identifier feature in the requested or required lists of
 the Feature List option. In this case, the server SHOULD try to
 implement the feature by disabling any authentication requirements
 pertaining to this lease, allowing any client that knows the Lease
 Identifier to modify the lease, and including the feature in the
 required list of the response. If the server cannot implement the
 feature, it SHOULD skip it if the feature was requested. But if the
 feature was required and the server cannot implement it, the server
 MUST generate and process a Required Feature Not Supported error in
 the manner described in section 2.6.

3. MADCAP Options

 As described earlier, each MADCAP message includes an options field
 consisting of a list of tagged parameters that are called "options".
 All options consist of a two octet option code and a two octet option
 length, followed by the number of octets specified by the option
 length.

 This section defines a set of option codes for use in MADCAP
 messages. New options may be defined using the process defined in
 section 5. The options are listed in numerical order.

Hanna, et al. Standards Track [Page 28]

RFC 2730 MADCAP December 1999

 Table 5 summarizes which options are allowed with each message type.

 Option GETINFO ACK (in response to GETINFO)
 ------ ------ ---------------------------
 Lease Time MUST NOT MUST NOT
 Server Identifier MUST NOT MUST
 Lease Identifier MUST MUST
 Multicast Scope MUST NOT MUST NOT
 Option Request List MUST MUST NOT
 Start Time MUST NOT MUST NOT
 Number of Addresses
 Requested MUST NOT MUST NOT
 Requested Language MAY MUST NOT
 Multicast Scope List MUST NOT MAY
 List of Address Ranges MUST NOT MUST NOT
 Current Time MUST NOT MAY
 Feature List MAY MAY
 Retry Time MUST NOT MUST NOT
 Minimum Lease Time MUST NOT MUST NOT
 Maximum Start Time MUST NOT MUST NOT
 Error MUST NOT MUST NOT

 Option DISCOVER OFFER
 ------ -------- -----
 Lease Time MAY MUST
 Server Identifier MUST NOT MUST
 Lease Identifier MUST MUST
 Multicast Scope MUST MUST
 Option Request List MUST NOT MUST NOT
 Start Time MAY MAY
 Number of Addresses
 Requested MAY MUST NOT
 Requested Language MUST NOT MUST NOT
 Multicast Scope List MUST NOT MUST NOT
 List of Address Ranges MAY MAY
 Current Time MAY MAY
 Feature List MAY MAY
 Retry Time MUST NOT MUST NOT
 Minimum Lease Time MAY MUST NOT
 Maximum Start Time MAY MUST NOT
 Error MUST NOT MUST NOT

Hanna, et al. Standards Track [Page 29]

RFC 2730 MADCAP December 1999

 Option REQUEST ACK (in response to REQUEST)
 ------ ------- ----------------------------
 Lease Time MAY MUST
 Server Identifier MUST (if MUST
 multicast)
 Lease Identifier MUST MUST
 Multicast Scope MUST MUST
 Option Request List MUST NOT MUST NOT
 Start Time MAY MAY
 Number of Addresses
 Requested MAY MUST NOT
 Requested Language MUST NOT MUST NOT
 Multicast Scope List MUST NOT MUST NOT
 List of Address Ranges MAY MUST
 Current Time MAY MAY
 Feature List MAY MAY
 Retry Time MUST NOT MAY
 Minimum Lease Time MAY MUST NOT
 Maximum Start Time MAY MUST NOT
 Error MUST NOT MUST NOT

 Option RENEW ACK (in response to RENEW)
 ------ ----- --------------------------
 Lease Time MAY MUST
 Server Identifier MUST NOT MUST
 Lease Identifier MUST MUST
 Multicast Scope MUST NOT MUST
 Option Request List MUST NOT MUST NOT
 Start Time MAY MAY
 Number of Addresses
 Requested MUST NOT MUST NOT
 Requested Language MUST NOT MUST NOT
 Multicast Scope List MUST NOT MUST NOT
 List of Address Ranges MUST NOT MUST
 Current Time MAY MAY
 Feature List MAY MAY
 Retry Time MUST NOT MAY
 Minimum Lease Time MAY MUST NOT
 Maximum Start Time MAY MUST NOT
 Error MUST NOT MUST NOT

Hanna, et al. Standards Track [Page 30]

RFC 2730 MADCAP December 1999

 Option RELEASE ACK (in response to RELEASE)
 ------ ------- ----------------------------
 Lease Time MUST NOT MUST NOT
 Server Identifier MUST NOT MUST
 Lease Identifier MUST MUST
 Multicast Scope MUST NOT MUST NOT
 Option Request List MUST NOT MUST NOT
 Start Time MUST NOT MUST NOT
 Number of Addresses
 Requested MUST NOT MUST NOT
 Requested Language MUST NOT MUST NOT
 Multicast Scope List MUST NOT MUST NOT
 List of Address Ranges MUST NOT MUST NOT
 Current Time MUST NOT MUST NOT
 Feature List MAY MAY
 Retry Time MUST NOT MUST NOT
 Minimum Lease Time MUST NOT MUST NOT
 Maximum Start Time MUST NOT MUST NOT
 Error MUST NOT MUST NOT

 Option NAK
 ------ ---
 Lease Time MUST NOT
 Server Identifier MUST
 Lease Identifier MUST
 Multicast Scope MUST NOT
 Option Request List MUST NOT
 Start Time MUST NOT
 Number of Addresses
 Requested MUST NOT
 Requested Language MUST NOT
 Multicast Scope List MUST NOT
 List of Address Ranges MUST NOT
 Current Time MUST NOT
 Feature List MAY
 Retry Time MUST NOT
 Minimum Lease Time MUST NOT
 Maximum Start Time MUST NOT
 Error MUST

 Table 5: Options allowed in MADCAP messages

3.1. End

 The End option marks the end of valid information in the options
 field. This option MUST be included at the end of the options field
 in each MADCAP message.

Hanna, et al. Standards Track [Page 31]

RFC 2730 MADCAP December 1999

 The code for this option is 0, and its length is 0.

 Code Len
 +-----+-----+-----+-----+
 | 0 | 0 |
 +-----+-----+-----+-----+

3.2. Lease Time

 This option is used in a client request (DISCOVER, REQUEST, or RENEW)
 to allow the client to request a lease time for the multicast
 address. In a server reply (OFFER or ACK), a MADCAP server uses this
 option to specify the lease time it is willing to offer.

 The time is in units of seconds, and is specified as a 32-bit
 unsigned integer.

 The code for this option is 1, and its length is 4.

 Code Len Lease Time
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | 1 | 4 | t1 | t2 | t3 | t4 |
 +-----+-----+-----+-----+-----+-----+-----+-----+

 3.3. Server Identifier

 This option contains the IP address of a MADCAP server. A two octet
 address family number (as defined by IANA, including those defined in
 [10]) is stored first, followed by the address. The address family
 for this address is not determined by the addrfamily field in the
 fixed header so that addresses from one family may be allocated while
 communicating with a server via addresses of another family.

 All messages sent by a MADCAP server MUST include a Server Identifier
 option with the IP address of the server sending the message.

 MADCAP clients MUST include a Server Identifier option in multicast
 REQUEST messages in order to indicate which OFFER message has been
 accepted.

 The code for this option is 2, and its minimum length is 3.

 Code Len Address Family Address
 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 | 2 | n | family | a1 | ... |
 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+

Hanna, et al. Standards Track [Page 32]

RFC 2730 MADCAP December 1999

3.4. Lease Identifier

 This option is used by MADCAP clients to specify a unique lease
 identifier. For more information about this option and how it is
 used, see section 2.4.

 The code for this option is 3, and its minimum length is 1.

 Code Len Lease Identifier
 +-----+-----+-----+-----+-----+-----+---
 | 3 | n | i1 | i2 | ...
 +-----+-----+-----+-----+-----+-----+---

3.5. Multicast Scope

 The multicast scope option is used by the client to indicate the
 requested multicast scope in a DISCOVER or REQUEST message. It is
 also used by the MADCAP server to indicate the scope of an assigned
 address.

 The client may obtain the scope list through the Multicast Scope List
 option or using some other means. The Scope ID is the first multicast
 address in the scope. The address family of the Scope ID is
 determined by the addrfamily field in the fixed header.

 The code for this option is 4, and its minimum length is 1.

 Code Len Scope ID
 +-----+-----+-----+-----+-----+-----
 | 4 | n | i1 | ...
 +-----+-----+-----+-----+-----+-----

3.6. Option Request List

 This option is used by a MADCAP client in an GETINFO message to
 request that certain options be included in the server’s ACK
 response. The server SHOULD try to include the specified options in
 its response, but is not required to do so.

 The format of this option is a list of option codes.

 The code for this option is 5 and the minimum length is 2.

 Code Len Requested Options
 +-----+-----+-----+-----+-----+-----+---...
 | 5 | n | Option1 |
 +-----+-----+-----+-----+-----+-----+---...

Hanna, et al. Standards Track [Page 33]

RFC 2730 MADCAP December 1999

3.7. Start Time

 The Start Time option specifies the starting time for a multicast
 address lease.

 A client may include this option in a DISCOVER, RENEW, or REQUEST
 message to request a multicast address for use at a future time. A
 server may include this option in an OFFER message or in an ACK in
 response to REQUEST or RENEW message to indicate that a lease has
 been granted which starts at a future time.

 If the Start Time option is present, the IP Address Lease Time option
 specifies the duration of the lease beginning at the Start Time
 option value.

 If the Start Time option is present, the Current Time option MUST
 also be present, as described in section 2.12.

 The time value is an unsigned 32 bit integer in network byte order
 giving the number of seconds since 00:00 UTC, 1st January 1970. This
 can be converted to an NTP timestamp by adding decimal 2208988800.
 This time format will not wrap until the year 2106.

 The code for this option is 6 and the length is 4.

 Code Len Time
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | 6 | 4 | t1 | t2 | t3 | t4 |
 +-----+-----+-----+-----+-----+-----+-----+-----+

3.8. Number of Addresses Requested

 This option specifies the minimum and desired number of addresses
 requested by the client. It is only used in DISCOVER and REQUEST
 messages and is only sent by the client.

 The minimum and desired number of addresses requested are unsigned 16
 bit integers in network byte order. The minimum MUST be less than or
 equal to the desired number. If a message is received where this is
 not the case, the MADCAP server MUST generate and process an Invalid
 Request error in the manner described in section 2.6.

 The client MAY obtain more than one address either by repeating the
 protocol for every address or by requesting several addresses at the
 same time via this option. When the client is requesting only one
 address, this option SHOULD NOT be included. A MADCAP server

Hanna, et al. Standards Track [Page 34]

RFC 2730 MADCAP December 1999

 receiving a DISCOVER or REQUEST packet including this option MUST
 include between the minimum and desired number of addresses in any
 OFFER or ACK response.

 The code for this option is 7 and the length is 4.

 Code Len Minimum Desired
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | 7 | 4 | min | desired |
 +-----+-----+-----+-----+-----+-----+-----+-----+

3.9. Requested Language

 This option specifies the language in which the MADCAP client would
 like strings such as zone names to be returned. It is only included
 in an GETINFO message sent by the client. It is an RFC 1766 [6]
 language tag. The proper way to handle this tag with respect to zone
 names is discussed further in the definition of the Multicast Scope
 List option.

 The code for this option is 8 and the minimum length is 0.

 Code Len Language Tag
 +-----+-----+-----+-----+-----+-...-+-----+
 | 8 | n | L1 | | Ln |
 +-----+-----+-----+-----+-----+-...-+-----+

3.10. Multicast Scope List

 This option is sent by the server in an ACK message in response to an
 GETINFO message sent by the client.

 If the client did not include a Requested Language option in its
 GETINFO message, the MADCAP server SHOULD return all zone names for
 each zone. If the client included a Requested Language option in its
 GETINFO message, the MADCAP server MUST return no more than one zone
 name for each zone. For each zone, the MADCAP server SHOULD first
 look for a zone name that matches the requested language tag (using a
 case-insensitive ASCII comparison). If any names match, one of them
 should be returned. Otherwise, the MADCAP server SHOULD choose
 another zone name to return (if any are defined). It SHOULD give
 preference to zone names that are marked to be used if no name is
 available in a desired language.

Hanna, et al. Standards Track [Page 35]

RFC 2730 MADCAP December 1999

 The code for this option is 9 and the minimum length is 0.

 The format of the multicast scope list option is:

 Code Len Count Scope List
 +-----+-----+-----+-----+-----+-----+-...-+-----+
 | 9 | p | m | L1 | | Lm |
 +-----+-----+-----+-----+-----+-----+-...-+-----+

 The scope list is a list of m tuples, where each tuple is of the
 form:

 Scope ID Last Address TTL Name Encoded Name List
 Count
 +---+--...--+---+---+--...--+---+-----+-----+-----+-...-+-----+
 | ... ID ... | ... Last ... | T | n | EN1 | | ENn |
 +---+--...--+---+---+--...--+---+-----+-----+-----+-...-+-----+

 where Scope ID is the first multicast address in the scope, Last
 Address is the last multicast address in the scope, TTL is the
 multicast TTL value for the multicast addresses of the scope, and
 Name Count is the number of encoded names for this zone (which may be
 zero). The address family of the Scope ID and Last Address is
 determined by the addrfamily field in the fixed header. Note that a
 particular MADCAP server may be allocating addresses out of some
 subset of the scope. For instance, the addresses in the scope may be
 divided among several servers in some way.

 Each encoded name is of the form

 Name Lang Language Tag Name Name
 Flags Length Length
 +-----+-----+-----+-...-+-----+-----+-----+-...-+-----+
 | F | q | L1 | | Lq | r | N1 | | Nr |
 +-----+-----+-----+-...-+-----+-----+-----+-...-+-----+

 where Name Flags is a flags field with flags defined below, Lang
 Length is the length of the Language Tag in octets (which MUST NOT be
 zero), Language Tag is a language tag indicating the language of the
 zone name (as described in [6]), Name Length is the length of the
 Name in octets (which MUST NOT be zero), and Name is a UTF-8 [5]
 string indicating the name given to the scope zone.

 The high bit of the Name Flags field is set if the following name
 should be used if no name is available in a desired language.
 Otherwise, this bit is cleared. All remaining bits in the octet
 SHOULD be set to zero and MUST be ignored.

Hanna, et al. Standards Track [Page 36]

RFC 2730 MADCAP December 1999

 The Scope IDs of entries in the list MUST be unique and the scopes
 SHOULD be listed from smallest (topologically speaking) to largest.
 This makes it easier to display a consistent user interface, with
 scopes usually keeping the same order. However, scopes may not be
 strictly nested. In this circumstance, there is no strict ordering
 from smallest to largest and the server must use another technique
 for ordering the scope list.

 Example:

 There are two scopes supported by the multicast address allocation
 server: Inside abcd.com with addresses 239.192.0.0-239.195.255.255,
 and world with addresses 224.0.1.0-238.255.255.255. Then this option
 will be given as:

 Code Len Count
 +-----+-----+-----+-----+-----+...
 | 9 | 51 | 2 |
 +-----+-----+-----+-----+-----+...

 Scope ID Last Address TTL Name Name Lang Language
 Count Flags Length Tag
 +---+---+---+---+---+---+---+---+---+-----+-----+------+-...-+...
 |239|192| 0 | 0 |239|195|255|255|10 | 1 | 128 | 2 | en |
 +---+---+---+---+---+---+---+---+---+-----+-----+------+-...-+...

 Name
 Length Name
 +------+--+--+-...-+--+--+...
 | 15 | Inside abcd.com |
 +------+--+--+-...-+--+--+...

 Scope ID Last Address TTL Name Name Lang Language
 Count Flags Length Tag
 +---+---+---+---+---+---+---+---+---+-----+-----+------+-...-+...
 |224| 0 | 1 | 0 |238|255|255|255|16 | 1 | 128 | 2 | en |
 +---+---+---+---+---+---+---+---+---+-----+-----+------+-...-+...

 Name
 Length Name
 +------+--...--+
 | 5 | world |
 +------+--...--+

Hanna, et al. Standards Track [Page 37]

RFC 2730 MADCAP December 1999

3.11. List of Address Ranges

 This option is used by the server to provide the list of all the
 address ranges allocated to the client.

 This option is also used by the client when requesting a lease for a
 specific set of addresses. This feature should be needed only rarely,
 such as when a lease is accidentally allowed to expire and it needs
 to be reallocated.

 The address family of the addresses is determined by the addrfamily
 field.

 The code for this option is 10 and the minimum length is 0.

 Code Len Address Range List
 +-----+-----+-----+-----+-----+-----+-...-+-----+
 | 10 | n | L1 | L2 | | Ln |
 +-----+-----+-----+-----+-----+-----+-...-+-----+

 where the Address Range List is of the following format.

 StartAddress1 BlockSize1 StartAddress2 BlockSize2 ...
 +---+---+---+---+---+---+---+---+---+---+---+---+--...--+
 | ... S1 ... |B11|B12| ... S2 ... |B21|B22| |
 +---+---+---+---+---+---+---+---+---+---+---+---+--...--+

3.12. Current Time

 This option is used to express what the sender thinks the current
 time is. This is useful for detecting clock skew. This option MUST be
 included if the Start Time or Maximum Start Time options are used, as
 described in section 2.12.

 The time value is an unsigned 32 bit integer in network byte order
 giving the number of seconds since 00:00 UTC, 1st January 1970. This
 can be converted to an NTP [4] timestamp by adding decimal
 2208988800. This time format will not wrap until the year 2106.

 The code for this option is 11 and the length is 4.

 Code Len Time
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | 11 | 4 | t1 | t2 | t3 | t4 |
 +-----+-----+-----+-----+-----+-----+-----+-----+

Hanna, et al. Standards Track [Page 38]

RFC 2730 MADCAP December 1999

3.13. Feature List

 This option lists optional MADCAP features supported, requested, or
 required, by the sender. This option MAY be included in any message
 sent by a MADCAP server or client.

 Optional features of MADCAP are identified with a two octet feature
 code. New MADCAP feature codes may only be defined by IETF
 Consensus, as described in section 5.

 The Feature List option consists of three separate lists: supported
 features, requested features, and required features. Each list
 consists of an unordered list of feature codes. The supported list is
 used by MADCAP clients or servers to indicate the features that the
 sender supports. The requested and required lists are used by MADCAP
 clients to indicate which features are requested of or required from
 a MADCAP server. The required list is used by MADCAP servers to
 indicate which features were implemented by the MADCAP server in
 processing this message. Messages sent by MADCAP servers MUST NOT
 include any feature codes in the requested list.

 If a MADCAP client includes the Feature List option in a message, it
 MAY include features in any of the lists: supported, requested, and
 required. If a MADCAP server receives a message containing the
 Feature List option and it does not support all of the features in
 the required list, it MUST generate and process a Required Feature
 Not Supported error in the manner described in section 2.6. If the
 server supports all of the features in the required list, it MUST
 implement them as appropriate for this message. It SHOULD try to
 implement the features in the requested list and it MAY implement any
 of the features in the supported list. If an optional feature (such
 as Retry After) is not included in any part of the Feature List
 option included in the client’s message (or if the client does not
 include a Feature List option in its message), the server MUST NOT
 use that feature in its response.

 If a MADCAP server does respond to a client’s message that includes a
 Feature List option, the server MUST include a Feature List option
 with a supported features list that lists the features that it
 supports, a required features list that lists the features that it
 implemented in responding to this message (which must be included in
 the supported features list of the client’s Feature List option), and
 an empty requested features list.

Hanna, et al. Standards Track [Page 39]

RFC 2730 MADCAP December 1999

 The code for this option is 12 and the minimum length is 6.

 Code Len Supported Requested Required
 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 | 12 | n | FL1 | FL2 | FL3 |
 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+

 where each of the Feature Lists is of the following format:

 Feature Feature Feature
 Count Code 1 Code m
 +-----+-----+-----+-----+-...-+-----+-----+
 | m | FC1 | | FCm |
 +-----+-----+-----+-----+-...-+-----+-----+

3.14. Retry Time

 The Retry Time option specifies the time at which a client should
 retry a REQUEST or RENEW message when using the Retry After feature.

 This option should only be sent by a MADCAP server in an ACK when
 responding to a REQUEST or RENEW message that includes the Retry
 After feature in the supported, requested, or required list. For more
 discussion of Retry After, see section 2.13.2.

 If the Retry Time option is present, the Current Time option MUST
 also be present.

 The time value is an unsigned 32 bit integer in network byte order
 giving the number of seconds since 00:00 UTC, 1st January 1970. This
 can be converted to an NTP timestamp by adding decimal 2208988800.
 This time format will not wrap until the year 2106.

 The code for this option is 13 and the length is 4.

 Code Len Time
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | 13 | 4 | t1 | t2 | t3 | t4 |
 +-----+-----+-----+-----+-----+-----+-----+-----+

3.15. Minimum Lease Time

 This option is used in a client request (DISCOVER, REQUEST, or RENEW)
 to allow the client to specify a minimum lease time for the multicast
 address. If a server cannot meet this minimum lease time, it MUST
 generate and process a Valid Request Could Not Be Completed error in
 the manner described in section 2.6.

Hanna, et al. Standards Track [Page 40]

RFC 2730 MADCAP December 1999

 The time is in units of seconds, and is specified as a 32-bit
 unsigned integer.

 The code for this option is 14, and its length is 4.

 Code Len Lease Time
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | 14 | 4 | t1 | t2 | t3 | t4 |
 +-----+-----+-----+-----+-----+-----+-----+-----+

3.16. Maximum Start Time

 The Maximum Start Time option specifies the latest starting time that
 the client is willing to accept for a multicast address lease.

 A client may include this option in a DISCOVER, RENEW, or REQUEST
 message to specify that it does not want to receive a lease with a
 starting time later than the specified value. If a server cannot meet
 this maximum start time, it MUST generate and process a Valid Request
 Could Not Be Completed error in the manner described in section 2.6.

 If the Maximum Start Time option is present, the Current Time option
 MUST also be present, as described in section 2.12.

 The time value is an unsigned 32 bit integer in network byte order
 giving the number of seconds since 00:00 UTC, 1st January 1970. This
 can be converted to an NTP timestamp by adding decimal 2208988800.
 This time format will not wrap until the year 2106.

 The code for this option is 15 and the length is 4.

 Code Len Time
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | 15 | 4 | t1 | t2 | t3 | t4 |
 +-----+-----+-----+-----+-----+-----+-----+-----+

3.17. Error

 A MADCAP server includes this option in a NAK message to indicate why
 the request failed. A MADCAP server MUST include an Error option in
 each NAK message.

 The first two octets of an Error option contain a MADCAP error code.
 Several MADCAP error codes are defined later in this section. New
 MADCAP error codes may only be defined by IETF Consensus, as
 described in section 5.

Hanna, et al. Standards Track [Page 41]

RFC 2730 MADCAP December 1999

 Any remaining octets in the Error option contain extra data about the
 error. The format of this data depends on the error code. The
 definition of a MADCAP error code must include a definition of the
 extra data to be included with that error code.

 A client that receives a NAK message containing an Error option MAY
 log or display a message indicating the error code and extra data
 received. The client MUST NOT retransmit a message once a NAK
 response to that message has been received. The client MAY adjust the
 message to correct the error and send the corrected message or send a
 message to a different server.

 The code for this option is 16, and the minimum length is 2.

 Code Len Error Code Extra Data
 +-----+-----+-----+-----+-----+-----+-----+-----+ ...
 | 16 | n | ecode | d1 d2
 +-----+-----+-----+-----+-----+-----+-----+-----+ ...

3.17.1. Valid Request Could Not Be Completed

 MADCAP error code 0 indicates that the request was valid, but could
 not be completed with the available addresses and the current
 configuration. The extra data is a two octet option code indicating
 which option caused the problem. A value of 0xFFFF indicates that the
 problem was not with a specific option.

3.17.2. Invalid Request

 MADCAP error code 1 indicates that the request was malformed or
 invalid in some other manner. The extra data is a two octet option
 code indicating which option caused the problem. A value of 0xFFFF
 indicates that the problem was not with a specific option.

3.17.3. Excessive Clock Skew

 MADCAP error code 2 indicates excessive clock skew (see section
 2.12). The extra data consists of a four octet time value
 representing the server’s idea of the current time, an unsigned 32
 bit integer in network byte order giving the number of seconds since
 00:00 UTC, 1st January 1970. This can be converted to an NTP
 timestamp by adding decimal 2208988800. This time format will not
 wrap until the year 2106.

Hanna, et al. Standards Track [Page 42]

RFC 2730 MADCAP December 1999

3.17.4. Lease Identifier Not Recognized

 MADCAP error code 3 indicates that the Lease Identifier was not
 recognized (usually in response to a RENEW or RELEASE message). There
 is no extra data.

3.17.5. Required Feature Not Supported

 MADCAP error code 4 indicates that at least one feature included in
 the required list of the Feature List option is not supported. The
 extra data contains a list of the feature codes in the required list
 that are not supported.

3.17.6. Experimental Use

 MADCAP error codes 1024-2047 are reserved for experimental use. The
 format of the extra data included with these error codes is not
 defined.

4. Security Considerations

 MADCAP has relatively basic security requirements. At present there
 is no way of enforcing authorized use of multicast addresses in the
 multicast routing/management protocols. Therefore, it is not
 possible to identify unauthorized use of multicast address by an
 adversary. Moreover, a multicast address allocated to a user/system
 can be used by other systems without violating terms of the multicast
 address allocation. For example, a system may reserve an address to
 be used for a work group session where each and every member of the
 work group is allowed to transmit packets using the allocated group
 address. In other words, the multicast address allocation protocol
 does not dictate how the address should be used, it only dictates the
 time period for which it can be used and who gets to release it or
 renew it. When an address is allocated to a system/user, it basically
 means that no other user/system (most likely) will be allocated that
 address for the time period, without any restrictions on its use.

 To protect against rogue MADCAP servers (mis-configured servers and
 intentional), clients in certain situations would like to
 authenticate the server. Similarly, for auditing or book-keeping
 purposes, the server may want to authenticate clients. Moreover, in
 some cases, the server may have certain policies in place to restrict
 the number of addresses that are allocated to a system or a user.
 This feature is of much value when a well behaved but naive user or
 client requests a large number of addresses, and therefore,
 inadvertently impacts other users or systems. Therefore, an
 administrator may want to exert a limited amount of control based on
 the client identification. The client identification could be based

Hanna, et al. Standards Track [Page 43]

RFC 2730 MADCAP December 1999

 on the system or user identity. In most practical situations, system
 identification will suffice, however, particularly in case of multi-
 user systems, at times, user identification will play an important
 role. Therefore, authentication capabilities based on user
 identification may be desirable. As usual, data integrity is a strong
 requirement and if not protected, can lead to many problems including
 denial of service attacks.

 In the case of MADCAP, confidentiality is not a strong requirement.
 In most of the cases, at least when a multicast address is in use, an
 adversary will be able to determine information that was contained in
 the MADCAP messages. In some cases, the users/systems may want to
 protect information in the MADCAP messages so that an adversary is
 not able to determine relevant information in advance and thus, plan
 an attack in advance. For example, if an adversary knows in advance
 (based on MADCAP messages) that a particular user has requested a
 large number of address for certain time period and scope, he may be
 able to guess the purpose behind such request and target an attack.
 When the Shared Lease Identifier feature is used, preserving the
 confidentiality of MADCAP messages becomes more important. Also,
 there may be features added to the protocol in the future that may
 have stronger confidentiality requirements.

 The IPSEC protocol [8] meets client/server identification and
 integrity protection requirements stated above, requires no
 modification to the MADCAP protocol, and leverages extensive work in
 IETF and industry. Therefore, when security is a strong requirement,
 IPSEC SHOULD be used for protecting all the unicast messages of
 MADCAP protocol. When IPSEC based security is in use, all the
 multicast packets except GETINFO MUST be dropped by the MADCAP
 server. The prevalent implementations of IPSEC support client
 identification in form of system identification and do not support
 user identification. However, when desired, IPSEC with appropriate
 API’s may be required to support user identification.

5. IANA Considerations

 This document defines several number spaces (MADCAP options, MADCAP
 message types, MADCAP Lease Identifier types, MADCAP features, and
 MADCAP error codes). For all of these number spaces, certain values
 are defined in this specification. New values may only be defined by
 IETF Consensus, as described in [7]. Basically, this means that they
 are defined by RFCs approved by the IESG.

Hanna, et al. Standards Track [Page 44]

RFC 2730 MADCAP December 1999

6. Acknowledgments

 The authors would like to thank Rajeev Byrisetty, Steve Deering,
 Peter Ford, Mark Handley, Van Jacobson, David Oran, Thomas Pfenning,
 Dave Thaler, Ramesh Vyaghrapuri and the participants of the IETF for
 their assistance with this protocol.

 Much of this document is based on [1] and [2]. The authors of this
 document would like to express their gratitude to the authors of
 these previous works. Any errors in this document are solely the
 fault of the authors of this document.

7. References

 [1] Droms, R., "Dynamic Host Configuration Protocol", RFC 2131,
 March 1997.

 [2] Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor
 Extensions", RFC 2132, March 1997.

 [3] Meyer, D., "Administratively Scoped IP Multicast", BCP 23, RFC
 2365, July 1998.

 [4] Mills, D., "Network Time Protocol (Version 3) Specification,
 Implementation and Analysis", RFC 1305, March 1992.

 [5] Yergeau, F., "UTF-8, a transformation format of ISO 10646", RFC
 2279, January 1998.

 [6] Alvestrand, H., "Tags for the Identification of Languages", RFC
 1766, March 1995.

 [7] Alvestrand, H. and T. Narten, "Guidelines for Writing an IANA
 Considerations Section in RFCs", BCP 26, RFC 2434, October 1998.

 [8] Atkinson, R. and S. Kent, "Security Architecture for the
 Internet Protocol", RFC 2401, November 1998.

 [9] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [10] Reynolds, J. and J. Postel, "Assigned Numbers", STD 2, RFC 1700,
 October 1994.

 [11] Deering, S., "Host Extensions for IP Multicasting", STD 5, RFC
 1112, August 1989.

Hanna, et al. Standards Track [Page 45]

RFC 2730 MADCAP December 1999

 [12] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6)
 Specification", RFC 2460, December 1998.

 [13] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 2373, July 1998.

 [14] Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobson,
 "RTP: A Transport Protocol for Real-Time Applications", RFC
 1889, January 1996.

8. Authors’ Addresses

 Stephen R. Hanna
 Sun Microsystems, Inc.
 One Network Drive
 Burlington, MA 01803

 Phone: +1.781.442.0166
 EMail: steve.hanna@sun.com

 Baiju V. Patel
 Intel Corp.
 Mail Stop: AG2-201
 5200 NE Elam Young Parkway
 Hillsboro, OR 97124

 Phone: 503 696 8192
 EMail: baiju.v.patel@intel.com

 Munil Shah
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052

 Phone: 425 703 3924
 EMail: munils@microsoft.com

Hanna, et al. Standards Track [Page 46]

RFC 2730 MADCAP December 1999

APPENDIX A: Examples

 This appendix includes several examples of typical MADCAP protocol
 exchanges.

1. Multicast Scope List Discovery

 In this example, a MADCAP client wants to determine the scope list in
 effect. The client is using IPv4, so it starts by multicasting an
 GETINFO packet to the MADCAP Server Multicast Address corresponding
 to IPv4 Local Scope. This packet includes the Lease Identifier
 option, an Option Request List including the Multicast Scope List
 option code, and a Requested Language option containing the string
 "en", since the client is configured to prefer the English language.

 Two MADCAP servers respond by sending ACK messages. These ACK
 messages include the Lease Identifier option and xid supplied by the
 client, the server’s Server Identifier, and the Multicast Scope List
 with one name per scope (the one that most closely matches the
 language tag "en").

 The following figure illustrates this exchange.

 Server Client Server
 v v v
 | | |
 | | |
 | _____________/|_____________ |
 |/ GETINFO | GETINFO \|
 | | |
 | | |
 |\ | ____________/|
 | _________ | / ACK |
 | ACK \ |/ |
 | \ | |
 | | |
 v v v

 Figure 2: Timeline diagram of messages exchanged
 in Multicast Scope List Discovery example

2. Multicast Discovery and Address Allocation

 In this example, the MADCAP client wants to allocate a multicast
 address from the global scope for use during the next two hours.

Hanna, et al. Standards Track [Page 47]

RFC 2730 MADCAP December 1999

 The client begins by multicasting a DISCOVER packet to the MADCAP
 Server Multicast Address associated with IPv4 Local Scope. This
 packet includes the Lease Time, Lease Identifier, and Multicast Scope
 options.

 Any servers that receive the DISCOVER packet and can satisfy this
 request temporarily reserve an address for the client and unicast an
 OFFER packet to the client. These packets contain the Lease Time,
 Server Identifier, Lease Identifier, and Multicast Scope options.

 After an appropriate delay, the client multicasts a REQUEST packet to
 the MADCAP Server Multicast Address. This packet contains all of the
 options included in the DISCOVER packet, but also includes the Server
 Identifier option, indicating which server it has selected for the
 request.

 The server whose Server Identifier matches the one specified by the
 client responds with an ACK packet containing the options included in
 the OFFER packet, as well as a List of Address Ranges option listing
 the address allocated. All the other servers that had sent OFFER
 packets stop reserving an address for the client and forget about the
 whole exchange.

 The client now has a two hour "lease" on the multicast address.

 If the client had not received an ACK from the server, it would have
 retransmitted its REQUEST packet for a while. If it still received no
 response, it would start over with a new DISCOVER message.

Hanna, et al. Standards Track [Page 48]

RFC 2730 MADCAP December 1999

 The following figure illustrates this exchange.

 Server Client Server
 (not selected) (selected)
 v v v
 | | |
 |Begin multicast address request|
 | | |
 | _____________/|_____________ |
 |/ DISCOVER | DISCOVER \|
 | | |
 Reserves | Reserves
 Address | Address
 | | |
 |\ | ____________/|
 | _________ | / OFFER |
 | OFFER \ |/ |
 | \ | |
 | Collects replies |
 | \| |
 | Selects Server |
 | | |
 | _____________/|_____________ |
 |/ REQUEST | REQUEST \|
 | | |
 | | Commits address
 | | |
 | | _____________/|
 | |/ ACK |
 | | |
 | assignment complete |
 | | |
 v v v

 Figure 3: Timeline diagram of messages exchanged
 in Multicast Address Allocation example

3. Lease Extension

 This is a continuation of the previous example. The client has
 already allocated a multicast address from the global scope for use
 during the next two hours. Half way through this two hour period, it
 decides that it wants to extend its lease for another hour.

 The client unicasts a RENEW packet to the server from which it
 allocated the address. This packet includes the Lease Time and Lease
 Identifier options. The Lease Identifier matches the one used for the
 original allocation. The time included in the Lease Time is two

Hanna, et al. Standards Track [Page 49]

RFC 2730 MADCAP December 1999

 hours, since the client wants the lease to expire two hours from the
 current time.

 The server responds with an ACK packet indicating that the lease
 extension has been granted. This packet includes the Lease Time,
 Server Identifier, Lease Identifier, Multicast Scope, and List of
 Address Ranges options.

 If the server did not want to grant the requested lease extension, it
 would have responded with a NAK packet with the Lease Identifier
 option.

 The following figure illustrates this exchange.

 Client Server
 v v
 | |
 |_____________ |
 | RENEW \|
 | |
 | Extends lease
 | |
 | _____________/|
 |/ ACK |
 | |
 | |
 v v

 Figure 4: Timeline diagram of messages exchanged
 in Lease Extension example

4. Address Release

 This is a continuation of the previous example. The client has
 already allocated a multicast address and extended its lease for
 another two hours. Half an hour later, the client finishes its use of
 the multicast address and wants to release it so it can be reused.

 The client unicasts a RELEASE packet to the server from which it
 allocated the address. This packet includes the Lease Identifier
 option. The Lease Identifier matches the one used for the original
 allocation. When the server receives this packet, it cancels the
 client’s lease on the address and sends an ACK packet to the client
 indicating that the lease has been released. This packet includes the
 Server Identifier and Lease Identifier options.

Hanna, et al. Standards Track [Page 50]

RFC 2730 MADCAP December 1999

 The following figure illustrates this exchange.

 Client Server
 v v
 | |
 |_____________ |
 | RELEASE \|
 | |
 | Cancels lease
 | |
 | _____________/|
 |/ ACK |
 | |
 v v

 Figure 5: Timeline diagram of messages exchanged
 in Address Release example

5. Unicast Address Allocation

 This is a continuation of the previous example. At some later time,
 the client decides to allocate another multicast address. Since it
 has recently worked with a server, it decides to try sending a
 unicast REQUEST to that server. If this doesn’t work, it can always
 try a multicast DISCOVER, as illustrated in example 2.

 The client unicasts a REQUEST packet to the server from which it
 wants to allocate the address. This packet includes the Lease Time,
 Lease Identifier, and Multicast Scope options.

 The server responds with an ACK packet containing the Lease Time,
 Lease Identifier, and Multicast Scope options from the REQUEST
 packet, as well as the Server Identifier option and a List of Address
 Ranges option listing the address allocated.

 The client now has a lease on the multicast address.

 If the client had not received an ACK from the server, it would have
 retransmitted its REQUEST packet for a while. If it still received no
 response, it would start over with a multicast DISCOVER message.

Hanna, et al. Standards Track [Page 51]

RFC 2730 MADCAP December 1999

 The following figure illustrates this exchange.

 Client Server
 v v
 | |
 |_____________ |
 | REQUEST \|
 | |
 | Allocates address
 | |
 | _____________/|
 |/ ACK |
 | |
 v v

 Figure 6: Timeline diagram of messages exchanged
 in Unicast Address Allocation example

APPENDIX B: Recommended Constant Values

 Table 6 lists recommended values for constants defined in this
 specification.

 Constant Name Recommended Value
 ------------- -----------------
 [CLOCK-SKEW-ALLOWANCE] 30 minutes
 [DISCOVER-DELAY] current retransmit delay
 [EXTRA-ALLOCATION-TIME] 1 hour
 [NO-RESPONSE-DELAY] 60 seconds
 [OFFER-HOLD] at least 60 seconds
 [RESPONSE-CACHE-INTERVAL] at least 60 seconds (5 minutes maximum)
 [XID-REUSE-INTERVAL] 10 minutes (required)

 Table 6: Recommended Constant Values

Hanna, et al. Standards Track [Page 52]

RFC 2730 MADCAP December 1999

Full Copyright Statement

 Copyright (C) The Internet Society (1999). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Hanna, et al. Standards Track [Page 53]

