Internet DRAFT - draft-ietf-ccamp-rwa-wson-encode
draft-ietf-ccamp-rwa-wson-encode
Network Working Group G. Bernstein
Internet Draft Grotto Networking
Intended status: Standards Track Y. Lee
Expires: August 2015 D. Li
Huawei
W. Imajuku
NTT
February 24, 2015
Routing and Wavelength Assignment Information Encoding for
Wavelength Switched Optical Networks
draft-ietf-ccamp-rwa-wson-encode-28.txt
Abstract
A wavelength switched optical network (WSON) requires that certain
key information fields are made available to facilitate path
computation and the establishment of label switching paths (LSPs).
The information model described in "Routing and Wavelength
Assignment Information for Wavelength Switched Optical Networks"
shows what information is required at specific points in the WSON.
Part of the WSON information model contains aspects that may be of
general applicability to other technologies, while other parts are
specific to WSONs.
This document provides efficient, protocol-agnostic encodings for
the WSON-specific information fields. It is intended that protocol-
specific documents will reference this memo to describe how
information is carried for specific uses. Such encodings can be used
to extend GMPLS signaling and routing protocols. In addition these
encodings could be used by other mechanisms to convey this same
information to a path computation element (PCE).
Status of this Memo
This Internet-Draft is submitted to IETF in full conformance with
the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
Bernstein and Lee Expires August 24, 2015 [Page 1]
Internet-Draft Wavelength Switched Optical Networks February 2015
other groups may also distribute working documents as Internet-
Drafts.
Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use Internet-Drafts as
reference material or to cite them other than as "work in progress."
The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt
The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html
This Internet-Draft will expire on August 24, 2015.
Copyright Notice
Copyright (c) 2014 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Simplified BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License.
Conventions used in this document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC-2119 [RFC2119].
Table of Contents
1. Introduction...................................................3
1.1. Terminology..................................................4
Bernstein and Lee Expires August 24, 2015 [Page 2]
Internet-Draft Wavelength Switched Optical Networks February 2015
2. Resources, Resource Blocks, and the Resource Pool..............4
2.1. Resource Block Set Field..................................5
3. Resource Accessibility/Availability............................6
3.1. Resource Accessibility Field..............................6
3.2. Resource Wavelength Constraints Field.....................8
3.3. Resource Block Pool State (RBPoolState) Field.............9
3.4. Resource Block Shared Access Wavelength Availability
(RBSharedAccessWaveAvailability) Field........................11
4. Resource Block Information (ResourceBlockInfo) Field..........12
4.1. Optical Interface Class List Subfield....................14
4.1.1. ITU-G.698.1 Application Code Mapping.............16
4.1.2. ITU-G.698.2 Application Code Mapping.............18
4.1.3. ITU-G.959.1 Application Code Mapping.............19
ITU-G.695 Application Code Mapping.....................22
4.1.4...................................................22
4.2. Acceptable Client Signal List Subfield................24
4.3. Input Bit Rate List Subfield..........................24
4.4. Processing Capability List Subfield...................25
5. Security Considerations.......................................27
6. IANA Considerations...........................................27
6.1. Types for subfields of WSON Resource Block Information...27
7. Acknowledgments...............................................28
APPENDIX A: Encoding Examples....................................29
A.1. Wavelength Converter Accessibility Field.................29
A.2. Wavelength Conversion Range Field........................31
A.3. An OEO Switch with DWDM Optics...........................31
8. References....................................................35
8.1. Normative References.....................................35
8.2. Informative References...................................35
9. Contributors..................................................37
Authors' Addresses...............................................38
1. Introduction
A Wavelength Switched Optical Network (WSON) is a Wavelength
Division Multiplexing (WDM) optical network in which switching is
performed selectively based on the center wavelength of an optical
signal.
[RFC6163] describes a framework for Generalized Multiprotocol Label
Switching (GMPLS) and Path Computation Element (PCE) control of a
WSON. Based on this framework, [RWA-Info] describes an information
model that specifies what information is needed at various points in
a WSON in order to compute paths and establish Label Switched Paths
(LSPs).
Bernstein and Lee Expires August 24, 2015 [Page 3]
Internet-Draft Wavelength Switched Optical Networks February 2015
This document provides efficient encodings of information needed by
the routing and wavelength assignment (RWA) process in a WSON. Such
encodings can be used to extend GMPLS signaling and routing
protocols. In addition these encodings could be used by other
mechanisms to convey this same information to a path computation
element (PCE). Note that since these encodings are efficient they
can provide more accurate analysis of the control plane
communications/processing load for WSONs looking to utilize a GMPLS
control plane.
In parallel to this document, [Gen-Encode] provides efficient
encodings of information needed by the routing and label assignment
process that are potentially applicable to a wider range of
technologies.
1.1. Terminology
Refer to [RFC6163] for CWDM, DWDM, RWA, WDM.
Refer to Section 5 of [RWA-Info] for the terminology of Resources,
Resource Blocks, and Resource Pool.
2. Resources, Resource Blocks, and the Resource Pool
This section provides encodings for the information fields defined
in [RWA-Info] that have applicability to WSON. The encodings are
designed to be suitable for use in the GMPLS routing protocols OSPF
[RFC4203] and IS-IS [RFC5307] and in the PCE protocol (PCEP)
[RFC5440]. Note that the information distributed in [RFC4203] and
[RFC5307] is arranged via the nesting of sub-TLVs within TLVs and
this document defines elements to be used within such constructs.
Specific constructs of sub-TLVs and the nesting of sub-TLVs of the
information field defined by this document will be defined in the
respective protocol enhancement documents.
This document defines the following information fields pertaining to
resources within an optical node:
. Resource Accessibility <ResourceAccessibility>
. Resource Wavelength Constraints <ResourceWaveConstraints>
. Resource Block Pool State <RBPoolState>
Bernstein and Lee Expires August 24, 2015 [Page 4]
Internet-Draft Wavelength Switched Optical Networks February 2015
. Resource Block Shared Access Wavelength Availability
<RBSharedAccessWaveAvailability>
. Resource Block Information <ResourceBlockInfo>
Each of these information fields works with one or more sets of
resources rather than just a single resource block. This motivates
the following field definition.
2.1. Resource Block Set Field
In a WSON node that includes resource blocks (RB), denoting subsets
of these blocks allows one to efficiently describe common properties
of the blocks and to describe the structure and characteristics, if
non-trivial, of the resource pool. The RB Set field is defined in a
similar manner to the label set concept of [RFC3471].
The information carried in an RB set field is defined by:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action |C| Reserved | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Identifier 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Identifier n |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Action: 8 bits
0 - Inclusive List
Indicates that the TLV contains one or more RB elements that are
included in the list.
1 - Inclusive Range(s)
Indicates that the TLV contains one or more ranges of RBs. Each
individual range is denoted by two 32-bit RB identifier. The first
32 bits is the RB identifier for the start of the range and the next
Bernstein and Lee Expires August 24, 2015 [Page 5]
Internet-Draft Wavelength Switched Optical Networks February 2015
32 bits is the RB identifier for the end of the range. Note that the
Length field is used to determine the number of ranges.
C (Connectivity bit): Set to 0 to denote fixed (possibly multi-
cast) connectivity; Set to 1 to denote potential (switched)
connectivity. Used in Resource Accessibility field. Ignored
elsewhere.
Reserved: 7 bits
This field is reserved. It MUST be set to zero on transmission and
MUST be ignored on receipt.
Length: 16 bits
The total length of this field in bytes.
RB Identifier:
The RB identifier represents the ID of the resource block which is a
32 bit integer. The scope of the RB identifier is local to the node
on which it is applied.
Usage Note: the inclusive range "Action" can result in very compact
encoding of resource sets and it can be advantageous to number
resource blocks in such a way so that status updates (dynamic
information) can take advantage of this efficiency.
3. Resource Accessibility/Availability
This section defines the information fields for dealing with
accessibility and availability of resource blocks within a pool of
resources. These include the ResourceAccessibility,
ResourceWaveConstraints, and RBPoolState fields.
3.1. Resource Accessibility Field
This information field describes the structure of the resource pool
in relation to the switching device. In particular it indicates the
ability of an input port to reach sets of resources and of sets of
resources to reach a particular output port. This is the
PoolInputMatrix and PoolOutputMatrix of [RWA-Info].
The Resource Accessibility field is defined by:
Bernstein and Lee Expires August 24, 2015 [Page 6]
Internet-Draft Wavelength Switched Optical Networks February 2015
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Reserved(8bits)|C| Reserved (23 bits) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Input Link Set Field A #1 |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Set Field A #1 |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Additional Link set and RB set pairs as needed to |
: specify PoolInputMatrix :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Output Link Set Field B #1 |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Set B Field #1 (for output connectivity) |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Additional Link Set and RB set pairs as needed to |
: specify PoolOutputMatrix :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where
C (Connectivity bit): Connectivity indicates how the input/output
ports connect to the resource blocks.
0 -- the device is fixed (e.g., a connected port must go
through the resource block)
1 -- the device is switched (e.g., a port can be configured to
go through a resource but isn't required)
For the Input and Output Link Set Fields, the Link Set Field
encoding defined in [Gen-Encode] is to be used. A Label Set Field
MUST carry a label as defined in [RFC6205].
Bernstein and Lee Expires August 24, 2015 [Page 7]
Internet-Draft Wavelength Switched Optical Networks February 2015
Note that the direction parameter within the Link Set Field is used
to indicate whether the link set is an input or output link set, and
the bidirectional value for this parameter is not permitted in this
field.
See Appendix A.1 for an illustration of this encoding.
3.2. Resource Wavelength Constraints Field
Resources, such as wavelength converters, etc., may have limited
input or output wavelength ranges. Additionally, due to the
structure of the optical system not all wavelengths can necessarily
reach or leave all the resources. These properties are described by
using one or more resource wavelength restrictions fields as defined
below:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|I|O|B| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Set Field |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Input Wavelength Constraints |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Output Wavelength Constraints |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I = 1 indicates the presence of the Input Wavelength Constraints
Field and I = 0 indicates otherwise.
O = 1 indicates the presence of the Output Wavelength Constraints
Field and O = 0 indicates otherwise.
B = 1 indicates that a single wavelength constraints field
represents both Input and Output Wavelength Constraints Fields.
Currently the only valid combinations of (I,O,B) are (1,0,0),
(0,1,0), (1,1,0), (0,0,1).
Bernstein and Lee Expires August 24, 2015 [Page 8]
Internet-Draft Wavelength Switched Optical Networks February 2015
RB Set Field:
A set of resource blocks (RBs) which have the same wavelength
restrictions.
Input Wavelength Constraints Field:
Indicates the wavelength input restrictions of the RBs in the
corresponding RB set. This field is encoded via the Label Set field
of [Gen-Encode].
Output Wavelength Constraints Field:
Indicates the wavelength output restrictions of RBs in the
corresponding RB set. This field is encoded via the Label Set field
of [Gen-Encode].
3.3. Resource Block Pool State (RBPoolState) Field
The state of the pool is given by the number of resources available
with particular characteristics. A resource block set is used to
encode all or a subset of the resources of interest. The usage state
of resources within a resource block set is encoded as either a list
of 16 bit integer values or a bit map indicating whether a single
resource is available or in use. The bit map encoding is appropriate
when resource blocks consist of a single resource. This information
can be relatively dynamic, i.e., can change when a connection (LSP
is established or torn down.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Set Field |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Usage state |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where Action = 0 denotes a list of 16 bit integers and Action = 1
denotes a bit map. Action = 0 covers the case where there are
multiple elements for each resource block. Action = 1 covers the
case where each resource block only contains a single element.
Bernstein and Lee Expires August 24, 2015 [Page 9]
Internet-Draft Wavelength Switched Optical Networks February 2015
In both cases the elements of the RB Set field are in a one-to-one
correspondence with the values in the usage RB usage state area.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action = 0 | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Set Field |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB#1 state | RB#2 state |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB#n-1 state | RB#n state or Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
RB#i State (16 bits, unsigned integer): indicates the number of
resources available in Resource Block #i.
Whether the last 16 bits is a wavelength converter (RB) state or
padding is determined by the number of elements in the RB set field.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action = 1 | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Set Field |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Usage state bitmap |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ...... | Padding bits |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
RB Usage state: Variable Length but must be a multiple of 4 byes.
Each bit indicates the usage status of one RB with 0 indicating the
RB is available and 1 indicating the RB is in use. The sequence of
the bit map is ordered according to the RB Set field with this
element.
Bernstein and Lee Expires August 24, 2015 [Page 10]
Internet-Draft Wavelength Switched Optical Networks February 2015
Padding bits: Variable Length
3.4. Resource Block Shared Access Wavelength Availability
(RBSharedAccessWaveAvailability) Field
Resource blocks may be accessed via a shared fiber. If this is the
case, then wavelength availability on these shared fibers is needed
to understand resource availability.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|I|O|B| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Set Field |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Input Available Wavelength Set Field |
: (Optional) :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Output Available Wavelength Set Field |
: (Optional) :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I = 1 or 0 indicates the presence or absence of the Input Available
Wavelength Set Field
O = 1 or 0 indicates the presence or absence of the Output Available
Wavelength Set Field.
B = 1 indicates that a single Available Wavelength Set Field
represents both Input and Output Available Wavelength Set Fields.
Currently the only valid combinations of (I,O,B) are (1,0,0),
(0,1,0), (1,1,0), (0,0,1).
RB Set Field:
A Resource Block set in which all the members share the same input
or output fiber or both.
Input Available Wavelength Set Field:
Bernstein and Lee Expires August 24, 2015 [Page 11]
Internet-Draft Wavelength Switched Optical Networks February 2015
Indicates the wavelengths currently available (not being used) on
the input fiber to this resource block. This field is encoded via
the Label Set field of [Gen-Encode].
Output Available Wavelength Set Field:
Indicates the wavelengths currently available (not being used) on
the output fiber from this resource block. This field is encoded via
the Label Set field of [Gen-Encode].
4. Resource Block Information (ResourceBlockInfo) Field
As defined in [RWA-Info], the Resource Block Information
<ResourceBlockInfo> field is used to represent resource signal
constraints and processing capabilities of a node.
The fundamental properties of a resource block are:
(a) Optical Interface Class List(s)
(b) Acceptable Client Signal (shared input, modulation, FEC, bit
rate, G-PID)
(c) Input Bit Rate
(d) Processing Capabilities (number of resources in a block,
regeneration, performance monitoring, vendor specific)
ResourceBlockInfo fields are used to convey relatively static
information about individual resource blocks including the resource
block properties and the number of resources in a block.
When more than one ResourceBlockInfo field is used, there are no
ordering requirements amongst these fields. The length of the
ResourceBlockInfo field is determined from the length of the object
that includes it.
This ResourceBlockInfo field has the following format:
Bernstein and Lee Expires August 24, 2015 [Page 12]
Internet-Draft Wavelength Switched Optical Networks February 2015
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Set Field |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|I|O|B| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Optional subfield 1 |
: ... :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: : :
: : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Optional subfield N |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
RB Set Field is described in Section 2.1.
The shared input or output indication is indicated by the first bit
(I), the second bit (O) and the third bit (B):
I = 1 indicates if the resource blocks identified in the RB set
field utilized a shared fiber for input access and and I = 0
indicates otherwise.
O = 1 indicates if the resource blocks identified in the RB set
field utilized a shared fiber for output access and O = 0 indicates
otherwise.
B = 1 indicates if the resource blocks identified in the RB set
field utilized a shared fiber for both input and output access and B
= 0 indicates otherwise.
Currently the only valid combinations of (I,O,B) are (1,0,0),
(0,1,0), (1,1,0), (0,0,1).
Zero or more Optional subfields MAY be present. Optional subfields
have the following format:
Bernstein and Lee Expires August 24, 2015 [Page 13]
Internet-Draft Wavelength Switched Optical Networks February 2015
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Value... |
. .
. .
. .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Length field defines the length of the value portion in bytes
(thus a subfield with no value portion would have a length of zero).
The subfield is padded to four-byte alignment; padding is not
included in the Length field (so a three byte value would have a
length of three, but the total size of the subfield would be eight
byte). Unrecognized types are not processed. If multiple subfields
of the same type are present, only the first of the type SHOULD be
processed.
The following subfield Types are defined:
Value Length Sub-TLV Type
1 variable Optical Interface Class List
2 variable Acceptable Client Signal List
3 variable Input Bit Rate List
4 variable Processing Capability List
See the IANA Considerations section for allocation of new Types.
4.1. Optical Interface Class List Subfield
The Optical Interface Class subfield has the following format:
Bernstein and Lee Expires August 24, 2015 [Page 14]
Internet-Draft Wavelength Switched Optical Networks February 2015
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved |I|O|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Optical Interface Classes |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The following I and O combination are defined:
I O
0 0 Invalid
1 0 Optical Interface Class List acceptable in input
0 1 Optical Interface Class List available in output
1 1 Optical Interface Class List available on both input and
output.
The Resource Block MAY contain one or more lists according to the
input/output flags.
The Optical Interface Classes format is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|S| Reserved | OI Code Points |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Optical Interface Class |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Optical Interface Class (Cont.) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where the first 32 bits of the encoding shall be used to identify
the semantics of the Optical Interface Class in the following way:
Bernstein and Lee Expires August 24, 2015 [Page 15]
Internet-Draft Wavelength Switched Optical Networks February 2015
S Standard bit.
S=0, identify non-ITU code points
S=1, identify ITU application codes
With S=0, the OI Code Points field can take the following
value:
0: reserved
Future work may add support for vendor-specific AI once the
ITU-T has completed its work in that area.
With S=1, the OI Code Points field can take the following
values:
0: reserved
1: [G.698.1] application code.
2: [G.698.2] application code.
3: [G.959.1] application code.
4: [G.695] application code.
In the case of ITU Application Codes, the mapping between the string
defining the application code and the 64 bits implementing the
optical interface class is given in the following sections.
4.1.1. ITU-G.698.1 Application Code Mapping
[698.1] defines the Application Codes: DScW-ytz(v) and B-DScW-
ytz(v). Where:
B: means Bidirectional.
D: means a DWDM application.
S: takes values N (narrow spectral excursion), W (wide spectral
excursion).
Bernstein and Lee Expires August 24, 2015 [Page 16]
Internet-Draft Wavelength Switched Optical Networks February 2015
c: Channel Spacing (GHz).
W: takes values S (short-haul), L (long-haul).
y: takes values 1 (NRZ 2.5G), 2 (indicating NRZ 10G).
t: only D value is defined (link does not contain optical
amplifier)
z: takes values 2 ([G.652] fibre), 3 ([G.653] fibre), 5
(indicating [G.655] fibre).
v: takes values S (Short wavelength), C (Conventional), L (Long
wavelength).
The F flag indicates the presence or absence of an optional FEC
Encoding suffix.
These get mapped into the 64 bit OIC field as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|B| D |S| c | W | y | t | z | v | F |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where values between parentheses refer to ITU defined values as
reported above:
B: = 1 bidirectional, 0 otherwise
D (prefix): = 0 reserved, = 1 (D)
S: = 0 (N), = 1 (W)
c: Channel Spacing, 4 bits mapped according to the same
definition as in Figure 2 in Section 3.2 of [RFC6205] (note that
DWDM spacing applies here)
W: = 0 reserved, = 2 (S), = 3 (L)
Bernstein and Lee Expires August 24, 2015 [Page 17]
Internet-Draft Wavelength Switched Optical Networks February 2015
y: = 0 reserved, = 1 (1), = 2 (2)
t: = 0 reserved, = 4 (D)
z: = 0 reserved, = 2 (2), = 3 (3), = 5 (5)
v: = 0 reserved, = 1 (S), = 2 (C), = 3 (L)
F (suffix): = 0 No FEC Encoding suffix present, = 1 FEC
Encoding suffix present
Values not mentioned here are not allowed in this application
code; the last 32 bits are reserved and shall be set to zero.
4.1.2. ITU-G.698.2 Application Code Mapping
[G.698.2] defines the Application Codes: DScW-ytz(v) and B-DScW-
ytz(v).
B: means Bidirectional.
D: means a DWDM application.
S: takes values N (narrow spectral excursion), W (wide spectral
excursion).
c: Channel Spacing (GHz).
W: takes values C (link is dispersion compensated), U (link is
dispersion uncompensated).
y: takes values 1 (NRZ 2.5G), 2 (indicating NRZ 10G).
t: takes value A (link may contains optical amplifier)
z: takes values 2 ([G.652] fibre), 3 ([G.653] fibre), 5
(indicating [G.655] fibre).
v: takes values S (Short wavelength), C (Conventional), L (Long
wavelength).
An Optional F can be added indicating a FEC Encoding.
These get mapped into the 64-bit OIC field as follows:
Bernstein and Lee Expires August 24, 2015 [Page 18]
Internet-Draft Wavelength Switched Optical Networks February 2015
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|B| D |S| c | W | y | t | z | v | F |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where (values between parentheses refer to ITU defined values as
reported above):
B: = 1 bidirectional, 0 otherwise
D (prefix): = 0 reserved, = 1 (D)
S: = 0 (N), = 1 (W)
c: Channel Spacing, 4 bits mapped according to the same
definition as in Figure 2 in Section 3.2 of [RFC6205] (note that
DWDM spacing applies here)
W: = 0 reserved, = 10 (C), = 11 (U)
y: = 0 reserved, = 1 (1), = 2 (2)
t: = 0 reserved, = 1 (A)
z: = 0 reserved, = 2 (2), = 3 (3), = 5 (5)
v: = 0 reserved, = 1 (S), = 2 (C), = 3 (L)
F (suffix): = 0 reserved, = 1 FEC Encoding
Values not mentioned here are not allowed in this application
code, the last 32 bits are reserved and shall be set to zero.
4.1.3. ITU-G.959.1 Application Code Mapping
[G.959.1] defines the Application Codes: PnWx-ytz and BnWx-ytz.
Where:
P,B: when present indicate Plural or Bidirectional
Bernstein and Lee Expires August 24, 2015 [Page 19]
Internet-Draft Wavelength Switched Optical Networks February 2015
n: maximum number of channels supported by the application code
(i.e., an integer number)
W: takes values I (intra-office), S (short-haul), L (long-haul),
V (very long-haul), U (ultra long-haul).
x: maximum number of spans allowed within the application code
(i.e., an integer number)
y: takes values 1 (NRZ 2.5G), 2 (NRZ 10G), 9 (NRZ 25G), 3 (NRZ
40G), 7 (RZ 40G).
t: takes values A (power levels suitable for a booster amplifier
in the originating ONE and power levels suitable for a pre-amplifier
in the terminating ONE), B (booster amplifier only), C (pre-
amplifier only), D (no amplifiers).
z: takes values 1 (1310 nm sources on [G.652] fibre), 2 (1550
nm sources on [G.652] fibre), 3 (1550 nm sources on [G.653] fibre),
5 (1550 nm sources on [G.655] fibre).
The following list of suffixes can be added to these application
codes:
F: FEC encoding.
D: Adaptive dispersion compensation.
E: receiver capable of dispersion compensation.
r: reduced target distance.
a: power levels appropriate to APD receivers.
b: power levels appropriate to PIN receivers.
These values are encoded as follows:
Bernstein and Lee Expires August 24, 2015 [Page 20]
Internet-Draft Wavelength Switched Optical Networks February 2015
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| p | P | n | W | x | reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| y | t | z | suffix | reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where (values between parentheses refer to ITU defined values as
reported above):
p (prefix) = 0 otherwise, = 1 Bidirectional (B)
P (optional): = 0 not present, = 2 (P).
n: maximum number of channels (10 bits, up to 1023 channels)
W: = 0 reserved, = 1 (I), = 2 (S), = 3 (L), = 4 (V), = 5 (U)
x: = number of spans (6 bits, up to 64 spans)
y: = 0 reserved, = 1 (1), = 2 (2), = 3 (3), = 7 (7), = 9 (9)
t: = 0 reserved, = 1 (A), = 2 (B), = 3 (C), = 4 (D)
z: = 0 reserved, = 1 (1), = 2 (2), = 3 (3), = 5 (5)
suffix is a 6-bit bitmap:
0 1 2 3 4 5
+-+-+-+-+-+-+
|F|D|E|r|a|b|
+-+-+-+-+-+-+
where a 1 in the appropriate slot indicates that the corresponding
suffix has been added.
Bernstein and Lee Expires August 24, 2015 [Page 21]
Internet-Draft Wavelength Switched Optical Networks February 2015
4.1.4. ITU-G.695 Application Code Mapping
[G.695] defines the Application Codes: CnWx-ytz and B-CnWx-ytz and
S-CnWx-ytz.
Where the optional prefixes are:
B: Bidirectional
S: a system using a black link approach
And the rest of the application code is defined as:
C: CWDM (Coarse WDM) application
n: maximum number of channels supported by the application code
(i.e., an integer number)
W: takes values S (short-haul), L (long-haul).
x: maximum number of spans allowed
y: takes values 0 (NRZ 1.25G), 1 (NRZ 2.5G), 2 (NRZ 10G).
t: takes value D (link does not contain any optical amplifier).
z: takes values 1 (1310 nm region for [G.652] fibre), 2 (ITU-T
[G.652] fibre), 3 ([G.653] fibre), 5 ([G.655] fibre).
The following list of suffixes can be added to these application
codes:
F: FEC encoding.
Since the application codes are very similar to the ones from the
[G.959] section most of the fields are reused. The 64-bit OIC field
is encoded as follows:
Bernstein and Lee Expires August 24, 2015 [Page 22]
Internet-Draft Wavelength Switched Optical Networks February 2015
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| p | C | n | W | x | reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| y | t | z | suffix | reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where (values between parentheses refer to ITU defined values as
reported above):
p: = 0 no prefix, = 1 B bidirectional, = 2 S black link
C: = 0 reserved, = 3 (C).
n: maximum number of channels (10 bits, up to 1023 channels)
W: = 0 reserved, = 1 reserved, = 2 (S), = 3 (L), > 3 reserved
x: = number of spans (6 bits, up to 64 spans)
y: = 0 (0), = 1 (1), =2 (2), > 2 reserved
t: = 4 (D), all other values are reserved
z: = 0 reserved, = 1 (1), = 2 (2), = 3 (3)
suffix is a 6-bit bitmap:
0 1 2 3 4 5
+-+-+-+-+-+-+
|F|0|0|0|0|0|
+-+-+-+-+-+-+
where a 1 in the appropriate slot indicates that the corresponding
suffix has been added.
Bernstein and Lee Expires August 24, 2015 [Page 23]
Internet-Draft Wavelength Switched Optical Networks February 2015
4.2. Acceptable Client Signal List Subfield
This subfield contains a list of acceptable input client signal
types.
The acceptable client signal list is a list of Generalized Protocol
Identifiers (G-PIDs).
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved | Number of G-PIDs |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| G-PID #1 | G-PID #2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: | :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| G-PID #N | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type (16 bits): identifies the Acceptable Client Signal List field.
Length (16 bits): The Length field defines the length of the value
portion in octets.
The number of G-PIDs is an integer greater than or equal to one.
G-PIDs are assigned by IANA and many are defined in [RFC3471] and
[RFC4328].
4.3. Input Bit Rate List Subfield
This subfield contains a list of bit rates of each input client
signal type specified in the Input Client Signal List.
The number of Input Bit Rates MUST match the number of G-PIDs.
Bernstein and Lee Expires August 24, 2015 [Page 24]
Internet-Draft Wavelength Switched Optical Networks February 2015
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Input Bit Rate of G-PID #1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Input Bit Rate of G-PID #N |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Input Bit Rates are in IEEE 754 floating point format [IEEE].
4.4. Processing Capability List Subfield
The processing capability list field is a list of capabilities that
can be achieved through the referred resources:
1. Regeneration capability
2. Fault and performance monitoring
3. Vendor specific capability
Fault and performance monitoring and Vendor specific capability have
no additional capability parameters.
The processing capability list field is then given by:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved | Processing Cap ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Possible additional capability parameters depending upon |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: the processing ID :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Bernstein and Lee Expires August 24, 2015 [Page 25]
Internet-Draft Wavelength Switched Optical Networks February 2015
The processing capability ID field defines the following processing
capabilities:
0: Reserved
1: Regeneration capability
2: Fault and performance monitoring
3: Vendor specific capability
When the processing Cap ID is "regeneration capability", the
following additional capability parameters are provided in the
following field:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| T | C | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Where the T bit indicates the type of regenerator:
T=0: Reserved
T=1: 1R Regenerator
T=2: 2R Regenerator
T=3: 3R Regenerator
Where the C bit indicates the capability of the regenerator:
C=0: Reserved
C=1: Fixed Regeneration Point
C=2: Selective Regeneration Pools
Note that when the capability of the regenerator is indicated to be
Selective Regeneration Pools, regeneration pool properties such as
input and output restrictions and availability need to be specified.
These properties will be encoded in the capabilities field starting
with the bits marked Reserved in the figure. An additional
Bernstein and Lee Expires August 24, 2015 [Page 26]
Internet-Draft Wavelength Switched Optical Networks February 2015
specification describing the encoding of these parameters is
required before the value C=2 can be used.
5. Security Considerations
This document defines protocol-independent encodings for WSON
information and does not introduce any security issues.
However, other documents that make use of these encodings within
protocol extensions need to consider the issues and risks associated
with inspection, interception, modification, or spoofing of any of
this information. It is expected that any such documents will
describe the necessary security measures to provide adequate
protection. A general discussion on security in GMPLS networks can
be found in [RFC5920].
6. IANA Considerations
This document introduces a new top-level registry for GMPLS routing
parameters for WSON encoding. This new IANA registry will be created
to make the assignment of a new type and new values for the new
"GMPLS Routing Parameters for WSON". Note that this registry is only
used in routing, not in signaling.
6.1. Types for subfields of WSON Resource Block Information
Under this new GMPLS Routing Parameters for WSON, a new IANA
registry will be created for nested subfields of the Resource Block
Information field to create a new section named "Types for subfields
of WSON Resource Block Information Registry". The new registry will
be maintained via Standards Action as defined by [RFC5226].
There are initial values in the new registry as follows:
Value Length Sub-TLV Type Reference
0 Reserved
1 variable Optical Interface Class List [This.I-D]
2 variable Acceptable Client
Signal List [This.I-D]
Bernstein and Lee Expires August 24, 2015 [Page 27]
Internet-Draft Wavelength Switched Optical Networks February 2015
3 variable Input Bit Rate List [This.I-D]
4 variable Processing Capability List [This.I-D]
5-65535 Unassigned
7. Acknowledgments
This document was prepared using 2-Word-v2.0.template.dot.
Bernstein and Lee Expires August 24, 2015 [Page 28]
Internet-Draft Wavelength Switched Optical Networks February 2015
APPENDIX A: Encoding Examples
A.1. Wavelength Converter Accessibility Field
Example:
Figure 1 shows a wavelength converter pool architecture known as
"shared per fiber". In this case the input and output pool matrices
are simply:
+-----+ +-----+
| 1 1 | | 1 0 |
WI =| |, WE =| |
| 1 1 | | 0 1 |
+-----+ +-----+
+-----------+ +------+
| |--------------------->| |
| |--------------------->| C |
/| | |--------------------->| o |
/D+--->| |--------------------->| m |
+ e+--->| | | b |=======>
========>| M| | Optical | +-----------+ | i | Port O1
Port I1 + u+--->| Switch | | WC Pool | | n |
\x+--->| | | +-----+ | | e |
\| | +----+->|WC #1|--+---->| r |
| | | +-----+ | +------+
| | | | +------+
/| | | | +-----+ | | |
/D+--->| +----+->|WC #2|--+---->| C |
+ e+--->| | | +-----+ | | o |
========>| M| | | +-----------+ | m |=======>
Port I2 + u+--->| | | b | Port O2
\x+--->| |--------------------->| i |
\| | |--------------------->| n |
| |--------------------->| e |
| |--------------------->| r |
+-----------+ +------+
Figure 1 An optical switch featuring a shared per fiber wavelength
converter pool architecture.
Bernstein and Lee Expires August 24, 2015 [Page 29]
Internet-Draft Wavelength Switched Optical Networks February 2015
The wavelength converters are resource blocks and the wavelength
converter pool is a resource block pool. This can be encoded as
follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved |1| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: I1,I2 can connect to either WC1 or WC2
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0| Reserved | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |1| Reserved | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB ID = #1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB ID = #2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: WC1 can only connect to O1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |1| Reserved | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0| Reserved | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB ID = #1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: WC2 can only connect to O2
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |1| Reserved | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Local Identifier = #2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |0| | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB ID = #2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Bernstein and Lee Expires August 24, 2015 [Page 30]
Internet-Draft Wavelength Switched Optical Networks February 2015
A.2. Wavelength Conversion Range Field
Example:
This example, based on figure 1, shows how to represent the
wavelength conversion range of wavelength converters. Suppose the
wavelength range of input and output of WC1 and WC2 are {L1, L2, L3,
L4}:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
Note: WC Set
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action=0 |1| Reserved | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WC ID = #1 | WC ID = #2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: wavelength input range
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 2 | Num Wavelengths = 4 | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency = 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note: wavelength output range
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 2 | Num Wavelengths = 4 | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Grid | C.S. | Reserved | n for lowest frequency = 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
A.3. An OEO Switch with DWDM Optics
Figure 2 shows an electronic switch fabric surrounded by DWDM
optics. In this example the electronic fabric can handle either
G.709 or SDH signals only (2.5 or 10 Gbps). To describe this node,
the following information in RBNF form [RFC5511] is needed:
<Node_Info> ::= <Node_ID>
[Other GMPLS info-elements]
[<ConnectivityMatrix>...]
[<ResourcePool>]
Bernstein and Lee Expires August 24, 2015 [Page 31]
Internet-Draft Wavelength Switched Optical Networks February 2015
[<RBPoolState>]
In this case there is complete port-to-port connectivity so the
<ConnectivityMatrix> is not required. In addition since there are
sufficient ports to handle all wavelength signals the <RBPoolState>
element is not needed.
Hence the attention will be focused on the <ResourcePool> field:
<ResourcePool> ::= <ResourceBlockInfo>
[<RBAccessibility>...]
[<ResourceWaveConstraints>...]
/| +-----------+ +-------------+ +------+
/D+--->| +--->|Tunable Laser|-->| |
+ e+--->| | +-------------+ | C |
========>| M| | | ... | o |=======>
Port I1 + u+--->| | +-------------+ | m | Port O1
\x+--->| |--->|Tunable Laser|-->| b |
\| | Electric | +-------------+ +------+
| Switch |
/| | | +-------------+ +------+
/D+--->| +--->|Tunable Laser|-->| |
+ e+--->| | +-------------+ | C |
========>| M| | | ... | o |=======>
Port I2 + u+--->| | +-------------+ | m | Port O2
\x+--->| +--->|Tunable Laser|-->| b |
\| | | +-------------+ +------+
| |
/| | | +-------------+ +------+
/D+--->| |--->|Tunable Laser|-->| |
+ e+--->| | +-------------+ | C |
========>| M| | | ... | o |=======>
Port I3 + u+--->| | +-------------+ | m | Port O3
\x+--->| |--->|Tunable Laser|-->| b |
\| +-----------+ +-------------+ +------+
Figure 2 An optical switch built around an electronic switching
fabric.
The resource block information will tell us about the processing
constraints of the receivers, transmitters, and the electronic
Bernstein and Lee Expires August 24, 2015 [Page 32]
Internet-Draft Wavelength Switched Optical Networks February 2015
switch. The resource availability information, although very simple,
tells us that all signals must traverse the electronic fabric (fixed
connectivity). The resource wavelength constraints are not needed
since there are no special wavelength constraints for the resources
that would not appear as port/wavelength constraints.
<ResourceBlockInfo>:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Set Field |
: (only one resource block in this example with shared |
| input/output case) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1|1|0| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Optical Interface Class List(s) |
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Input Client Signal Type |
: (G-PIDs for SDH and G.709) :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Input Bit Rate Range List |
: (2.5Gbps, 10Gbps) :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Processing Capabilities List |
: Fixed (non optional) 3R regeneration :
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Since there is fixed connectivity to resource blocks (the electronic
switch) the <RBAccessibility> is:
Bernstein and Lee Expires August 24, 2015 [Page 33]
Internet-Draft Wavelength Switched Optical Networks February 2015
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Connectivity=0|Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Input Link Set Field A #1 |
: (All input links connect to resource) :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RB Set Field A #1 |
: (trivial set only one resource block) :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Output Link Set Field B #1 |
: (All output links connect to resource) :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Bernstein and Lee Expires August 24, 2015 [Page 34]
Internet-Draft Wavelength Switched Optical Networks February 2015
8. References
8.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC4328] Papadimitriou, D., Ed., "Generalized Multi-Protocol Label
Switching (GMPLS) Signaling Extensions for G.709 Optical
Transport Networks Control", RFC 4328, January 2006.
[Gen-Encode] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "General
Network Element Constraint Encoding for GMPLS Controlled
Networks", work in progress: draft-ietf-ccamp-general-
constraint-encode.
[RWA-Info] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and
Wavelength Assignment Information Model for Wavelength
Switched Optical Networks", work in progress: draft-ietf-
ccamp-rwa-info.
[RFC6205] T. Otani, H. Guo, K. Miyazaki, D. Caviglia, "Generalized
Labels for G.694 Lambda-Switching Capable Label Switching
Routers", RFC 6205, March 2011.
8.2. Informative References
[IEEE] IEEE, "IEEE Standard for Binary Floating-Point
Arithmetic", Standard 754-1985, 1985 (ISBN 1-5593-7653-8).
[G.652] ITU-T Recommendation G.652, Characteristics of a single-mode
optical fibre and cable, September, 2011.
[G.653] ITU-T Recommendation G.653, Characteristics of a dispersion-
shifted, single-mode optical fibre and cable, July,
2010.
[G.655] ITU-T Recommendation G.655, Characteristics of a non-zero
dispersion-shifted single-mode optical fibre and cable,
September, 2011.
Bernstein and Lee Expires August 24, 2015 [Page 35]
Internet-Draft Wavelength Switched Optical Networks February 2015
[G.698.1] ITU-T Recommendation G.698.1, Spectral grids for WDM
applications: DWDM frequency grid, June 2002.
[G.698.2] ITU-T Recommendation G.698.2, Spectral grids for WDM
applications: CWDM wavelength grid, December 2003.
[G.695] ITU-T Recommendation G.695, Optical interfaces for coarse
wavelength division multiplexing applications, October,
2010.
[G.959.1] ITU-T Recommendation G.959.1, Optical transport network
physical layer interfaces, February, 2012.
[RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching
(GMPLS) Signaling Functional Description", RFC 3471,
January 2003.
[RFC4203] Kompella, L. and Y. Rekhter, Eds., "OSPF Extensions in
Support of Generalized Multi-Protocol Label Switching
(GMPLS)", RFC 4203, October 2005.
[RFC5226] Narten, T., Alvestrand, H., "Guidelines for Writing an
IANA Considerations Section in RFCs", RFC 5226, May 2008.
[RFC5307] Kompella, L. and Y. Rekhter, Eds., "IS-IS Extensions in
Support of Generalized Multi-Protocol Label Switching
(GMPLS)", RFC 5307, October, 2008.
[RFC5440] Vasseur, JP. and Le Roux, JL., Eds., "Path Computation
Element (PCE) Communication Protocol (PCEP)", RFC 5440,
March 2009.
[RFC5511] A. Farrel, "Routing Backus-Naur Form (RBNF): A Syntax Used
to Form Encoding Rules in Various Routing Protocol Specifications",
RFC 5511, April 2009.
[RFC5920] L. Fang, Ed., "Security Framework for MPLS and GMPLS
Networks", RFC 5920, July 2010.
[RFC6163] Y. Lee, G. Bernstein, W. Imajuku, "Framework for GMPLS and
PCE Control of Wavelength Switched Optical Networks", RFC
6163, April 2011.
Bernstein and Lee Expires August 24, 2015 [Page 36]
Internet-Draft Wavelength Switched Optical Networks February 2015
9. Contributors
Diego Caviglia
Ericsson
Via A. Negrone 1/A 16153
Genoa Italy
Phone: +39 010 600 3736
Email: diego.caviglia@ericsson.com
Anders Gavler
Acreo AB
Electrum 236
SE - 164 40 Kista Sweden
Email: Anders.Gavler@acreo.se
Jonas Martensson
Acreo AB
Electrum 236
SE - 164 40 Kista, Sweden
Email: Jonas.Martensson@acreo.se
Itaru Nishioka
NEC Corp.
1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666
Japan
Phone: +81 44 396 3287
Email: i-nishioka@cb.jp.nec.com
Pierre Peloso
ALU
Email: pierre.peloso@alcatel-lucent.com
Cyril Margaria
Email: cyril.margaria@gmail.com
Giovanni Martinelli
Bernstein and Lee Expires August 24, 2015 [Page 37]
Internet-Draft Wavelength Switched Optical Networks February 2015
Cisco
Email: giomarti@cisco.com
Gabriele M Galimberti
Cisco
Email: ggalimbe@cisco.com
Lyndon Ong
Ciena Corporation
Email: lyong@ciena.com
Daniele Ceccarelli
Ericsson
Email: daniele.ceccarelli@ericsson.com
Authors' Addresses
Greg M. Bernstein (ed.)
Grotto Networking
Fremont California, USA
Phone: (510) 573-2237
Email: gregb@grotto-networking.com
Young Lee (ed.)
Huawei Technologies
5340 Legacy Drive Build 3
Plano, TX 75024
USA
Phone: (469) 277-5838
Email: leeyoung@huawei.com
Bernstein and Lee Expires August 24, 2015 [Page 38]
Internet-Draft Wavelength Switched Optical Networks February 2015
Dan Li
Huawei Technologies Co., Ltd.
F3-5-B R&D Center, Huawei Base,
Bantian, Longgang District
Shenzhen 518129 P.R.China
Phone: +86-755-28973237
Email: danli@huawei.com
Wataru Imajuku
NTT Network Innovation Labs
1-1 Hikari-no-oka, Yokosuka, Kanagawa
Japan
Phone: +81-(46) 859-4315
Email: imajuku.wataru@lab.ntt.co.jp
Jianrui Han
Huawei Technologies Co., Ltd.
F3-5-B R&D Center, Huawei Base,
Bantian, Longgang District
Shenzhen 518129 P.R.China
Phone: +86-755-28972916
Email: hanjianrui@huawei.com
Bernstein and Lee Expires August 24, 2015 [Page 39]