Internet DRAFT - draft-ietf-6lowpan-problem
draft-ietf-6lowpan-problem
Network Working Group N. Kushalnagar
Internet-Draft Intel Corp
Intended status: Informational G. Montenegro
Expires: August 30, 2007 Microsoft Corporation
C. Schumacher
Danfoss A/S
February 26, 2007
6LoWPAN: Overview, Assumptions, Problem Statement and Goals
draft-ietf-6lowpan-problem-08.txt
Status of this Memo
By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware
have been or will be disclosed, and any of which he or she becomes
aware will be disclosed, in accordance with Section 6 of BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.
The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.
This Internet-Draft will expire on August 30, 2007.
Copyright Notice
Copyright (C) The IETF Trust (2007).
Abstract
This document describes the assumptions, problem statement and goals
for transmitting IP over IEEE 802.15.4 networks. The set of goals
enumerated in this document form an initial set only.
Kushalnagar, et al. Expires August 30, 2007 [Page 1]
Internet-Draft 6lowpan Problems and Goals February 2007
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3. Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 4
4. Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.1. IP Connectivity . . . . . . . . . . . . . . . . . . . . . 5
4.2. Topologies . . . . . . . . . . . . . . . . . . . . . . . . 6
4.3. Limited Packet Size . . . . . . . . . . . . . . . . . . . 6
4.4. Limited configuration and management . . . . . . . . . . . 7
4.5. Service discovery . . . . . . . . . . . . . . . . . . . . 7
4.6. Security . . . . . . . . . . . . . . . . . . . . . . . . . 7
5. Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 9
7. Security Considerations . . . . . . . . . . . . . . . . . . . 9
8. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 10
9. References . . . . . . . . . . . . . . . . . . . . . . . . . . 11
9.1. Normative References . . . . . . . . . . . . . . . . . . . 11
9.2. Informative References . . . . . . . . . . . . . . . . . . 11
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 12
Intellectual Property and Copyright Statements . . . . . . . . . . 13
Kushalnagar, et al. Expires August 30, 2007 [Page 2]
Internet-Draft 6lowpan Problems and Goals February 2007
1. Introduction
Low-power wireless personal area networks (LoWPANs) comprise devices
that conform to the IEEE 802.15.4-2003 standard by the IEEE
[ieee802.15.4]. IEEE 802.15.4 devices are characterized by short
range, low bit rate, low power and low cost. Many of the devices
employing IEEE 802.15.4 radios will be limited in their computational
power, memory, and/or energy availability.
This document gives an overview of LoWPANs and describes how they
benefit from IP and in particular IPv6 networking. It describes
LoWPAN requirements with regards to the IP layer and above, and
spells out the underlying assumptions of IP for LoWPANs. Finally, it
describes problems associated with enabling IP communication with
devices in a LoWPAN, and defines goals to address these in a
prioritized manner. Admittedly, not all items on this list may be
necessarily appropriate tasks for the IETF. Nevertheless, they are
documented here to give a general overview of the larger problem.
This is useful both to structure work within the IETF as well as to
understand better how to coordinate with external organizations.
2. Overview
A LoWPAN is a simple low cost communication network that allows
wireless connectivity in applications with limited power and relaxed
throughput requirements. A LoWPAN typically includes devices that
work together to connect the physical environment to real-world
applications, e.g., wireless sensors. LoWPANs conform to the IEEE
802.15.4-2003 standard. [ieee802.15.4].
Some of the characteristics of LoWPANs are:
1. Small packet size. Given that the maximum physical layer packet
is 127 bytes, the resulting maximum frame size at the media
access control layer is 102 octets. Link-layer security imposes
further overhead, which in the maximum case (21 octets of
overhead in the AES-CCM-128 case, versus 9 and 13 for AES-CCM-32
and AES-CCM-64, respectively) leaves 81 octets for data packets.
2. Support for both 16-bit short or IEEE 64-bit extended media
access control addresses.
3. Low bandwidth. Data rates of 250 kbps, 40 kbps and 20 kbps for
each of the currently defined physical layers (2.4 GHz, 915 MHz
and 868 MHz, respectively).
Kushalnagar, et al. Expires August 30, 2007 [Page 3]
Internet-Draft 6lowpan Problems and Goals February 2007
4. Topologies include star and mesh operation.
5. Low power. Typically, some or all devices are battery operated.
6. Low cost. These devices are typically associated with sensors,
switches, etc. This drives some of the other characteristics
such as low processing, low memory, etc. Numerical values for
"low" elided on purpose since costs tend to change over time.
7. Large number of devices expected to be deployed during the life-
time of the technology. This number is expected to dwarf the
number of deployed personal computers, for example.
8. Location of the devices is typically not predefined, as they
tend to be deployed in an ad-hoc fashion. Furthermore,
sometimes the location of these devices may not be easily
accessible. Additionally, these devices may move to new
locations.
9. Devices within LoWPANs tend to be unreliable due to variety of
reasons: uncertain radio connectivity, battery drain, device
lockups, physical tampering, etc.
10. In many environments, devices connected to a LoWPAN may sleep
for long periods of time in order to conserve energy, and are
unable to communicate during these sleep periods.
The following sections take into account these characteristics in
describing the assumptions, problems statement and goals for LoWPANs,
and, in particular, for 6LoWPANs (IPv6-based LoWPAN networks).
3. Assumptions
Given the small packet size of LoWPANs, this document presumes
applications typically send small amounts of data. However, the
protocols themselves do not restrict bulk data transfers.
LoWPANs as described in this document are based on IEEE 802.15.4-
2003. It is possible that the specification may undergo changes in
the future and may change some of the requirements mentioned above.
Some of these assumptions are based on the limited capabilities of
devices within LoWPANs. As devices become more powerful, and consume
less power, some of the requirements mentioned above may be somewhat
relaxed.
Kushalnagar, et al. Expires August 30, 2007 [Page 4]
Internet-Draft 6lowpan Problems and Goals February 2007
While some LoWPAN devices are expected to be extremely limited (the
so-called "Reduced Function Devices" or RFDs), more capable "Full
Function Devices" (FFDs) will also be present, albeit in much smaller
numbers. FFDs will typically have more resources and may be mains
powered. Accordingly, FFDs will aid RFDs by providing functions such
as network coordination, packet forwarding, interfacing with other
types of networks, etc.
The application of IP technology is assumed to provide the following
benefits:
1. The pervasive nature of IP networks allows use of existing
infrastructure.
2. IP-based technologies already exist, are well known and proven to
be working.
3. An admittedly non-technical but important consideration is that
intellectual property conditions for IP networking technology are
either more favorable or at least better understood than
proprietary and newer solutions.
4. Tools for diagnostics, management and commissioning of IP
networks already exist.
5. IP-based devices can be connected readily to other IP-based
networks, without the need for intermediate entities like
translation gateways or proxies.
4. Problems
Based on the characteristics defined in the overview section, the
following sections elaborate on the main problems with IP for
LoWPANs.
4.1. IP Connectivity
The requirement for IP connectivity within a LoWPAN is driven by the
following:
1. The many devices in a LoWPAN make network auto configuration and
statelessness highly desirable. And for this, IPv6 has ready
solutions.
2. The large number of devices poses the need for a large address
space, well met by IPv6.
3. Given the limited packet size of LoWPANs, the IPv6 address format
allows subsuming of IEEE 802.15.4 addresses if so desired.
4. Simple interconnectivity to other IP networks including the
Internet.
However, given the limited packet size, headers for IPv6 and layers
Kushalnagar, et al. Expires August 30, 2007 [Page 5]
Internet-Draft 6lowpan Problems and Goals February 2007
above must be compressed whenever possible.
4.2. Topologies
LoWPANs must support various topologies including mesh and star.
Mesh topologies imply multi-hop routing, to a desired destination.
In this case, intermediate devices act as packet forwarders at the
link layer (akin to routers at the network layer). Typically these
are "full function devices" that have more capabilities in terms of
power, computation, etc. The requirements on the routing protocol
are:
1. Given the minimal packet size of LoWPANs, the routing protocol
must impose low (or no) overhead on data packets, hopefully
independently of the number of hops.
2. The routing protocols should have low routing overhead (low
chattiness) balanced with topology changes and power
conservation.
3. The computation and memory requirements in the routing protocol
should be minimal to satisfy the low cost and low power
objectives. Thus, storage and maintenance of large routing
tables is detrimental.
4. Support for network topologies in which either FFDs or RFDs may
be battery or mains-powered. This implies the appropriate
considerations for routing in the presence of sleeping nodes.
As with mesh topologies, star topologies include provisioning a
subset of devices with packet forwarding functionality. If, in
addition to IEEE 802.15.4, these devices use other kinds of network
interfaces such as ethernet or IEEE 802.11, the goal is to seamlessly
integrate the networks built over those different technologies.
This, of course, is a primary motivation to use IP to begin with.
4.3. Limited Packet Size
Applications within LoWPANs are expected to originate small packets.
Adding all layers for IP connectivity should still allow transmission
in one frame without incurring excessive fragmentation and
reassembly. Furthermore, protocols must be designed or chosen so
that the individual "control/protocol packets" fit within a single
802.15.4 frame. Along these lines, IPv6's requirement of sub-IP
reassembly (see Section 5) may pose challenges for low-end LoWPAN
devices that do not have enough RAM or storage for a 1280-octet
packet.
Kushalnagar, et al. Expires August 30, 2007 [Page 6]
Internet-Draft 6lowpan Problems and Goals February 2007
4.4. Limited configuration and management
As alluded to above, devices within LoWPANs are expected to be
deployed in exceedingly large numbers. Additionally, they are
expected to have limited display and input capabilities.
Furthermore, the location of some of these devices may be hard to
reach. Accordingly, protocols used in LoWPANs should have minimal
configuration, preferably work "out of the box", be easy to
bootstrap, and enable the network to self heal given the inherent
unreliable characteristic of these devices. Network management
should have little overhead yet be powerful enough to control dense
deployment of devices.
4.5. Service discovery
LoWPANs require simple service discovery network protocols to
discover, control and maintain services provided by devices. In some
cases, especially in dense deployments, abstraction of several nodes
to provide a service may be beneficial. In order to enable such
features, new protocols may have to be designed.
4.6. Security
IEEE 802.15.4 mandates link-layer security based on AES, but it omits
any details about topics like bootstrapping, key management and
security at higher layers. Of course, a complete security solution
for LoWPAN devices must consider application needs very carefully.
Please refer to the security consideration section below for a more
detailed discussion and in-depth security requirements.
5. Goals
The goals mentioned below are general and not limited to IETF
activities. As such, they may not only refer to work that can be
done within the IETF (e.g., specification required to transmit IP,
profile of best practices for transmitting IP packets, and associated
upper level protocols, etc). They also point at work more relevant
to other standards bodies (e.g., desirable changes to or profiles
relevant to IEEE 802.15.4, W3C, etc). When the goals fall under the
IETF's purview, they serve to point out what those efforts should
strive to accomplish, regardless of whether they are pursued within
one (or more) new (or existing) working groups. When the goals do
not fall under the purview of the IETF, documenting them here serves
as input to other organizations [liaison].
Note that a common underlying goal is to reduce packet overhead,
bandwidth consumption, processing requirements and power consumption.
Kushalnagar, et al. Expires August 30, 2007 [Page 7]
Internet-Draft 6lowpan Problems and Goals February 2007
The following are the goals according to priority for LoWPANs:
1. Fragmentation and Reassembly layer: As mentioned in the overview,
the protocol data units may be as small 81 bytes. This is
obviously far below the minimum IPv6 packet size of 1280 octets,
and in keeping with section 5 of the IPv6 specification
[RFC2460], a fragmentation and reassembly adaptation layer must
be provided at the layer below IP.
2. Header Compression: Given that in the worst case the maximum size
available for transmitting IP packets over IEEE 802.15.4 frame is
81 octets, and that the IPv6 header is 40 octets long, (without
optional headers), this leaves only 41 octets for upper-layer
protocols, like UDP and TCP. UDP uses 8 octets in the header and
TCP uses 20 octets. This leaves 33 octets for data over UDP and
21 octets for data over TCP. Additionally, as pointed above,
there is also a need for a fragmentation and reassembly layer,
which will use even more octets leaving very few octets for data.
Thus if one were to use the protocols as is, it would lead to
excessive fragmentation and reassembly even when data packets are
just 10s of octets long. This points to the need for header
compression. As there is much published and in-progress
standardization work on header compression, the 6LoWPAN community
needs to investigate using existing header compression
techniques, and, if necessary, specify new ones.
3. Address Autoconfiguration: [I-D.ietf-ipv6-rfc2462bis] specifies
methods for creating IPv6 stateless address auto configuration.
Stateless auto configuration (as compared to stateful) is
attractive for 6LoWPANs, because it reduces the configuration
overhead on the hosts. There is a need for a method to generate
an "interface identifier" from the EUI-64 [EUI64] assigned to the
IEEE 802.15.4 device.
4. Mesh Routing Protocol: A routing protocol to support a multi-hop
mesh network is necessary. There is much published work on ad-
hoc multi hop routing for devices. Some examples include
[RFC3561], [RFC3626], [RFC3684], all experimental. Also, these
protocols are designed to use IP-based addresses that have large
overheads. For example, the AODV [RFC3561] routing protocol uses
48 octets for a route request based on IPv6 addressing. Given
the packet-size constraints, transmitting this packet without
fragmentation and reassembly may be difficult. Thus, care should
be taken when using existing routing protocols (or designing new
ones) so that the routing packets fit within a single IEEE
802.15.4 frame.
Kushalnagar, et al. Expires August 30, 2007 [Page 8]
Internet-Draft 6lowpan Problems and Goals February 2007
5. Network Management: One of the points of transmitting IPv6
packets, is to reuse existing protocols as much as possible.
Network management functionality is critical for LoWPANs.
[RFC3411] specifies SNMPv3 protocol operations. SNMP
functionality may be translated "as is" to LoWPANs. However,
further investigation is required to determine if it is suitable,
or if an appropriate adaption is in order. This adaptation could
include limiting the data types and simplifying the Basic
Encoding Rules so as to reduce the size and complexity of the
ASN.1 parser, thereby reducing the memory and processing needs to
better fit into the limited memory and power of LoWPAN devices.
6. Implementation Considerations: It may be the case that
transmitting IP over IEEE 802.15.4 would become more beneficial
if implemented in a "certain" way. Accordingly, implementation
considerations are to be documented.
7. Application and higher layer Considerations: As header
compression becomes more prevalent, overall performance will
depend even more on efficiency of application protocols.
Heavyweight protocols based on XML such as SOAP [SOAP], may not
be suitable for LoWPANs. As such, more compact encodings (and
perhaps protocols) may become necessary. The goal here is to
specify or suggest modifications to existing protocols so that
they are suitable for LoWPANs. Furthermore, application level
interoperability specifications may also become necessary in the
future and may thus be specified.
8. Security Considerations: Security threats at different layers
must be clearly understood and documented. Bootstrapping of
devices into a secure network could also be considered given the
location, limited display, high density and ad-hoc deployment of
devices.
6. IANA Considerations
This document contains no IANA considerations.
7. Security Considerations
IPv6 over LoWPAN (6LoWPAN) applications often require confidentiality
and integrity protection. This can be provided at the application,
transport, network, and/or at the link layer (i.e., within the
6LoWPAN set of specifications). In all these cases, prevailing
constraints will influence the choice of a particular protocol. Some
of the more relevant constraints are small code size, low power
Kushalnagar, et al. Expires August 30, 2007 [Page 9]
Internet-Draft 6lowpan Problems and Goals February 2007
operation, low complexity, and small bandwidth requirements.
Given these constraints, first, a threat model for 6LoWPAN devices
needs to be developed in order to weigh any risks against the cost of
their mitigations while making meaningful assumptions and
simplifications. Some examples for threats that should be considered
are man-in-the-middle attacks and denial of service attacks.
A separate set of security considerations apply to bootstrapping a
6LoWPAN device into the network (e.g., for initial key
establishment). This generally involves application level exchanges
or out-of-band techniques for the initial key establishment, and may
rely on application- specific trust models; thus, it is considered
extraneous to 6LoWPAN and is not addressed in these specifications.
In order to be able to select (or design) this next set of protocols,
there needs to be a common model of the keying material created by
the initial key establishment.
Beyond initial key establishment, protocols for subsequent key
management as well as to secure the data traffic do fall under the
purview of 6LoWPAN. Here, the different alternatives (TLS, IKE/
IPsec, etc.) must be evaluated in light of the 6LoWPAN constraints.
One argument for using link layer security is that most IEEE 802.15.4
devices already have support for AES link-layer security. AES is a
block cipher operating on blocks of fixed length, i.e., 128 bits. To
encrypt longer messages, several modes of operation may be used. The
earliest modes described, such as ECB, CBC, OFB and CFB provide only
confidentiality, and this does not ensure message integrity. Other
modes have been designed which ensure both confidentiality and
message integrity, such as CCM* mode. 6LoWPAN networks can operate in
any of the previous modes, but it is desirable to utilize the most
secure modes available for link-layer security (e.g., CCM*), and
build upon it.
For network layer security, two models are applicable: end-to-end
security, e.g. using IPsec transport mode, or security that is
limited to the wireless portion of the network, e.g. using a security
gateway and IPsec tunnel mode. The disadvantage of the latter is the
larger header size, which is significant at the 6LoWPAN frame MTUs.
To simplify 6LoWPAN implementations, it is beneficial to identify the
relevant security model, and to identify a preferred set of cipher
suites that are appropriate given the constraints.
8. Acknowledgements
Thanks to Geoff Mulligan, Soohong Daniel Park, Samita Chakrabarti,
Kushalnagar, et al. Expires August 30, 2007 [Page 10]
Internet-Draft 6lowpan Problems and Goals February 2007
Brijesh Kumar and Miguel Garcia for their comments and help in
shaping this document.
9. References
9.1. Normative References
[RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
(IPv6) Specification", RFC 2460, December 1998.
[ieee802.15.4]
IEEE Computer Society, "IEEE Std. 802.15.4-2003",
October 2003.
9.2. Informative References
[EUI64] "GUIDELINES FOR 64-BIT GLOBAL IDENTIFIER (EUI-64)
REGISTRATION AUTHORITY", IEEE http://standards.ieee.org/
regauth/oui/tutorials/EUI64.html.
[I-D.ietf-ipv6-rfc2462bis]
Thomson, S., "IPv6 Stateless Address Autoconfiguration",
draft-ietf-ipv6-rfc2462bis-08 (work in progress),
May 2005.
[RFC3411] Harrington, D., Presuhn, R., and B. Wijnen, "An
Architecture for Describing Simple Network Management
Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
December 2002.
[RFC3561] Perkins, C., Belding-Royer, E., and S. Das, "Ad hoc On-
Demand Distance Vector (AODV) Routing", RFC 3561,
July 2003.
[RFC3626] Clausen, T. and P. Jacquet, "Optimized Link State Routing
Protocol (OLSR)", RFC 3626, October 2003.
[RFC3684] Ogier, R., Templin, F., and M. Lewis, "Topology
Dissemination Based on Reverse-Path Forwarding (TBRPF)",
RFC 3684, February 2004.
[SOAP] "SOAP", W3C http://www.w3c.org/2000/xp/Group/.
[liaison] "LIASONS",
IETF http://www.ietf.org/liaisonActivities.html.
Kushalnagar, et al. Expires August 30, 2007 [Page 11]
Internet-Draft 6lowpan Problems and Goals February 2007
Authors' Addresses
Nandakishore Kushalnagar
Intel Corp
Email: nandakishore.kushalnagar@intel.com
Gabriel Montenegro
Microsoft Corporation
Email: g_e_montenegro@yahoo.com
Christian Peter Pii Schumacher
Danfoss A/S
Email: schumacher@danfoss.com
Kushalnagar, et al. Expires August 30, 2007 [Page 12]
Internet-Draft 6lowpan Problems and Goals February 2007
Full Copyright Statement
Copyright (C) The IETF Trust (2007).
This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Acknowledgment
Funding for the RFC Editor function is provided by the IETF
Administrative Support Activity (IASA).
Kushalnagar, et al. Expires August 30, 2007 [Page 13]