Internet DRAFT - draft-ietf-jose-json-web-encryption
draft-ietf-jose-json-web-encryption
JOSE Working Group M. Jones
Internet-Draft Microsoft
Intended status: Standards Track J. Hildebrand
Expires: July 17, 2015 Cisco
January 13, 2015
JSON Web Encryption (JWE)
draft-ietf-jose-json-web-encryption-40
Abstract
JSON Web Encryption (JWE) represents encrypted content using
JavaScript Object Notation (JSON) based data structures.
Cryptographic algorithms and identifiers for use with this
specification are described in the separate JSON Web Algorithms (JWA)
specification and IANA registries defined by that specification.
Related digital signature and MAC capabilities are described in the
separate JSON Web Signature (JWS) specification.
Status of this Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on July 17, 2015.
Copyright Notice
Copyright (c) 2015 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
Jones & Hildebrand Expires July 17, 2015 [Page 1]
Internet-Draft JSON Web Encryption (JWE) January 2015
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1. Notational Conventions . . . . . . . . . . . . . . . . . . 5
2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 6
3. JSON Web Encryption (JWE) Overview . . . . . . . . . . . . . . 8
3.1. JWE Compact Serialization Overview . . . . . . . . . . . . 9
3.2. JWE JSON Serialization Overview . . . . . . . . . . . . . 9
3.3. Example JWE . . . . . . . . . . . . . . . . . . . . . . . 10
4. JOSE Header . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1. Registered Header Parameter Names . . . . . . . . . . . . 12
4.1.1. "alg" (Algorithm) Header Parameter . . . . . . . . . . 12
4.1.2. "enc" (Encryption Algorithm) Header Parameter . . . . 12
4.1.3. "zip" (Compression Algorithm) Header Parameter . . . . 13
4.1.4. "jku" (JWK Set URL) Header Parameter . . . . . . . . . 13
4.1.5. "jwk" (JSON Web Key) Header Parameter . . . . . . . . 13
4.1.6. "kid" (Key ID) Header Parameter . . . . . . . . . . . 13
4.1.7. "x5u" (X.509 URL) Header Parameter . . . . . . . . . . 13
4.1.8. "x5c" (X.509 Certificate Chain) Header Parameter . . . 14
4.1.9. "x5t" (X.509 Certificate SHA-1 Thumbprint) Header
Parameter . . . . . . . . . . . . . . . . . . . . . . 14
4.1.10. "x5t#S256" (X.509 Certificate SHA-256 Thumbprint)
Header Parameter . . . . . . . . . . . . . . . . . . . 14
4.1.11. "typ" (Type) Header Parameter . . . . . . . . . . . . 14
4.1.12. "cty" (Content Type) Header Parameter . . . . . . . . 14
4.1.13. "crit" (Critical) Header Parameter . . . . . . . . . . 14
4.2. Public Header Parameter Names . . . . . . . . . . . . . . 15
4.3. Private Header Parameter Names . . . . . . . . . . . . . . 15
5. Producing and Consuming JWEs . . . . . . . . . . . . . . . . . 15
5.1. Message Encryption . . . . . . . . . . . . . . . . . . . . 15
5.2. Message Decryption . . . . . . . . . . . . . . . . . . . . 17
5.3. String Comparison Rules . . . . . . . . . . . . . . . . . 20
6. Key Identification . . . . . . . . . . . . . . . . . . . . . . 20
7. Serializations . . . . . . . . . . . . . . . . . . . . . . . . 20
7.1. JWE Compact Serialization . . . . . . . . . . . . . . . . 20
7.2. JWE JSON Serialization . . . . . . . . . . . . . . . . . . 21
7.2.1. General JWE JSON Serialization Syntax . . . . . . . . 21
7.2.2. Flattened JWE JSON Serialization Syntax . . . . . . . 24
8. TLS Requirements . . . . . . . . . . . . . . . . . . . . . . . 24
9. Distinguishing between JWS and JWE Objects . . . . . . . . . . 25
10. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 25
10.1. JSON Web Signature and Encryption Header Parameters
Registration . . . . . . . . . . . . . . . . . . . . . . . 25
Jones & Hildebrand Expires July 17, 2015 [Page 2]
Internet-Draft JSON Web Encryption (JWE) January 2015
10.1.1. Registry Contents . . . . . . . . . . . . . . . . . . 25
11. Security Considerations . . . . . . . . . . . . . . . . . . . 27
11.1. Key Entropy and Random Values . . . . . . . . . . . . . . 27
11.2. Key Protection . . . . . . . . . . . . . . . . . . . . . . 28
11.3. Using Matching Algorithm Strengths . . . . . . . . . . . . 28
11.4. Adaptive Chosen-Ciphertext Attacks . . . . . . . . . . . . 28
11.5. Timing Attacks . . . . . . . . . . . . . . . . . . . . . . 29
12. References . . . . . . . . . . . . . . . . . . . . . . . . . . 29
12.1. Normative References . . . . . . . . . . . . . . . . . . . 29
12.2. Informative References . . . . . . . . . . . . . . . . . . 30
Appendix A. JWE Examples . . . . . . . . . . . . . . . . . . . . 31
A.1. Example JWE using RSAES OAEP and AES GCM . . . . . . . . . 31
A.1.1. JOSE Header . . . . . . . . . . . . . . . . . . . . . 31
A.1.2. Content Encryption Key (CEK) . . . . . . . . . . . . . 31
A.1.3. Key Encryption . . . . . . . . . . . . . . . . . . . . 32
A.1.4. Initialization Vector . . . . . . . . . . . . . . . . 33
A.1.5. Additional Authenticated Data . . . . . . . . . . . . 33
A.1.6. Content Encryption . . . . . . . . . . . . . . . . . . 34
A.1.7. Complete Representation . . . . . . . . . . . . . . . 34
A.1.8. Validation . . . . . . . . . . . . . . . . . . . . . . 35
A.2. Example JWE using RSAES-PKCS1-V1_5 and
AES_128_CBC_HMAC_SHA_256 . . . . . . . . . . . . . . . . . 35
A.2.1. JOSE Header . . . . . . . . . . . . . . . . . . . . . 35
A.2.2. Content Encryption Key (CEK) . . . . . . . . . . . . . 36
A.2.3. Key Encryption . . . . . . . . . . . . . . . . . . . . 36
A.2.4. Initialization Vector . . . . . . . . . . . . . . . . 38
A.2.5. Additional Authenticated Data . . . . . . . . . . . . 38
A.2.6. Content Encryption . . . . . . . . . . . . . . . . . . 38
A.2.7. Complete Representation . . . . . . . . . . . . . . . 39
A.2.8. Validation . . . . . . . . . . . . . . . . . . . . . . 39
A.3. Example JWE using AES Key Wrap and
AES_128_CBC_HMAC_SHA_256 . . . . . . . . . . . . . . . . . 40
A.3.1. JOSE Header . . . . . . . . . . . . . . . . . . . . . 40
A.3.2. Content Encryption Key (CEK) . . . . . . . . . . . . . 40
A.3.3. Key Encryption . . . . . . . . . . . . . . . . . . . . 40
A.3.4. Initialization Vector . . . . . . . . . . . . . . . . 41
A.3.5. Additional Authenticated Data . . . . . . . . . . . . 41
A.3.6. Content Encryption . . . . . . . . . . . . . . . . . . 41
A.3.7. Complete Representation . . . . . . . . . . . . . . . 42
A.3.8. Validation . . . . . . . . . . . . . . . . . . . . . . 42
A.4. Example JWE using General JWE JSON Serialization . . . . . 43
A.4.1. JWE Per-Recipient Unprotected Headers . . . . . . . . 43
A.4.2. JWE Protected Header . . . . . . . . . . . . . . . . . 43
A.4.3. JWE Unprotected Header . . . . . . . . . . . . . . . . 44
A.4.4. Complete JOSE Header Values . . . . . . . . . . . . . 44
A.4.5. Additional Authenticated Data . . . . . . . . . . . . 44
A.4.6. Content Encryption . . . . . . . . . . . . . . . . . . 44
A.4.7. Complete JWE JSON Serialization Representation . . . . 45
Jones & Hildebrand Expires July 17, 2015 [Page 3]
Internet-Draft JSON Web Encryption (JWE) January 2015
A.5. Example JWE using Flattened JWE JSON Serialization . . . . 46
Appendix B. Example AES_128_CBC_HMAC_SHA_256 Computation . . . . 46
B.1. Extract MAC_KEY and ENC_KEY from Key . . . . . . . . . . . 46
B.2. Encrypt Plaintext to Create Ciphertext . . . . . . . . . . 47
B.3. 64 Bit Big Endian Representation of AAD Length . . . . . . 47
B.4. Initialization Vector Value . . . . . . . . . . . . . . . 48
B.5. Create Input to HMAC Computation . . . . . . . . . . . . . 48
B.6. Compute HMAC Value . . . . . . . . . . . . . . . . . . . . 48
B.7. Truncate HMAC Value to Create Authentication Tag . . . . . 48
Appendix C. Acknowledgements . . . . . . . . . . . . . . . . . . 48
Appendix D. Document History . . . . . . . . . . . . . . . . . . 49
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 61
Jones & Hildebrand Expires July 17, 2015 [Page 4]
Internet-Draft JSON Web Encryption (JWE) January 2015
1. Introduction
JSON Web Encryption (JWE) represents encrypted content using
JavaScript Object Notation (JSON) [RFC7159] based data structures.
The JWE cryptographic mechanisms encrypt and provide integrity
protection for an arbitrary sequence of octets.
Two closely related serializations for JWEs are defined. The JWE
Compact Serialization is a compact, URL-safe representation intended
for space constrained environments such as HTTP Authorization headers
and URI query parameters. The JWE JSON Serialization represents JWEs
as JSON objects and enables the same content to be encrypted to
multiple parties. Both share the same cryptographic underpinnings.
Cryptographic algorithms and identifiers for use with this
specification are described in the separate JSON Web Algorithms (JWA)
[JWA] specification and IANA registries defined by that
specification. Related digital signature and MAC capabilities are
described in the separate JSON Web Signature (JWS) [JWS]
specification.
Names defined by this specification are short because a core goal is
for the resulting representations to be compact.
1.1. Notational Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in Key
words for use in RFCs to Indicate Requirement Levels [RFC2119]. If
these words are used without being spelled in uppercase then they are
to be interpreted with their normal natural language meanings.
BASE64URL(OCTETS) denotes the base64url encoding of OCTETS, per
Section 2 of [JWS].
UTF8(STRING) denotes the octets of the UTF-8 [RFC3629] representation
of STRING, where STRING is a sequence of zero or more Unicode
[UNICODE] characters.
ASCII(STRING) denotes the octets of the ASCII [RFC20] representation
of STRING, where STRING is a sequence of zero or more ASCII
characters.
The concatenation of two values A and B is denoted as A || B.
Jones & Hildebrand Expires July 17, 2015 [Page 5]
Internet-Draft JSON Web Encryption (JWE) January 2015
2. Terminology
These terms defined by the JSON Web Signature (JWS) [JWS]
specification are incorporated into this specification: "JSON Web
Signature (JWS)", "Base64url Encoding", "Collision-Resistant Name",
"Header Parameter", "JOSE Header", and "StringOrURI".
These terms defined by the Internet Security Glossary, Version 2
[RFC4949] are incorporated into this specification: "Ciphertext",
"Digital Signature", "Message Authentication Code (MAC)", and
"Plaintext".
These terms are defined by this specification:
JSON Web Encryption (JWE)
A data structure representing an encrypted and integrity protected
message.
Authenticated Encryption with Associated Data (AEAD)
An AEAD algorithm is one that encrypts the Plaintext, allows
Additional Authenticated Data to be specified, and provides an
integrated content integrity check over the Ciphertext and
Additional Authenticated Data. AEAD algorithms accept two inputs,
the Plaintext and the Additional Authenticated Data value, and
produce two outputs, the Ciphertext and the Authentication Tag
value. AES Galois/Counter Mode (GCM) is one such algorithm.
Additional Authenticated Data (AAD)
An input to an AEAD operation that is integrity protected but not
encrypted.
Authentication Tag
An output of an AEAD operation that ensures the integrity of the
Ciphertext and the Additional Authenticated Data. Note that some
algorithms may not use an Authentication Tag, in which case this
value is the empty octet sequence.
Content Encryption Key (CEK)
A symmetric key for the AEAD algorithm used to encrypt the
Plaintext to produce the Ciphertext and the Authentication Tag.
JWE Encrypted Key
Encrypted Content Encryption Key (CEK) value. Note that for some
algorithms, the JWE Encrypted Key value is specified as being the
empty octet sequence.
Jones & Hildebrand Expires July 17, 2015 [Page 6]
Internet-Draft JSON Web Encryption (JWE) January 2015
JWE Initialization Vector
Initialization vector value used when encrypting the plaintext.
Note that some algorithms may not use an Initialization Vector, in
which case this value is the empty octet sequence.
JWE AAD
Additional value to be integrity protected by the authenticated
encryption operation. This can only be present when using the JWE
JSON Serialization. (Note that this can also be achieved when
using either serialization by including the AAD value as an
integrity protected Header Parameter value, but at the cost of the
value being double base64url encoded.)
JWE Ciphertext
Ciphertext value resulting from authenticated encryption of the
plaintext with additional authenticated data.
JWE Authentication Tag
Authentication Tag value resulting from authenticated encryption
of the plaintext with additional authenticated data.
JWE Protected Header
JSON object that contains the Header Parameters that are integrity
protected by the authenticated encryption operation. These
parameters apply to all recipients of the JWE. For the JWE
Compact Serialization, this comprises the entire JOSE Header. For
the JWE JSON Serialization, this is one component of the JOSE
Header.
JWE Shared Unprotected Header
JSON object that contains the Header Parameters that apply to all
recipients of the JWE that are not integrity protected. This can
only be present when using the JWE JSON Serialization.
JWE Per-Recipient Unprotected Header
JSON object that contains Header Parameters that apply to a single
recipient of the JWE. These Header Parameter values are not
integrity protected. This can only be present when using the JWE
JSON Serialization.
JWE Compact Serialization
A representation of the JWE as a compact, URL-safe string.
JWE JSON Serialization
A representation of the JWE as a JSON object. The JWE JSON
Serialization enables the same content to be encrypted to multiple
parties. This representation is neither optimized for compactness
nor URL-safe.
Jones & Hildebrand Expires July 17, 2015 [Page 7]
Internet-Draft JSON Web Encryption (JWE) January 2015
Key Management Mode
A method of determining the Content Encryption Key (CEK) value to
use. Each algorithm used for determining the CEK value uses a
specific Key Management Mode. Key Management Modes employed by
this specification are Key Encryption, Key Wrapping, Direct Key
Agreement, Key Agreement with Key Wrapping, and Direct Encryption.
Key Encryption
A Key Management Mode in which the Content Encryption Key (CEK)
value is encrypted to the intended recipient using an asymmetric
encryption algorithm.
Key Wrapping
A Key Management Mode in which the Content Encryption Key (CEK)
value is encrypted to the intended recipient using a symmetric key
wrapping algorithm.
Direct Key Agreement
A Key Management Mode in which a key agreement algorithm is used
to agree upon the Content Encryption Key (CEK) value.
Key Agreement with Key Wrapping
A Key Management Mode in which a key agreement algorithm is used
to agree upon a symmetric key used to encrypt the Content
Encryption Key (CEK) value to the intended recipient using a
symmetric key wrapping algorithm.
Direct Encryption
A Key Management Mode in which the Content Encryption Key (CEK)
value used is the secret symmetric key value shared between the
parties.
3. JSON Web Encryption (JWE) Overview
JWE represents encrypted content using JSON data structures and
base64url encoding. These JSON data structures MAY contain white
space and/or line breaks before or after any JSON values or
structural characters, in accordance with Section 2 of RFC 7159
[RFC7159]. A JWE represents these logical values (each of which is
defined in Section 2):
o JOSE Header
o JWE Encrypted Key
o JWE Initialization Vector
o JWE AAD
Jones & Hildebrand Expires July 17, 2015 [Page 8]
Internet-Draft JSON Web Encryption (JWE) January 2015
o JWE Ciphertext
o JWE Authentication Tag
For a JWE, the JOSE Header members are the union of the members of
these values (each of which is defined in Section 2):
o JWE Protected Header
o JWE Shared Unprotected Header
o JWE Per-Recipient Unprotected Header
JWE utilizes authenticated encryption to ensure the confidentiality
and integrity of the Plaintext and the integrity of the JWE Protected
Header and the JWE AAD.
This document defines two serializations for JWEs: a compact, URL-
safe serialization called the JWE Compact Serialization and a JSON
serialization called the JWE JSON Serialization. In both
serializations, the JWE Protected Header, JWE Encrypted Key, JWE
Initialization Vector, JWE Ciphertext, and JWE Authentication Tag are
base64url encoded, since JSON lacks a way to directly represent
arbitrary octet sequences. When present, the JWE AAD is also
base64url encoded.
3.1. JWE Compact Serialization Overview
In the JWE Compact Serialization, no JWE Shared Unprotected Header or
JWE Per-Recipient Unprotected Header are used. In this case, the
JOSE Header and the JWE Protected Header are the same.
In the JWE Compact Serialization, a JWE is represented as the
concatenation:
BASE64URL(UTF8(JWE Protected Header)) || '.' ||
BASE64URL(JWE Encrypted Key) || '.' ||
BASE64URL(JWE Initialization Vector) || '.' ||
BASE64URL(JWE Ciphertext) || '.' ||
BASE64URL(JWE Authentication Tag)
See Section 7.1 for more information about the JWE Compact
Serialization.
3.2. JWE JSON Serialization Overview
In the JWE JSON Serialization, one or more of the JWE Protected
Header, JWE Shared Unprotected Header, and JWE Per-Recipient
Unprotected Header MUST be present. In this case, the members of the
JOSE Header are the union of the members of the JWE Protected Header,
JWE Shared Unprotected Header, and JWE Per-Recipient Unprotected
Jones & Hildebrand Expires July 17, 2015 [Page 9]
Internet-Draft JSON Web Encryption (JWE) January 2015
Header values that are present.
In the JWE JSON Serialization, a JWE is represented as a JSON object
containing some or all of these eight members:
"protected", with the value BASE64URL(UTF8(JWE Protected Header))
"unprotected", with the value JWE Shared Unprotected Header
"header", with the value JWE Per-Recipient Unprotected Header
"encrypted_key", with the value BASE64URL(JWE Encrypted Key)
"iv", with the value BASE64URL(JWE Initialization Vector)
"ciphertext", with the value BASE64URL(JWE Ciphertext)
"tag", with the value BASE64URL(JWE Authentication Tag)
"aad", with the value BASE64URL(JWE AAD)
The six base64url encoded result strings and the two unprotected JSON
object values are represented as members within a JSON object. The
inclusion of some of these values is OPTIONAL. The JWE JSON
Serialization can also encrypt the plaintext to multiple recipients.
See Section 7.2 for more information about the JWE JSON
Serialization.
3.3. Example JWE
This example encrypts the plaintext "The true sign of intelligence is
not knowledge but imagination." to the recipient.
The following example JWE Protected Header declares that:
o The Content Encryption Key is encrypted to the recipient using the
RSAES OAEP [RFC3447] algorithm to produce the JWE Encrypted Key.
o Authenticated encryption is performed on the Plaintext using the
AES GCM [AES, NIST.800-38D] algorithm with a 256 bit key to
produce the Ciphertext and the Authentication Tag.
{"alg":"RSA-OAEP","enc":"A256GCM"}
Encoding this JWE Protected Header as BASE64URL(UTF8(JWE Protected
Header)) gives this value:
eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkEyNTZHQ00ifQ
The remaining steps to finish creating this JWE are:
o Generate a random Content Encryption Key (CEK).
o Encrypt the CEK with the recipient's public key using the RSAES
OAEP algorithm to produce the JWE Encrypted Key.
Jones & Hildebrand Expires July 17, 2015 [Page 10]
Internet-Draft JSON Web Encryption (JWE) January 2015
o Base64url encode the JWE Encrypted Key.
o Generate a random JWE Initialization Vector.
o Base64url encode the JWE Initialization Vector.
o Let the Additional Authenticated Data encryption parameter be
ASCII(BASE64URL(UTF8(JWE Protected Header))).
o Perform authenticated encryption on the Plaintext with the AES GCM
algorithm using the CEK as the encryption key, the JWE
Initialization Vector, and the Additional Authenticated Data
value, requesting a 128 bit Authentication Tag output.
o Base64url encode the Ciphertext.
o Base64url encode the Authentication Tag.
o Assemble the final representation: The Compact Serialization of
this result is the string BASE64URL(UTF8(JWE Protected Header)) ||
'.' || BASE64URL(JWE Encrypted Key) || '.' || BASE64URL(JWE
Initialization Vector) || '.' || BASE64URL(JWE Ciphertext) || '.'
|| BASE64URL(JWE Authentication Tag).
The final result in this example (with line breaks for display
purposes only) is:
eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkEyNTZHQ00ifQ.
OKOawDo13gRp2ojaHV7LFpZcgV7T6DVZKTyKOMTYUmKoTCVJRgckCL9kiMT03JGe
ipsEdY3mx_etLbbWSrFr05kLzcSr4qKAq7YN7e9jwQRb23nfa6c9d-StnImGyFDb
Sv04uVuxIp5Zms1gNxKKK2Da14B8S4rzVRltdYwam_lDp5XnZAYpQdb76FdIKLaV
mqgfwX7XWRxv2322i-vDxRfqNzo_tETKzpVLzfiwQyeyPGLBIO56YJ7eObdv0je8
1860ppamavo35UgoRdbYaBcoh9QcfylQr66oc6vFWXRcZ_ZT2LawVCWTIy3brGPi
6UklfCpIMfIjf7iGdXKHzg.
48V1_ALb6US04U3b.
5eym8TW_c8SuK0ltJ3rpYIzOeDQz7TALvtu6UG9oMo4vpzs9tX_EFShS8iB7j6ji
SdiwkIr3ajwQzaBtQD_A.
XFBoMYUZodetZdvTiFvSkQ
See Appendix A.1 for the complete details of computing this JWE. See
Appendix A for additional examples, including examples using the JWE
JSON Serialization in Sections A.4 and A.5.
4. JOSE Header
For a JWE, the members of the JSON object(s) representing the JOSE
Header describe the encryption applied to the Plaintext and
optionally additional properties of the JWE. The Header Parameter
names within the JOSE Header MUST be unique, just as described in
Section 4 of [JWS]. The rules about handling Header Parameters that
are not understood by the implementation are also the same. The
classes of Header Parameter names are likewise the same.
Jones & Hildebrand Expires July 17, 2015 [Page 11]
Internet-Draft JSON Web Encryption (JWE) January 2015
4.1. Registered Header Parameter Names
The following Header Parameter names for use in JWEs are registered
in the IANA JSON Web Signature and Encryption Header Parameters
registry defined in [JWS], with meanings as defined below.
As indicated by the common registry, JWSs and JWEs share a common
Header Parameter space; when a parameter is used by both
specifications, its usage must be compatible between the
specifications.
4.1.1. "alg" (Algorithm) Header Parameter
This parameter has the same meaning, syntax, and processing rules as
the "alg" Header Parameter defined in Section 4.1.1 of [JWS], except
that the Header Parameter identifies the cryptographic algorithm used
to encrypt or determine the value of the Content Encryption Key
(CEK). The encrypted content is not usable if the "alg" value does
not represent a supported algorithm, or if the recipient does not
have a key that can be used with that algorithm.
A list of defined "alg" values for this use can be found in the IANA
JSON Web Signature and Encryption Algorithms registry defined in
[JWA]; the initial contents of this registry are the values defined
in Section 4.1 of the JSON Web Algorithms (JWA) [JWA] specification.
4.1.2. "enc" (Encryption Algorithm) Header Parameter
The "enc" (encryption algorithm) Header Parameter identifies the
content encryption algorithm used to perform authenticated encryption
on the Plaintext to produce the Ciphertext and the Authentication
Tag. This algorithm MUST be an AEAD algorithm with a specified key
length. The encrypted content is not usable if the "enc" value does
not represent a supported algorithm. "enc" values should either be
registered in the IANA JSON Web Signature and Encryption Algorithms
registry defined in [JWA] or be a value that contains a Collision-
Resistant Name. The "enc" value is a case-sensitive ASCII string
containing a StringOrURI value. This Header Parameter MUST be
present and MUST be understood and processed by implementations.
A list of defined "enc" values for this use can be found in the IANA
JSON Web Signature and Encryption Algorithms registry defined in
[JWA]; the initial contents of this registry are the values defined
in Section 5.1 of the JSON Web Algorithms (JWA) [JWA] specification.
Jones & Hildebrand Expires July 17, 2015 [Page 12]
Internet-Draft JSON Web Encryption (JWE) January 2015
4.1.3. "zip" (Compression Algorithm) Header Parameter
The "zip" (compression algorithm) applied to the Plaintext before
encryption, if any. The "zip" value defined by this specification
is:
o "DEF" - Compression with the DEFLATE [RFC1951] algorithm
Other values MAY be used. Compression algorithm values can be
registered in the IANA JSON Web Encryption Compression Algorithm
registry defined in [JWA]. The "zip" value is a case-sensitive
string. If no "zip" parameter is present, no compression is applied
to the Plaintext before encryption. When used, this Header Parameter
MUST be integrity protected; therefore, it MUST occur only within the
JWE Protected Header. Use of this Header Parameter is OPTIONAL.
This Header Parameter MUST be understood and processed by
implementations.
4.1.4. "jku" (JWK Set URL) Header Parameter
This parameter has the same meaning, syntax, and processing rules as
the "jku" Header Parameter defined in Section 4.1.2 of [JWS], except
that the JWK Set resource contains the public key to which the JWE
was encrypted; this can be used to determine the private key needed
to decrypt the JWE.
4.1.5. "jwk" (JSON Web Key) Header Parameter
This parameter has the same meaning, syntax, and processing rules as
the "jwk" Header Parameter defined in Section 4.1.3 of [JWS], except
that the key is the public key to which the JWE was encrypted; this
can be used to determine the private key needed to decrypt the JWE.
4.1.6. "kid" (Key ID) Header Parameter
This parameter has the same meaning, syntax, and processing rules as
the "kid" Header Parameter defined in Section 4.1.4 of [JWS], except
that the key hint references the public key to which the JWE was
encrypted; this can be used to determine the private key needed to
decrypt the JWE. This parameter allows originators to explicitly
signal a change of key to JWE recipients.
4.1.7. "x5u" (X.509 URL) Header Parameter
This parameter has the same meaning, syntax, and processing rules as
the "x5u" Header Parameter defined in Section 4.1.5 of [JWS], except
that the X.509 public key certificate or certificate chain [RFC5280]
contains the public key to which the JWE was encrypted; this can be
Jones & Hildebrand Expires July 17, 2015 [Page 13]
Internet-Draft JSON Web Encryption (JWE) January 2015
used to determine the private key needed to decrypt the JWE.
4.1.8. "x5c" (X.509 Certificate Chain) Header Parameter
This parameter has the same meaning, syntax, and processing rules as
the "x5c" Header Parameter defined in Section 4.1.6 of [JWS], except
that the X.509 public key certificate or certificate chain [RFC5280]
contains the public key to which the JWE was encrypted; this can be
used to determine the private key needed to decrypt the JWE.
See Appendix B of [JWS] for an example "x5c" value.
4.1.9. "x5t" (X.509 Certificate SHA-1 Thumbprint) Header Parameter
This parameter has the same meaning, syntax, and processing rules as
the "x5t" Header Parameter defined in Section 4.1.7 of [JWS], except
that the certificate referenced by the thumbprint contains the public
key to which the JWE was encrypted; this can be used to determine the
private key needed to decrypt the JWE. Note that certificate
thumbprints are also sometimes known as certificate fingerprints.
4.1.10. "x5t#S256" (X.509 Certificate SHA-256 Thumbprint) Header
Parameter
This parameter has the same meaning, syntax, and processing rules as
the "x5t#S256" Header Parameter defined in Section 4.1.8 of [JWS],
except that the certificate referenced by the thumbprint contains the
public key to which the JWE was encrypted; this can be used to
determine the private key needed to decrypt the JWE. Note that
certificate thumbprints are also sometimes known as certificate
fingerprints.
4.1.11. "typ" (Type) Header Parameter
This parameter has the same meaning, syntax, and processing rules as
the "typ" Header Parameter defined in Section 4.1.9 of [JWS], except
that the type is that of this complete JWE.
4.1.12. "cty" (Content Type) Header Parameter
This parameter has the same meaning, syntax, and processing rules as
the "cty" Header Parameter defined in Section 4.1.10 of [JWS], except
that the type is that of the secured content (the plaintext).
4.1.13. "crit" (Critical) Header Parameter
This parameter has the same meaning, syntax, and processing rules as
the "crit" Header Parameter defined in Section 4.1.11 of [JWS],
Jones & Hildebrand Expires July 17, 2015 [Page 14]
Internet-Draft JSON Web Encryption (JWE) January 2015
except that Header Parameters for a JWE are being referred to, rather
than Header Parameters for a JWS.
4.2. Public Header Parameter Names
Additional Header Parameter names can be defined by those using JWEs.
However, in order to prevent collisions, any new Header Parameter
name should either be registered in the IANA JSON Web Signature and
Encryption Header Parameters registry defined in [JWS] or be a Public
Name: a value that contains a Collision-Resistant Name. In each
case, the definer of the name or value needs to take reasonable
precautions to make sure they are in control of the part of the
namespace they use to define the Header Parameter name.
New Header Parameters should be introduced sparingly, as they can
result in non-interoperable JWEs.
4.3. Private Header Parameter Names
A producer and consumer of a JWE may agree to use Header Parameter
names that are Private Names: names that are not Registered Header
Parameter names Section 4.1 or Public Header Parameter names
Section 4.2. Unlike Public Header Parameter names, Private Header
Parameter names are subject to collision and should be used with
caution.
5. Producing and Consuming JWEs
5.1. Message Encryption
The message encryption process is as follows. The order of the steps
is not significant in cases where there are no dependencies between
the inputs and outputs of the steps.
1. Determine the Key Management Mode employed by the algorithm used
to determine the Content Encryption Key (CEK) value. (This is
the algorithm recorded in the "alg" (algorithm) Header Parameter
of the resulting JWE.)
2. When Key Wrapping, Key Encryption, or Key Agreement with Key
Wrapping are employed, generate a random Content Encryption Key
(CEK) value. See RFC 4086 [RFC4086] for considerations on
generating random values. The CEK MUST have a length equal to
that required for the content encryption algorithm.
3. When Direct Key Agreement or Key Agreement with Key Wrapping are
employed, use the key agreement algorithm to compute the value
Jones & Hildebrand Expires July 17, 2015 [Page 15]
Internet-Draft JSON Web Encryption (JWE) January 2015
of the agreed upon key. When Direct Key Agreement is employed,
let the Content Encryption Key (CEK) be the agreed upon key.
When Key Agreement with Key Wrapping is employed, the agreed
upon key will be used to wrap the CEK.
4. When Key Wrapping, Key Encryption, or Key Agreement with Key
Wrapping are employed, encrypt the CEK to the recipient and let
the result be the JWE Encrypted Key.
5. When Direct Key Agreement or Direct Encryption are employed, let
the JWE Encrypted Key be the empty octet sequence.
6. When Direct Encryption is employed, let the Content Encryption
Key (CEK) be the shared symmetric key.
7. Compute the encoded key value BASE64URL(JWE Encrypted Key).
8. If the JWE JSON Serialization is being used, repeat this process
(steps 1-7) for each recipient.
9. Generate a random JWE Initialization Vector of the correct size
for the content encryption algorithm (if required for the
algorithm); otherwise, let the JWE Initialization Vector be the
empty octet sequence.
10. Compute the encoded initialization vector value BASE64URL(JWE
Initialization Vector).
11. If a "zip" parameter was included, compress the Plaintext using
the specified compression algorithm and let M be the octet
sequence representing the compressed Plaintext; otherwise, let M
be the octet sequence representing the Plaintext.
12. Create the JSON object(s) containing the desired set of Header
Parameters, which together comprise the JOSE Header: if the JWE
Compact Serialization is being used, the JWE Protected Header,
or if the JWE JSON Serialization is being used, one or more of
the JWE Protected Header, the JWE Shared Unprotected Header, and
the JWE Per-Recipient Unprotected Header.
13. Compute the Encoded Protected Header value BASE64URL(UTF8(JWE
Protected Header)). If the JWE Protected Header is not present
(which can only happen when using the JWE JSON Serialization and
no "protected" member is present), let this value be the empty
string.
14. Let the Additional Authenticated Data encryption parameter be
ASCII(Encoded Protected Header). However if a JWE AAD value is
Jones & Hildebrand Expires July 17, 2015 [Page 16]
Internet-Draft JSON Web Encryption (JWE) January 2015
present (which can only be the case when using the JWE JSON
Serialization), instead let the Additional Authenticated Data
encryption parameter be ASCII(Encoded Protected Header || '.' ||
BASE64URL(JWE AAD)).
15. Encrypt M using the CEK, the JWE Initialization Vector, and the
Additional Authenticated Data value using the specified content
encryption algorithm to create the JWE Ciphertext value and the
JWE Authentication Tag (which is the Authentication Tag output
from the encryption operation).
16. Compute the encoded ciphertext value BASE64URL(JWE Ciphertext).
17. Compute the encoded authentication tag value BASE64URL(JWE
Authentication Tag).
18. If a JWE AAD value is present, compute the encoded AAD value
BASE64URL(JWE AAD).
19. Create the desired serialized output. The Compact Serialization
of this result is the string BASE64URL(UTF8(JWE Protected
Header)) || '.' || BASE64URL(JWE Encrypted Key) || '.' ||
BASE64URL(JWE Initialization Vector) || '.' || BASE64URL(JWE
Ciphertext) || '.' || BASE64URL(JWE Authentication Tag). The
JWE JSON Serialization is described in Section 7.2.
5.2. Message Decryption
The message decryption process is the reverse of the encryption
process. The order of the steps is not significant in cases where
there are no dependencies between the inputs and outputs of the
steps. If any of these steps fails, the encrypted content cannot be
validated.
When there are multiple recipients, it is an application decision
which of the recipients' encrypted content must successfully validate
for the JWE to be accepted. In some cases, encrypted content for all
recipients must successfully validate or the JWE will be considered
invalid. In other cases, only the encrypted content for a single
recipient needs to be successfully validated. However, in all cases,
the encrypted content for at least one recipient MUST successfully
validate or the JWE MUST be considered invalid.
1. Parse the JWE representation to extract the serialized values
for the components of the JWE. When using the JWE Compact
Serialization, these components are the base64url encoded
representations of the JWE Protected Header, the JWE Encrypted
Key, the JWE Initialization Vector, the JWE Ciphertext, and the
Jones & Hildebrand Expires July 17, 2015 [Page 17]
Internet-Draft JSON Web Encryption (JWE) January 2015
JWE Authentication Tag, and when using the JWE JSON
Serialization, these components also include the base64url
encoded representation of the JWE AAD and the unencoded JWE
Shared Unprotected Header and JWE Per-Recipient Unprotected
Header values. When using the JWE Compact Serialization, the
JWE Protected Header, the JWE Encrypted Key, the JWE
Initialization Vector, the JWE Ciphertext, and the JWE
Authentication Tag are represented as base64url encoded values
in that order, with each value being separated from the next by
a single period ('.') character, resulting in exactly four
delimiting period characters being used. The JWE JSON
Serialization is described in Section 7.2.
2. Base64url decode the encoded representations of the JWE
Protected Header, the JWE Encrypted Key, the JWE Initialization
Vector, the JWE Ciphertext, the JWE Authentication Tag, and the
JWE AAD, following the restriction that no line breaks, white
space, or other additional characters have been used.
3. Verify that the octet sequence resulting from decoding the
encoded JWE Protected Header is a UTF-8 encoded representation
of a completely valid JSON object conforming to RFC 7159
[RFC7159]; let the JWE Protected Header be this JSON object.
4. If using the JWE Compact Serialization, let the JOSE Header be
the JWE Protected Header. Otherwise, when using the JWE JSON
Serialization, let the JOSE Header be the union of the members
of the JWE Protected Header, the JWE Shared Unprotected Header
and the corresponding JWE Per-Recipient Unprotected Header, all
of which must be completely valid JSON objects. During this
step, verify that the resulting JOSE Header does not contain
duplicate Header Parameter names. When using the JWE JSON
Serialization, this restriction includes that the same Header
Parameter name also MUST NOT occur in distinct JSON object
values that together comprise the JOSE Header.
5. Verify that the implementation understands and can process all
fields that it is required to support, whether required by this
specification, by the algorithms being used, or by the "crit"
Header Parameter value, and that the values of those parameters
are also understood and supported.
6. Determine the Key Management Mode employed by the algorithm
specified by the "alg" (algorithm) Header Parameter.
7. Verify that the JWE uses a key known to the recipient.
Jones & Hildebrand Expires July 17, 2015 [Page 18]
Internet-Draft JSON Web Encryption (JWE) January 2015
8. When Direct Key Agreement or Key Agreement with Key Wrapping are
employed, use the key agreement algorithm to compute the value
of the agreed upon key. When Direct Key Agreement is employed,
let the Content Encryption Key (CEK) be the agreed upon key.
When Key Agreement with Key Wrapping is employed, the agreed
upon key will be used to decrypt the JWE Encrypted Key.
9. When Key Wrapping, Key Encryption, or Key Agreement with Key
Wrapping are employed, decrypt the JWE Encrypted Key to produce
the Content Encryption Key (CEK). The CEK MUST have a length
equal to that required for the content encryption algorithm.
Note that when there are multiple recipients, each recipient
will only be able decrypt any JWE Encrypted Key values that were
encrypted to a key in that recipient's possession. It is
therefore normal to only be able to decrypt one of the per-
recipient JWE Encrypted Key values to obtain the CEK value.
Also, see Section 11.5 for security considerations on mitigating
timing attacks.
10. When Direct Key Agreement or Direct Encryption are employed,
verify that the JWE Encrypted Key value is empty octet sequence.
11. When Direct Encryption is employed, let the Content Encryption
Key (CEK) be the shared symmetric key.
12. Record whether the CEK could be successfully determined for this
recipient or not.
13. If the JWE JSON Serialization is being used, repeat this process
(steps 4-12) for each recipient contained in the representation.
14. Compute the Encoded Protected Header value BASE64URL(UTF8(JWE
Protected Header)). If the JWE Protected Header is not present
(which can only happen when using the JWE JSON Serialization and
no "protected" member is present), let this value be the empty
string.
15. Let the Additional Authenticated Data encryption parameter be
ASCII(Encoded Protected Header). However if a JWE AAD value is
present (which can only be the case when using the JWE JSON
Serialization), instead let the Additional Authenticated Data
encryption parameter be ASCII(Encoded Protected Header || '.' ||
BASE64URL(JWE AAD)).
16. Decrypt the JWE Ciphertext using the CEK, the JWE Initialization
Vector, the Additional Authenticated Data value, and the JWE
Authentication Tag (which is the Authentication Tag input to the
calculation) using the specified content encryption algorithm,
Jones & Hildebrand Expires July 17, 2015 [Page 19]
Internet-Draft JSON Web Encryption (JWE) January 2015
returning the decrypted plaintext and validating the JWE
Authentication Tag in the manner specified for the algorithm,
rejecting the input without emitting any decrypted output if the
JWE Authentication Tag is incorrect.
17. If a "zip" parameter was included, uncompress the decrypted
plaintext using the specified compression algorithm.
18. If there was no recipient for which all of the decryption steps
succeeded, then the JWE MUST be considered invalid. Otherwise,
output the Plaintext. In the JWE JSON Serialization case, also
return a result to the application indicating for which of the
recipients the decryption succeeded and failed.
Finally, note that it is an application decision which algorithms may
be used in a given context. Even if a JWE can be successfully
decrypted, unless the algorithms used in the JWE are acceptable to
the application, it SHOULD consider the JWE to be invalid.
5.3. String Comparison Rules
The string comparison rules for this specification are the same as
those defined in Section 5.3 of [JWS].
6. Key Identification
The key identification methods for this specification are the same as
those defined in Section 6 of [JWS], except that the key being
identified is the public key to which the JWE was encrypted.
7. Serializations
JWEs use one of two serializations: the JWE Compact Serialization or
the JWE JSON Serialization. Applications using this specification
need to specify what serialization and serialization features are
used for that application. For instance, applications might specify
that only the JWE JSON Serialization is used, that only JWE JSON
Serialization support for a single recipient is used, or that support
for multiple recipients is used. JWE implementations only need to
implement the features needed for the applications they are designed
to support.
7.1. JWE Compact Serialization
The JWE Compact Serialization represents encrypted content as a
compact, URL-safe string. This string is:
Jones & Hildebrand Expires July 17, 2015 [Page 20]
Internet-Draft JSON Web Encryption (JWE) January 2015
BASE64URL(UTF8(JWE Protected Header)) || '.' ||
BASE64URL(JWE Encrypted Key) || '.' ||
BASE64URL(JWE Initialization Vector) || '.' ||
BASE64URL(JWE Ciphertext) || '.' ||
BASE64URL(JWE Authentication Tag)
Only one recipient is supported by the JWE Compact Serialization and
it provides no syntax to represent JWE Shared Unprotected Header, JWE
Per-Recipient Unprotected Header, or JWE AAD values.
7.2. JWE JSON Serialization
The JWE JSON Serialization represents encrypted content as a JSON
object. This representation is neither optimized for compactness nor
URL-safe.
Two closely related syntaxes are defined for the JWE JSON
Serialization: a fully general syntax, with which content can be
encrypted to more than one recipient, and a flattened syntax, which
is optimized for the single recipient case.
7.2.1. General JWE JSON Serialization Syntax
The following members are defined for use in top-level JSON objects
used for the fully general JWE JSON Serialization syntax:
protected
The "protected" member MUST be present and contain the value
BASE64URL(UTF8(JWE Protected Header)) when the JWE Protected
Header value is non-empty; otherwise, it MUST be absent. These
Header Parameter values are integrity protected.
unprotected
The "unprotected" member MUST be present and contain the value JWE
Shared Unprotected Header when the JWE Shared Unprotected Header
value is non-empty; otherwise, it MUST be absent. This value is
represented as an unencoded JSON object, rather than as a string.
These Header Parameter values are not integrity protected.
iv
The "iv" member MUST be present and contain the value
BASE64URL(JWE Initialization Vector) when the JWE Initialization
Vector value is non-empty; otherwise, it MUST be absent.
aad
The "aad" member MUST be present and contain the value
BASE64URL(JWE AAD)) when the JWE AAD value is non-empty;
otherwise, it MUST be absent. A JWE AAD value can be included to
Jones & Hildebrand Expires July 17, 2015 [Page 21]
Internet-Draft JSON Web Encryption (JWE) January 2015
supply a base64url encoded value to be integrity protected but not
encrypted.
ciphertext
The "ciphertext" member MUST be present and contain the value
BASE64URL(JWE Ciphertext).
tag
The "tag" member MUST be present and contain the value
BASE64URL(JWE Authentication Tag) when the JWE Authentication Tag
value is non-empty; otherwise, it MUST be absent.
recipients
The "recipients" member value MUST be an array of JSON objects.
Each object contains information specific to a single recipient.
This member MUST be present with exactly one array element per
recipient, even if some or all of the array element values are the
empty JSON object "{}" (which can happen when all Header Parameter
values are shared between all recipients and when no encrypted key
is used, such as when doing Direct Encryption).
The following members are defined for use in the JSON objects that
are elements of the "recipients" array:
header
The "header" member MUST be present and contain the value JWE Per-
Recipient Unprotected Header when the JWE Per-Recipient
Unprotected Header value is non-empty; otherwise, it MUST be
absent. This value is represented as an unencoded JSON object,
rather than as a string. These Header Parameter values are not
integrity protected.
encrypted_key
The "encrypted_key" member MUST be present and contain the value
BASE64URL(JWE Encrypted Key) when the JWE Encrypted Key value is
non-empty; otherwise, it MUST be absent.
At least one of the "header", "protected", and "unprotected" members
MUST be present so that "alg" and "enc" Header Parameter values are
conveyed for each recipient computation.
Additional members can be present in both the JSON objects defined
above; if not understood by implementations encountering them, they
MUST be ignored.
Some Header Parameters, including the "alg" parameter, can be shared
among all recipient computations. Header Parameters in the JWE
Protected Header and JWE Shared Unprotected Header values are shared
Jones & Hildebrand Expires July 17, 2015 [Page 22]
Internet-Draft JSON Web Encryption (JWE) January 2015
among all recipients.
The Header Parameter values used when creating or validating per-
recipient Ciphertext and Authentication Tag values are the union of
the three sets of Header Parameter values that may be present: (1)
the JWE Protected Header represented in the "protected" member, (2)
the JWE Shared Unprotected Header represented in the "unprotected"
member, and (3) the JWE Per-Recipient Unprotected Header represented
in the "header" member of the recipient's array element. The union
of these sets of Header Parameters comprises the JOSE Header. The
Header Parameter names in the three locations MUST be disjoint.
Each JWE Encrypted Key value is computed using the parameters of the
corresponding JOSE Header value in the same manner as for the JWE
Compact Serialization. This has the desirable property that each JWE
Encrypted Key value in the "recipients" array is identical to the
value that would have been computed for the same parameter in the JWE
Compact Serialization. Likewise, the JWE Ciphertext and JWE
Authentication Tag values match those produced for the JWE Compact
Serialization, provided that the JWE Protected Header value (which
represents the integrity protected Header Parameter values) matches
that used in the JWE Compact Serialization.
All recipients use the same JWE Protected Header, JWE Initialization
Vector, JWE Ciphertext, and JWE Authentication Tag values, when
present, resulting in potentially significant space savings if the
message is large. Therefore, all Header Parameters that specify the
treatment of the Plaintext value MUST be the same for all recipients.
This primarily means that the "enc" (encryption algorithm) Header
Parameter value in the JOSE Header for each recipient and any
parameters of that algorithm MUST be the same.
In summary, the syntax of a JWE using the general JWE JSON
Serialization is as follows:
{
"protected":"<integrity-protected shared header contents>",
"unprotected":<non-integrity-protected shared header contents>,
"recipients":[
{"header":<per-recipient unprotected header 1 contents>,
"encrypted_key":"<encrypted key 1 contents>"},
...
{"header":<per-recipient unprotected header N contents>,
"encrypted_key":"<encrypted key N contents>"}],
"aad":"<additional authenticated data contents>",
"iv":"<initialization vector contents>",
"ciphertext":"<ciphertext contents>",
"tag":"<authentication tag contents>"
Jones & Hildebrand Expires July 17, 2015 [Page 23]
Internet-Draft JSON Web Encryption (JWE) January 2015
}
See Appendix A.4 for an example JWE using the general JWE JSON
Serialization syntax.
7.2.2. Flattened JWE JSON Serialization Syntax
The flattened JWE JSON Serialization syntax is based upon the general
syntax, but flattens it, optimizing it for the single recipient case.
It flattens it by removing the "recipients" member and instead
placing those members defined for use in the "recipients" array (the
"header" and "encrypted_key" members) in the top-level JSON object
(at the same level as the "ciphertext" member).
The "recipients" member MUST NOT be present when using this syntax.
Other than this syntax difference, JWE JSON Serialization objects
using the flattened syntax are processed identically to those using
the general syntax.
In summary, the syntax of a JWE using the flattened JWE JSON
Serialization is as follows:
{
"protected":"<integrity-protected header contents>",
"unprotected":<non-integrity-protected header contents>,
"header":<more non-integrity-protected header contents>,
"encrypted_key":"<encrypted key contents>",
"aad":"<additional authenticated data contents>",
"iv":"<initialization vector contents>",
"ciphertext":"<ciphertext contents>",
"tag":"<authentication tag contents>"
}
Note that when using the flattened syntax, just as when using the
general syntax, any unprotected Header Parameter values can reside in
either the "unprotected" member or the "header" member, or in both.
See Appendix A.5 for an example JWE using the flattened JWE JSON
Serialization syntax.
8. TLS Requirements
The TLS requirements for this specification are the same as those
defined in Section 8 of [JWS].
Jones & Hildebrand Expires July 17, 2015 [Page 24]
Internet-Draft JSON Web Encryption (JWE) January 2015
9. Distinguishing between JWS and JWE Objects
There are several ways of distinguishing whether an object is a JWS
or JWE. All these methods will yield the same result for all legal
input values; they may yield different results for malformed inputs.
o If the object is using the JWS Compact Serialization or the JWE
Compact Serialization, the number of base64url encoded segments
separated by period ('.') characters differs for JWSs and JWEs.
JWSs have three segments separated by two period ('.') characters.
JWEs have five segments separated by four period ('.') characters.
o If the object is using the JWS JSON Serialization or the JWE JSON
Serialization, the members used will be different. JWSs have a
"payload" member and JWEs do not. JWEs have a "ciphertext" member
and JWSs do not.
o The JOSE Header for a JWS can be distinguished from the JOSE
Header for a JWE by examining the "alg" (algorithm) Header
Parameter value. If the value represents a digital signature or
MAC algorithm, or is the value "none", it is for a JWS; if it
represents a Key Encryption, Key Wrapping, Direct Key Agreement,
Key Agreement with Key Wrapping, or Direct Encryption algorithm,
it is for a JWE. (Extracting the "alg" value to examine is
straightforward when using the JWS Compact Serialization or the
JWE Compact Serialization and may be more difficult when using the
JWS JSON Serialization or the JWE JSON Serialization.)
o The JOSE Header for a JWS can also be distinguished from the JOSE
Header for a JWE by determining whether an "enc" (encryption
algorithm) member exists. If the "enc" member exists, it is a
JWE; otherwise, it is a JWS.
10. IANA Considerations
10.1. JSON Web Signature and Encryption Header Parameters Registration
This specification registers the Header Parameter names defined in
Section 4.1 in the IANA JSON Web Signature and Encryption Header
Parameters registry defined in [JWS].
10.1.1. Registry Contents
o Header Parameter Name: "alg"
o Header Parameter Description: Algorithm
Jones & Hildebrand Expires July 17, 2015 [Page 25]
Internet-Draft JSON Web Encryption (JWE) January 2015
o Header Parameter Usage Location(s): JWE
o Change Controller: IESG
o Specification Document(s): Section 4.1.1 of [[ this document ]]
o Header Parameter Name: "enc"
o Header Parameter Description: Encryption Algorithm
o Header Parameter Usage Location(s): JWE
o Change Controller: IESG
o Specification Document(s): Section 4.1.2 of [[ this document ]]
o Header Parameter Name: "zip"
o Header Parameter Description: Compression Algorithm
o Header Parameter Usage Location(s): JWE
o Change Controller: IESG
o Specification Document(s): Section 4.1.3 of [[ this document ]]
o Header Parameter Name: "jku"
o Header Parameter Description: JWK Set URL
o Header Parameter Usage Location(s): JWE
o Change Controller: IESG
o Specification Document(s): Section 4.1.4 of [[ this document ]]
o Header Parameter Name: "jwk"
o Header Parameter Description: JSON Web Key
o Header Parameter Usage Location(s): JWE
o Change Controller: IESG
o Specification document(s): Section 4.1.5 of [[ this document ]]
o Header Parameter Name: "kid"
o Header Parameter Description: Key ID
o Header Parameter Usage Location(s): JWE
o Change Controller: IESG
o Specification Document(s): Section 4.1.6 of [[ this document ]]
o Header Parameter Name: "x5u"
o Header Parameter Description: X.509 URL
o Header Parameter Usage Location(s): JWE
o Change Controller: IESG
o Specification Document(s): Section 4.1.7 of [[ this document ]]
o Header Parameter Name: "x5c"
o Header Parameter Description: X.509 Certificate Chain
o Header Parameter Usage Location(s): JWE
o Change Controller: IESG
o Specification Document(s): Section 4.1.8 of [[ this document ]]
Jones & Hildebrand Expires July 17, 2015 [Page 26]
Internet-Draft JSON Web Encryption (JWE) January 2015
o Header Parameter Name: "x5t"
o Header Parameter Description: X.509 Certificate SHA-1 Thumbprint
o Header Parameter Usage Location(s): JWE
o Change Controller: IESG
o Specification Document(s): Section 4.1.9 of [[ this document ]]
o Header Parameter Name: "x5t#S256"
o Header Parameter Description: X.509 Certificate SHA-256 Thumbprint
o Header Parameter Usage Location(s): JWE
o Change Controller: IESG
o Specification Document(s): Section 4.1.10 of [[ this document ]]
o Header Parameter Name: "typ"
o Header Parameter Description: Type
o Header Parameter Usage Location(s): JWE
o Change Controller: IESG
o Specification Document(s): Section 4.1.11 of [[ this document ]]
o Header Parameter Name: "cty"
o Header Parameter Description: Content Type
o Header Parameter Usage Location(s): JWE
o Change Controller: IESG
o Specification Document(s): Section 4.1.12 of [[ this document ]]
o Header Parameter Name: "crit"
o Header Parameter Description: Critical
o Header Parameter Usage Location(s): JWE
o Change Controller: IESG
o Specification Document(s): Section 4.1.13 of [[ this document ]]
11. Security Considerations
All of the security issues that are pertinent to any cryptographic
application must be addressed by JWS/JWE/JWK agents. Among these
issues are protecting the user's asymmetric private and symmetric
secret keys and employing countermeasures to various attacks.
All the security considerations in the JWS specification also apply
to this specification. Likewise, all the security considerations in
XML Encryption 1.1 [W3C.REC-xmlenc-core1-20130411] also apply, other
than those that are XML specific.
11.1. Key Entropy and Random Values
See Section 10.1 of [JWS] for security considerations on key entropy
and random values. In addition to the uses of random values listed
there, note that random values are also used for content encryption
Jones & Hildebrand Expires July 17, 2015 [Page 27]
Internet-Draft JSON Web Encryption (JWE) January 2015
keys (CEKs) and initialization vectors (IVs) when performing
encryption.
11.2. Key Protection
See Section 10.2 of [JWS] for security considerations on key
protection. In addition to the keys listed there that must be
protected, implementations performing encryption must protect the key
encryption key and the content encryption key. Compromise of the key
encryption key may result in the disclosure of all contents protected
with that key. Similarly, compromise of the content encryption key
may result in disclosure of the associated encrypted content.
11.3. Using Matching Algorithm Strengths
Algorithms of matching strengths should be used together whenever
possible. For instance, when AES Key Wrap is used with a given key
size, using the same key size is recommended when AES GCM is also
used. If the key encryption and content encryption algorithms are
different, the effective security is determined by the weaker of the
two algorithms.
Also, see RFC 3766 [RFC3766] for information on determining strengths
for public keys used for exchanging symmetric keys.
11.4. Adaptive Chosen-Ciphertext Attacks
When decrypting, particular care must be taken not to allow the JWE
recipient to be used as an oracle for decrypting messages. RFC 3218
[RFC3218] should be consulted for specific countermeasures to attacks
on RSAES-PKCS1-V1_5. An attacker might modify the contents of the
"alg" parameter from "RSA-OAEP" to "RSA1_5" in order to generate a
formatting error that can be detected and used to recover the CEK
even if RSAES OAEP was used to encrypt the CEK. It is therefore
particularly important to report all formatting errors to the CEK,
Additional Authenticated Data, or ciphertext as a single error when
the encrypted content is rejected.
Additionally, this type of attack can be prevented by restricting the
use of a key to a limited set of algorithms -- usually one. This
means, for instance, that if the key is marked as being for
"RSA-OAEP" only, any attempt to decrypt a message using the "RSA1_5"
algorithm with that key should fail immediately due to invalid use of
the key.
Jones & Hildebrand Expires July 17, 2015 [Page 28]
Internet-Draft JSON Web Encryption (JWE) January 2015
11.5. Timing Attacks
To mitigate the attacks described in RFC 3218 [RFC3218], the
recipient MUST NOT distinguish between format, padding, and length
errors of encrypted keys. It is strongly recommended, in the event
of receiving an improperly formatted key, that the recipient
substitute a randomly generated CEK and proceed to the next step, to
mitigate timing attacks.
12. References
12.1. Normative References
[JWA] Jones, M., "JSON Web Algorithms (JWA)",
draft-ietf-jose-json-web-algorithms (work in progress),
January 2015.
[JWK] Jones, M., "JSON Web Key (JWK)",
draft-ietf-jose-json-web-key (work in progress),
January 2015.
[JWS] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
Signature (JWS)", draft-ietf-jose-json-web-signature (work
in progress), January 2015.
[RFC1951] Deutsch, P., "DEFLATE Compressed Data Format Specification
version 1.3", RFC 1951, May 1996.
[RFC20] Cerf, V., "ASCII format for Network Interchange", RFC 20,
October 1969.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
10646", STD 63, RFC 3629, November 2003.
[RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
RFC 4949, August 2007.
[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R., and W. Polk, "Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", RFC 5280, May 2008.
[RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
Interchange Format", RFC 7159, March 2014.
Jones & Hildebrand Expires July 17, 2015 [Page 29]
Internet-Draft JSON Web Encryption (JWE) January 2015
[UNICODE] The Unicode Consortium, "The Unicode Standard", 1991-,
<http://www.unicode.org/versions/latest/>.
12.2. Informative References
[AES] National Institute of Standards and Technology (NIST),
"Advanced Encryption Standard (AES)", FIPS PUB 197,
November 2001.
[I-D.mcgrew-aead-aes-cbc-hmac-sha2]
McGrew, D., Foley, J., and K. Paterson, "Authenticated
Encryption with AES-CBC and HMAC-SHA",
draft-mcgrew-aead-aes-cbc-hmac-sha2-05 (work in progress),
July 2014.
[I-D.rescorla-jsms]
Rescorla, E. and J. Hildebrand, "JavaScript Message
Security Format", draft-rescorla-jsms-00 (work in
progress), March 2011.
[JSE] Bradley, J. and N. Sakimura (editor), "JSON Simple
Encryption", September 2010.
[NIST.800-38D]
National Institute of Standards and Technology (NIST),
"Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC", NIST PUB 800-38D,
December 2001.
[RFC3218] Rescorla, E., "Preventing the Million Message Attack on
Cryptographic Message Syntax", RFC 3218, January 2002.
[RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
Standards (PKCS) #1: RSA Cryptography Specifications
Version 2.1", RFC 3447, February 2003.
[RFC3766] Orman, H. and P. Hoffman, "Determining Strengths For
Public Keys Used For Exchanging Symmetric Keys", BCP 86,
RFC 3766, April 2004.
[RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
Requirements for Security", BCP 106, RFC 4086, June 2005.
[RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, September 2009.
[W3C.REC-xmlenc-core1-20130411]
Eastlake, D., Reagle, J., Hirsch, F., and T. Roessler,
Jones & Hildebrand Expires July 17, 2015 [Page 30]
Internet-Draft JSON Web Encryption (JWE) January 2015
"XML Encryption Syntax and Processing Version 1.1", World
Wide Web Consortium Recommendation REC-xmlenc-core1-
20130411, April 2013,
<http://www.w3.org/TR/2013/REC-xmlenc-core1-20130411/>.
Appendix A. JWE Examples
This section provides examples of JWE computations.
A.1. Example JWE using RSAES OAEP and AES GCM
This example encrypts the plaintext "The true sign of intelligence is
not knowledge but imagination." to the recipient using RSAES OAEP for
key encryption and AES GCM for content encryption. The
representation of this plaintext (using JSON array notation) is:
[84, 104, 101, 32, 116, 114, 117, 101, 32, 115, 105, 103, 110, 32,
111, 102, 32, 105, 110, 116, 101, 108, 108, 105, 103, 101, 110, 99,
101, 32, 105, 115, 32, 110, 111, 116, 32, 107, 110, 111, 119, 108,
101, 100, 103, 101, 32, 98, 117, 116, 32, 105, 109, 97, 103, 105,
110, 97, 116, 105, 111, 110, 46]
A.1.1. JOSE Header
The following example JWE Protected Header declares that:
o The Content Encryption Key is encrypted to the recipient using the
RSAES OAEP algorithm to produce the JWE Encrypted Key.
o Authenticated encryption is performed on the Plaintext using the
AES GCM algorithm with a 256 bit key to produce the Ciphertext and
the Authentication Tag.
{"alg":"RSA-OAEP","enc":"A256GCM"}
Encoding this JWE Protected Header as BASE64URL(UTF8(JWE Protected
Header)) gives this value:
eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkEyNTZHQ00ifQ
A.1.2. Content Encryption Key (CEK)
Generate a 256 bit random Content Encryption Key (CEK). In this
example, the value (using JSON array notation) is:
[177, 161, 244, 128, 84, 143, 225, 115, 63, 180, 3, 255, 107, 154,
Jones & Hildebrand Expires July 17, 2015 [Page 31]
Internet-Draft JSON Web Encryption (JWE) January 2015
212, 246, 138, 7, 110, 91, 112, 46, 34, 105, 47, 130, 203, 46, 122,
234, 64, 252]
A.1.3. Key Encryption
Encrypt the CEK with the recipient's public key using the RSAES OAEP
algorithm to produce the JWE Encrypted Key. This example uses the RSA
key represented in JSON Web Key [JWK] format below (with line breaks
within values for display purposes only):
{"kty":"RSA",
"n":"oahUIoWw0K0usKNuOR6H4wkf4oBUXHTxRvgb48E-BVvxkeDNjbC4he8rUW
cJoZmds2h7M70imEVhRU5djINXtqllXI4DFqcI1DgjT9LewND8MW2Krf3S
psk_ZkoFnilakGygTwpZ3uesH-PFABNIUYpOiN15dsQRkgr0vEhxN92i2a
sbOenSZeyaxziK72UwxrrKoExv6kc5twXTq4h-QChLOln0_mtUZwfsRaMS
tPs6mS6XrgxnxbWhojf663tuEQueGC-FCMfra36C9knDFGzKsNa7LZK2dj
YgyD3JR_MB_4NUJW_TqOQtwHYbxevoJArm-L5StowjzGy-_bq6Gw",
"e":"AQAB",
"d":"kLdtIj6GbDks_ApCSTYQtelcNttlKiOyPzMrXHeI-yk1F7-kpDxY4-WY5N
WV5KntaEeXS1j82E375xxhWMHXyvjYecPT9fpwR_M9gV8n9Hrh2anTpTD9
3Dt62ypW3yDsJzBnTnrYu1iwWRgBKrEYY46qAZIrA2xAwnm2X7uGR1hghk
qDp0Vqj3kbSCz1XyfCs6_LehBwtxHIyh8Ripy40p24moOAbgxVw3rxT_vl
t3UVe4WO3JkJOzlpUf-KTVI2Ptgm-dARxTEtE-id-4OJr0h-K-VFs3VSnd
VTIznSxfyrj8ILL6MG_Uv8YAu7VILSB3lOW085-4qE3DzgrTjgyQ",
"p":"1r52Xk46c-LsfB5P442p7atdPUrxQSy4mti_tZI3Mgf2EuFVbUoDBvaRQ-
SWxkbkmoEzL7JXroSBjSrK3YIQgYdMgyAEPTPjXv_hI2_1eTSPVZfzL0lf
fNn03IXqWF5MDFuoUYE0hzb2vhrlN_rKrbfDIwUbTrjjgieRbwC6Cl0",
"q":"wLb35x7hmQWZsWJmB_vle87ihgZ19S8lBEROLIsZG4ayZVe9Hi9gDVCOBm
UDdaDYVTSNx_8Fyw1YYa9XGrGnDew00J28cRUoeBB_jKI1oma0Orv1T9aX
IWxKwd4gvxFImOWr3QRL9KEBRzk2RatUBnmDZJTIAfwTs0g68UZHvtc",
"dp":"ZK-YwE7diUh0qR1tR7w8WHtolDx3MZ_OTowiFvgfeQ3SiresXjm9gZ5KL
hMXvo-uz-KUJWDxS5pFQ_M0evdo1dKiRTjVw_x4NyqyXPM5nULPkcpU827
rnpZzAJKpdhWAgqrXGKAECQH0Xt4taznjnd_zVpAmZZq60WPMBMfKcuE",
"dq":"Dq0gfgJ1DdFGXiLvQEZnuKEN0UUmsJBxkjydc3j4ZYdBiMRAy86x0vHCj
ywcMlYYg4yoC4YZa9hNVcsjqA3FeiL19rk8g6Qn29Tt0cj8qqyFpz9vNDB
UfCAiJVeESOjJDZPYHdHY8v1b-o-Z2X5tvLx-TCekf7oxyeKDUqKWjis",
"qi":"VIMpMYbPf47dT1w_zDUXfPimsSegnMOA1zTaX7aGk_8urY6R8-ZW1FxU7
AlWAyLWybqq6t16VFd7hQd0y6flUK4SlOydB61gwanOsXGOAOv82cHq0E3
eL4HrtZkUuKvnPrMnsUUFlfUdybVzxyjz9JF_XyaY14ardLSjf4L_FNY"
}
The resulting JWE Encrypted Key value is:
[56, 163, 154, 192, 58, 53, 222, 4, 105, 218, 136, 218, 29, 94, 203,
22, 150, 92, 129, 94, 211, 232, 53, 89, 41, 60, 138, 56, 196, 216,
82, 98, 168, 76, 37, 73, 70, 7, 36, 8, 191, 100, 136, 196, 244, 220,
145, 158, 138, 155, 4, 117, 141, 230, 199, 247, 173, 45, 182, 214,
74, 177, 107, 211, 153, 11, 205, 196, 171, 226, 162, 128, 171, 182,
Jones & Hildebrand Expires July 17, 2015 [Page 32]
Internet-Draft JSON Web Encryption (JWE) January 2015
13, 237, 239, 99, 193, 4, 91, 219, 121, 223, 107, 167, 61, 119, 228,
173, 156, 137, 134, 200, 80, 219, 74, 253, 56, 185, 91, 177, 34, 158,
89, 154, 205, 96, 55, 18, 138, 43, 96, 218, 215, 128, 124, 75, 138,
243, 85, 25, 109, 117, 140, 26, 155, 249, 67, 167, 149, 231, 100, 6,
41, 65, 214, 251, 232, 87, 72, 40, 182, 149, 154, 168, 31, 193, 126,
215, 89, 28, 111, 219, 125, 182, 139, 235, 195, 197, 23, 234, 55, 58,
63, 180, 68, 202, 206, 149, 75, 205, 248, 176, 67, 39, 178, 60, 98,
193, 32, 238, 122, 96, 158, 222, 57, 183, 111, 210, 55, 188, 215,
206, 180, 166, 150, 166, 106, 250, 55, 229, 72, 40, 69, 214, 216,
104, 23, 40, 135, 212, 28, 127, 41, 80, 175, 174, 168, 115, 171, 197,
89, 116, 92, 103, 246, 83, 216, 182, 176, 84, 37, 147, 35, 45, 219,
172, 99, 226, 233, 73, 37, 124, 42, 72, 49, 242, 35, 127, 184, 134,
117, 114, 135, 206]
Encoding this JWE Encrypted Key as BASE64URL(JWE Encrypted Key) gives
this value (with line breaks for display purposes only):
OKOawDo13gRp2ojaHV7LFpZcgV7T6DVZKTyKOMTYUmKoTCVJRgckCL9kiMT03JGe
ipsEdY3mx_etLbbWSrFr05kLzcSr4qKAq7YN7e9jwQRb23nfa6c9d-StnImGyFDb
Sv04uVuxIp5Zms1gNxKKK2Da14B8S4rzVRltdYwam_lDp5XnZAYpQdb76FdIKLaV
mqgfwX7XWRxv2322i-vDxRfqNzo_tETKzpVLzfiwQyeyPGLBIO56YJ7eObdv0je8
1860ppamavo35UgoRdbYaBcoh9QcfylQr66oc6vFWXRcZ_ZT2LawVCWTIy3brGPi
6UklfCpIMfIjf7iGdXKHzg
A.1.4. Initialization Vector
Generate a random 96 bit JWE Initialization Vector. In this example,
the value is:
[227, 197, 117, 252, 2, 219, 233, 68, 180, 225, 77, 219]
Encoding this JWE Initialization Vector as BASE64URL(JWE
Initialization Vector) gives this value:
48V1_ALb6US04U3b
A.1.5. Additional Authenticated Data
Let the Additional Authenticated Data encryption parameter be
ASCII(BASE64URL(UTF8(JWE Protected Header))). This value is:
[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 83, 85, 48, 69,
116, 84, 48, 70, 70, 85, 67, 73, 115, 73, 109, 86, 117, 89, 121, 73,
54, 73, 107, 69, 121, 78, 84, 90, 72, 81, 48, 48, 105, 102, 81]
Jones & Hildebrand Expires July 17, 2015 [Page 33]
Internet-Draft JSON Web Encryption (JWE) January 2015
A.1.6. Content Encryption
Perform authenticated encryption on the Plaintext with the AES GCM
algorithm using the CEK as the encryption key, the JWE Initialization
Vector, and the Additional Authenticated Data value above, requesting
a 128 bit Authentication Tag output. The resulting Ciphertext is:
[229, 236, 166, 241, 53, 191, 115, 196, 174, 43, 73, 109, 39, 122,
233, 96, 140, 206, 120, 52, 51, 237, 48, 11, 190, 219, 186, 80, 111,
104, 50, 142, 47, 167, 59, 61, 181, 127, 196, 21, 40, 82, 242, 32,
123, 143, 168, 226, 73, 216, 176, 144, 138, 247, 106, 60, 16, 205,
160, 109, 64, 63, 192]
The resulting Authentication Tag value is:
[92, 80, 104, 49, 133, 25, 161, 215, 173, 101, 219, 211, 136, 91,
210, 145]
Encoding this JWE Ciphertext as BASE64URL(JWE Ciphertext) gives this
value (with line breaks for display purposes only):
5eym8TW_c8SuK0ltJ3rpYIzOeDQz7TALvtu6UG9oMo4vpzs9tX_EFShS8iB7j6ji
SdiwkIr3ajwQzaBtQD_A
Encoding this JWE Authentication Tag as BASE64URL(JWE Authentication
Tag) gives this value:
XFBoMYUZodetZdvTiFvSkQ
A.1.7. Complete Representation
Assemble the final representation: The Compact Serialization of this
result is the string BASE64URL(UTF8(JWE Protected Header)) || '.' ||
BASE64URL(JWE Encrypted Key) || '.' || BASE64URL(JWE Initialization
Vector) || '.' || BASE64URL(JWE Ciphertext) || '.' || BASE64URL(JWE
Authentication Tag).
The final result in this example (with line breaks for display
purposes only) is:
Jones & Hildebrand Expires July 17, 2015 [Page 34]
Internet-Draft JSON Web Encryption (JWE) January 2015
eyJhbGciOiJSU0EtT0FFUCIsImVuYyI6IkEyNTZHQ00ifQ.
OKOawDo13gRp2ojaHV7LFpZcgV7T6DVZKTyKOMTYUmKoTCVJRgckCL9kiMT03JGe
ipsEdY3mx_etLbbWSrFr05kLzcSr4qKAq7YN7e9jwQRb23nfa6c9d-StnImGyFDb
Sv04uVuxIp5Zms1gNxKKK2Da14B8S4rzVRltdYwam_lDp5XnZAYpQdb76FdIKLaV
mqgfwX7XWRxv2322i-vDxRfqNzo_tETKzpVLzfiwQyeyPGLBIO56YJ7eObdv0je8
1860ppamavo35UgoRdbYaBcoh9QcfylQr66oc6vFWXRcZ_ZT2LawVCWTIy3brGPi
6UklfCpIMfIjf7iGdXKHzg.
48V1_ALb6US04U3b.
5eym8TW_c8SuK0ltJ3rpYIzOeDQz7TALvtu6UG9oMo4vpzs9tX_EFShS8iB7j6ji
SdiwkIr3ajwQzaBtQD_A.
XFBoMYUZodetZdvTiFvSkQ
A.1.8. Validation
This example illustrates the process of creating a JWE with RSAES
OAEP for key encryption and AES GCM for content encryption. These
results can be used to validate JWE decryption implementations for
these algorithms. Note that since the RSAES OAEP computation
includes random values, the encryption results above will not be
completely reproducible. However, since the AES GCM computation is
deterministic, the JWE Encrypted Ciphertext values will be the same
for all encryptions performed using these inputs.
A.2. Example JWE using RSAES-PKCS1-V1_5 and AES_128_CBC_HMAC_SHA_256
This example encrypts the plaintext "Live long and prosper." to the
recipient using RSAES-PKCS1-V1_5 for key encryption and
AES_128_CBC_HMAC_SHA_256 for content encryption. The representation
of this plaintext (using JSON array notation) is:
[76, 105, 118, 101, 32, 108, 111, 110, 103, 32, 97, 110, 100, 32,
112, 114, 111, 115, 112, 101, 114, 46]
A.2.1. JOSE Header
The following example JWE Protected Header declares that:
o The Content Encryption Key is encrypted to the recipient using the
RSAES-PKCS1-V1_5 algorithm to produce the JWE Encrypted Key.
o Authenticated encryption is performed on the Plaintext using the
AES_128_CBC_HMAC_SHA_256 algorithm to produce the Ciphertext and
the Authentication Tag.
{"alg":"RSA1_5","enc":"A128CBC-HS256"}
Encoding this JWE Protected Header as BASE64URL(UTF8(JWE Protected
Jones & Hildebrand Expires July 17, 2015 [Page 35]
Internet-Draft JSON Web Encryption (JWE) January 2015
Header)) gives this value:
eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2In0
A.2.2. Content Encryption Key (CEK)
Generate a 256 bit random Content Encryption Key (CEK). In this
example, the key value is:
[4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106,
206, 107, 124, 212, 45, 111, 107, 9, 219, 200, 177, 0, 240, 143, 156,
44, 207]
A.2.3. Key Encryption
Encrypt the CEK with the recipient's public key using the RSAES-
PKCS1-V1_5 algorithm to produce the JWE Encrypted Key. This example
uses the RSA key represented in JSON Web Key [JWK] format below (with
line breaks within values for display purposes only):
Jones & Hildebrand Expires July 17, 2015 [Page 36]
Internet-Draft JSON Web Encryption (JWE) January 2015
{"kty":"RSA",
"n":"sXchDaQebHnPiGvyDOAT4saGEUetSyo9MKLOoWFsueri23bOdgWp4Dy1Wl
UzewbgBHod5pcM9H95GQRV3JDXboIRROSBigeC5yjU1hGzHHyXss8UDpre
cbAYxknTcQkhslANGRUZmdTOQ5qTRsLAt6BTYuyvVRdhS8exSZEy_c4gs_
7svlJJQ4H9_NxsiIoLwAEk7-Q3UXERGYw_75IDrGA84-lA_-Ct4eTlXHBI
Y2EaV7t7LjJaynVJCpkv4LKjTTAumiGUIuQhrNhZLuF_RJLqHpM2kgWFLU
7-VTdL1VbC2tejvcI2BlMkEpk1BzBZI0KQB0GaDWFLN-aEAw3vRw",
"e":"AQAB",
"d":"VFCWOqXr8nvZNyaaJLXdnNPXZKRaWCjkU5Q2egQQpTBMwhprMzWzpR8Sxq
1OPThh_J6MUD8Z35wky9b8eEO0pwNS8xlh1lOFRRBoNqDIKVOku0aZb-ry
nq8cxjDTLZQ6Fz7jSjR1Klop-YKaUHc9GsEofQqYruPhzSA-QgajZGPbE_
0ZaVDJHfyd7UUBUKunFMScbflYAAOYJqVIVwaYR5zWEEceUjNnTNo_CVSj
-VvXLO5VZfCUAVLgW4dpf1SrtZjSt34YLsRarSb127reG_DUwg9Ch-Kyvj
T1SkHgUWRVGcyly7uvVGRSDwsXypdrNinPA4jlhoNdizK2zF2CWQ",
"p":"9gY2w6I6S6L0juEKsbeDAwpd9WMfgqFoeA9vEyEUuk4kLwBKcoe1x4HG68
ik918hdDSE9vDQSccA3xXHOAFOPJ8R9EeIAbTi1VwBYnbTp87X-xcPWlEP
krdoUKW60tgs1aNd_Nnc9LEVVPMS390zbFxt8TN_biaBgelNgbC95sM",
"q":"uKlCKvKv_ZJMVcdIs5vVSU_6cPtYI1ljWytExV_skstvRSNi9r66jdd9-y
BhVfuG4shsp2j7rGnIio901RBeHo6TPKWVVykPu1iYhQXw1jIABfw-MVsN
-3bQ76WLdt2SDxsHs7q7zPyUyHXmps7ycZ5c72wGkUwNOjYelmkiNS0",
"dp":"w0kZbV63cVRvVX6yk3C8cMxo2qCM4Y8nsq1lmMSYhG4EcL6FWbX5h9yuv
ngs4iLEFk6eALoUS4vIWEwcL4txw9LsWH_zKI-hwoReoP77cOdSL4AVcra
Hawlkpyd2TWjE5evgbhWtOxnZee3cXJBkAi64Ik6jZxbvk-RR3pEhnCs",
"dq":"o_8V14SezckO6CNLKs_btPdFiO9_kC1DsuUTd2LAfIIVeMZ7jn1Gus_Ff
7B7IVx3p5KuBGOVF8L-qifLb6nQnLysgHDh132NDioZkhH7mI7hPG-PYE_
odApKdnqECHWw0J-F0JWnUd6D2B_1TvF9mXA2Qx-iGYn8OVV1Bsmp6qU",
"qi":"eNho5yRBEBxhGBtQRww9QirZsB66TrfFReG_CcteI1aCneT0ELGhYlRlC
tUkTRclIfuEPmNsNDPbLoLqqCVznFbvdB7x-Tl-m0l_eFTj2KiqwGqE9PZ
B9nNTwMVvH3VRRSLWACvPnSiwP8N5Usy-WRXS-V7TbpxIhvepTfE0NNo"
}
The resulting JWE Encrypted Key value is:
[80, 104, 72, 58, 11, 130, 236, 139, 132, 189, 255, 205, 61, 86, 151,
176, 99, 40, 44, 233, 176, 189, 205, 70, 202, 169, 72, 40, 226, 181,
156, 223, 120, 156, 115, 232, 150, 209, 145, 133, 104, 112, 237, 156,
116, 250, 65, 102, 212, 210, 103, 240, 177, 61, 93, 40, 71, 231, 223,
226, 240, 157, 15, 31, 150, 89, 200, 215, 198, 203, 108, 70, 117, 66,
212, 238, 193, 205, 23, 161, 169, 218, 243, 203, 128, 214, 127, 253,
215, 139, 43, 17, 135, 103, 179, 220, 28, 2, 212, 206, 131, 158, 128,
66, 62, 240, 78, 186, 141, 125, 132, 227, 60, 137, 43, 31, 152, 199,
54, 72, 34, 212, 115, 11, 152, 101, 70, 42, 219, 233, 142, 66, 151,
250, 126, 146, 141, 216, 190, 73, 50, 177, 146, 5, 52, 247, 28, 197,
21, 59, 170, 247, 181, 89, 131, 241, 169, 182, 246, 99, 15, 36, 102,
166, 182, 172, 197, 136, 230, 120, 60, 58, 219, 243, 149, 94, 222,
150, 154, 194, 110, 227, 225, 112, 39, 89, 233, 112, 207, 211, 241,
124, 174, 69, 221, 179, 107, 196, 225, 127, 167, 112, 226, 12, 242,
16, 24, 28, 120, 182, 244, 213, 244, 153, 194, 162, 69, 160, 244,
Jones & Hildebrand Expires July 17, 2015 [Page 37]
Internet-Draft JSON Web Encryption (JWE) January 2015
248, 63, 165, 141, 4, 207, 249, 193, 79, 131, 0, 169, 233, 127, 167,
101, 151, 125, 56, 112, 111, 248, 29, 232, 90, 29, 147, 110, 169,
146, 114, 165, 204, 71, 136, 41, 252]
Encoding this JWE Encrypted Key as BASE64URL(JWE Encrypted Key) gives
this value (with line breaks for display purposes only):
UGhIOguC7IuEvf_NPVaXsGMoLOmwvc1GyqlIKOK1nN94nHPoltGRhWhw7Zx0-kFm
1NJn8LE9XShH59_i8J0PH5ZZyNfGy2xGdULU7sHNF6Gp2vPLgNZ__deLKxGHZ7Pc
HALUzoOegEI-8E66jX2E4zyJKx-YxzZIItRzC5hlRirb6Y5Cl_p-ko3YvkkysZIF
NPccxRU7qve1WYPxqbb2Yw8kZqa2rMWI5ng8OtvzlV7elprCbuPhcCdZ6XDP0_F8
rkXds2vE4X-ncOIM8hAYHHi29NX0mcKiRaD0-D-ljQTP-cFPgwCp6X-nZZd9OHBv
-B3oWh2TbqmScqXMR4gp_A
A.2.4. Initialization Vector
Generate a random 128 bit JWE Initialization Vector. In this
example, the value is:
[3, 22, 60, 12, 43, 67, 104, 105, 108, 108, 105, 99, 111, 116, 104,
101]
Encoding this JWE Initialization Vector as BASE64URL(JWE
Initialization Vector) gives this value:
AxY8DCtDaGlsbGljb3RoZQ
A.2.5. Additional Authenticated Data
Let the Additional Authenticated Data encryption parameter be
ASCII(BASE64URL(UTF8(JWE Protected Header))). This value is:
[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 83, 85, 48, 69,
120, 88, 122, 85, 105, 76, 67, 74, 108, 98, 109, 77, 105, 79, 105,
74, 66, 77, 84, 73, 52, 81, 48, 74, 68, 76, 85, 104, 84, 77, 106, 85,
50, 73, 110, 48]
A.2.6. Content Encryption
Perform authenticated encryption on the Plaintext with the
AES_128_CBC_HMAC_SHA_256 algorithm using the CEK as the encryption
key, the JWE Initialization Vector, and the Additional Authenticated
Data value above. The steps for doing this using the values from
Appendix A.3 are detailed in Appendix B. The resulting Ciphertext
is:
[40, 57, 83, 181, 119, 33, 133, 148, 198, 185, 243, 24, 152, 230, 6,
75, 129, 223, 127, 19, 210, 82, 183, 230, 168, 33, 215, 104, 143,
Jones & Hildebrand Expires July 17, 2015 [Page 38]
Internet-Draft JSON Web Encryption (JWE) January 2015
112, 56, 102]
The resulting Authentication Tag value is:
[246, 17, 244, 190, 4, 95, 98, 3, 231, 0, 115, 157, 242, 203, 100,
191]
Encoding this JWE Ciphertext as BASE64URL(JWE Ciphertext) gives this
value:
KDlTtXchhZTGufMYmOYGS4HffxPSUrfmqCHXaI9wOGY
Encoding this JWE Authentication Tag as BASE64URL(JWE Authentication
Tag) gives this value:
9hH0vgRfYgPnAHOd8stkvw
A.2.7. Complete Representation
Assemble the final representation: The Compact Serialization of this
result is the string BASE64URL(UTF8(JWE Protected Header)) || '.' ||
BASE64URL(JWE Encrypted Key) || '.' || BASE64URL(JWE Initialization
Vector) || '.' || BASE64URL(JWE Ciphertext) || '.' || BASE64URL(JWE
Authentication Tag).
The final result in this example (with line breaks for display
purposes only) is:
eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2In0.
UGhIOguC7IuEvf_NPVaXsGMoLOmwvc1GyqlIKOK1nN94nHPoltGRhWhw7Zx0-kFm
1NJn8LE9XShH59_i8J0PH5ZZyNfGy2xGdULU7sHNF6Gp2vPLgNZ__deLKxGHZ7Pc
HALUzoOegEI-8E66jX2E4zyJKx-YxzZIItRzC5hlRirb6Y5Cl_p-ko3YvkkysZIF
NPccxRU7qve1WYPxqbb2Yw8kZqa2rMWI5ng8OtvzlV7elprCbuPhcCdZ6XDP0_F8
rkXds2vE4X-ncOIM8hAYHHi29NX0mcKiRaD0-D-ljQTP-cFPgwCp6X-nZZd9OHBv
-B3oWh2TbqmScqXMR4gp_A.
AxY8DCtDaGlsbGljb3RoZQ.
KDlTtXchhZTGufMYmOYGS4HffxPSUrfmqCHXaI9wOGY.
9hH0vgRfYgPnAHOd8stkvw
A.2.8. Validation
This example illustrates the process of creating a JWE with RSAES-
PKCS1-V1_5 for key encryption and AES_CBC_HMAC_SHA2 for content
encryption. These results can be used to validate JWE decryption
implementations for these algorithms. Note that since the RSAES-
PKCS1-V1_5 computation includes random values, the encryption results
above will not be completely reproducible. However, since the AES
CBC computation is deterministic, the JWE Encrypted Ciphertext values
Jones & Hildebrand Expires July 17, 2015 [Page 39]
Internet-Draft JSON Web Encryption (JWE) January 2015
will be the same for all encryptions performed using these inputs.
A.3. Example JWE using AES Key Wrap and AES_128_CBC_HMAC_SHA_256
This example encrypts the plaintext "Live long and prosper." to the
recipient using AES Key Wrap for key encryption and
AES_128_CBC_HMAC_SHA_256 for content encryption. The representation
of this plaintext (using JSON array notation) is:
[76, 105, 118, 101, 32, 108, 111, 110, 103, 32, 97, 110, 100, 32,
112, 114, 111, 115, 112, 101, 114, 46]
A.3.1. JOSE Header
The following example JWE Protected Header declares that:
o The Content Encryption Key is encrypted to the recipient using the
AES Key Wrap algorithm with a 128 bit key to produce the JWE
Encrypted Key.
o Authenticated encryption is performed on the Plaintext using the
AES_128_CBC_HMAC_SHA_256 algorithm to produce the Ciphertext and
the Authentication Tag.
{"alg":"A128KW","enc":"A128CBC-HS256"}
Encoding this JWE Protected Header as BASE64URL(UTF8(JWE Protected
Header)) gives this value:
eyJhbGciOiJBMTI4S1ciLCJlbmMiOiJBMTI4Q0JDLUhTMjU2In0
A.3.2. Content Encryption Key (CEK)
Generate a 256 bit random Content Encryption Key (CEK). In this
example, the value is:
[4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106,
206, 107, 124, 212, 45, 111, 107, 9, 219, 200, 177, 0, 240, 143, 156,
44, 207]
A.3.3. Key Encryption
Encrypt the CEK with the shared symmetric key using the AES Key Wrap
algorithm to produce the JWE Encrypted Key. This example uses the
symmetric key represented in JSON Web Key [JWK] format below:
Jones & Hildebrand Expires July 17, 2015 [Page 40]
Internet-Draft JSON Web Encryption (JWE) January 2015
{"kty":"oct",
"k":"GawgguFyGrWKav7AX4VKUg"
}
The resulting JWE Encrypted Key value is:
[232, 160, 123, 211, 183, 76, 245, 132, 200, 128, 123, 75, 190, 216,
22, 67, 201, 138, 193, 186, 9, 91, 122, 31, 246, 90, 28, 139, 57, 3,
76, 124, 193, 11, 98, 37, 173, 61, 104, 57]
Encoding this JWE Encrypted Key as BASE64URL(JWE Encrypted Key) gives
this value:
6KB707dM9YTIgHtLvtgWQ8mKwboJW3of9locizkDTHzBC2IlrT1oOQ
A.3.4. Initialization Vector
Generate a random 128 bit JWE Initialization Vector. In this
example, the value is:
[3, 22, 60, 12, 43, 67, 104, 105, 108, 108, 105, 99, 111, 116, 104,
101]
Encoding this JWE Initialization Vector as BASE64URL(JWE
Initialization Vector) gives this value:
AxY8DCtDaGlsbGljb3RoZQ
A.3.5. Additional Authenticated Data
Let the Additional Authenticated Data encryption parameter be
ASCII(BASE64URL(UTF8(JWE Protected Header))). This value is:
[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 66, 77, 84, 73, 52,
83, 49, 99, 105, 76, 67, 74, 108, 98, 109, 77, 105, 79, 105, 74, 66,
77, 84, 73, 52, 81, 48, 74, 68, 76, 85, 104, 84, 77, 106, 85, 50, 73,
110, 48]
A.3.6. Content Encryption
Perform authenticated encryption on the Plaintext with the
AES_128_CBC_HMAC_SHA_256 algorithm using the CEK as the encryption
key, the JWE Initialization Vector, and the Additional Authenticated
Data value above. The steps for doing this using the values from
this example are detailed in Appendix B. The resulting Ciphertext
is:
[40, 57, 83, 181, 119, 33, 133, 148, 198, 185, 243, 24, 152, 230, 6,
Jones & Hildebrand Expires July 17, 2015 [Page 41]
Internet-Draft JSON Web Encryption (JWE) January 2015
75, 129, 223, 127, 19, 210, 82, 183, 230, 168, 33, 215, 104, 143,
112, 56, 102]
The resulting Authentication Tag value is:
[83, 73, 191, 98, 104, 205, 211, 128, 201, 189, 199, 133, 32, 38,
194, 85]
Encoding this JWE Ciphertext as BASE64URL(JWE Ciphertext) gives this
value:
KDlTtXchhZTGufMYmOYGS4HffxPSUrfmqCHXaI9wOGY
Encoding this JWE Authentication Tag as BASE64URL(JWE Authentication
Tag) gives this value:
U0m_YmjN04DJvceFICbCVQ
A.3.7. Complete Representation
Assemble the final representation: The Compact Serialization of this
result is the string BASE64URL(UTF8(JWE Protected Header)) || '.' ||
BASE64URL(JWE Encrypted Key) || '.' || BASE64URL(JWE Initialization
Vector) || '.' || BASE64URL(JWE Ciphertext) || '.' || BASE64URL(JWE
Authentication Tag).
The final result in this example (with line breaks for display
purposes only) is:
eyJhbGciOiJBMTI4S1ciLCJlbmMiOiJBMTI4Q0JDLUhTMjU2In0.
6KB707dM9YTIgHtLvtgWQ8mKwboJW3of9locizkDTHzBC2IlrT1oOQ.
AxY8DCtDaGlsbGljb3RoZQ.
KDlTtXchhZTGufMYmOYGS4HffxPSUrfmqCHXaI9wOGY.
U0m_YmjN04DJvceFICbCVQ
A.3.8. Validation
This example illustrates the process of creating a JWE with AES Key
Wrap for key encryption and AES GCM for content encryption. These
results can be used to validate JWE decryption implementations for
these algorithms. Also, since both the AES Key Wrap and AES GCM
computations are deterministic, the resulting JWE value will be the
same for all encryptions performed using these inputs. Since the
computation is reproducible, these results can also be used to
validate JWE encryption implementations for these algorithms.
Jones & Hildebrand Expires July 17, 2015 [Page 42]
Internet-Draft JSON Web Encryption (JWE) January 2015
A.4. Example JWE using General JWE JSON Serialization
This section contains an example using the general JWE JSON
Serialization syntax. This example demonstrates the capability for
encrypting the same plaintext to multiple recipients.
Two recipients are present in this example. The algorithm and key
used for the first recipient are the same as that used in
Appendix A.2. The algorithm and key used for the second recipient
are the same as that used in Appendix A.3. The resulting JWE
Encrypted Key values are therefore the same; those computations are
not repeated here.
The Plaintext, the Content Encryption Key (CEK), JWE Initialization
Vector, and JWE Protected Header are shared by all recipients (which
must be the case, since the Ciphertext and Authentication Tag are
also shared).
A.4.1. JWE Per-Recipient Unprotected Headers
The first recipient uses the RSAES-PKCS1-V1_5 algorithm to encrypt
the Content Encryption Key (CEK). The second uses AES Key Wrap to
encrypt the CEK. Key ID values are supplied for both keys. The two
per-recipient header values used to represent these algorithms and
Key IDs are:
{"alg":"RSA1_5","kid":"2011-04-29"}
and
{"alg":"A128KW","kid":"7"}
A.4.2. JWE Protected Header
Authenticated encryption is performed on the Plaintext using the
AES_128_CBC_HMAC_SHA_256 algorithm to produce the common JWE
Ciphertext and JWE Authentication Tag values. The JWE Protected
Header value representing this is:
{"enc":"A128CBC-HS256"}
Encoding this JWE Protected Header as BASE64URL(UTF8(JWE Protected
Header)) gives this value:
eyJlbmMiOiJBMTI4Q0JDLUhTMjU2In0
Jones & Hildebrand Expires July 17, 2015 [Page 43]
Internet-Draft JSON Web Encryption (JWE) January 2015
A.4.3. JWE Unprotected Header
This JWE uses the "jku" Header Parameter to reference a JWK Set. This
is represented in the following JWE Unprotected Header value as:
{"jku":"https://server.example.com/keys.jwks"}
A.4.4. Complete JOSE Header Values
Combining the per-recipient, protected, and unprotected header values
supplied, the JOSE Header values used for the first and second
recipient respectively are:
{"alg":"RSA1_5",
"kid":"2011-04-29",
"enc":"A128CBC-HS256",
"jku":"https://server.example.com/keys.jwks"}
and
{"alg":"A128KW",
"kid":"7",
"enc":"A128CBC-HS256",
"jku":"https://server.example.com/keys.jwks"}
A.4.5. Additional Authenticated Data
Let the Additional Authenticated Data encryption parameter be
ASCII(BASE64URL(UTF8(JWE Protected Header))). This value is:
[101, 121, 74, 108, 98, 109, 77, 105, 79, 105, 74, 66, 77, 84, 73,
52, 81, 48, 74, 68, 76, 85, 104, 84, 77, 106, 85, 50, 73, 110, 48]
A.4.6. Content Encryption
Perform authenticated encryption on the Plaintext with the
AES_128_CBC_HMAC_SHA_256 algorithm using the CEK as the encryption
key, the JWE Initialization Vector, and the Additional Authenticated
Data value above. The steps for doing this using the values from
Appendix A.3 are detailed in Appendix B. The resulting Ciphertext
is:
[40, 57, 83, 181, 119, 33, 133, 148, 198, 185, 243, 24, 152, 230, 6,
75, 129, 223, 127, 19, 210, 82, 183, 230, 168, 33, 215, 104, 143,
112, 56, 102]
The resulting Authentication Tag value is:
Jones & Hildebrand Expires July 17, 2015 [Page 44]
Internet-Draft JSON Web Encryption (JWE) January 2015
[51, 63, 149, 60, 252, 148, 225, 25, 92, 185, 139, 245, 35, 2, 47,
207]
Encoding this JWE Ciphertext as BASE64URL(JWE Ciphertext) gives this
value:
KDlTtXchhZTGufMYmOYGS4HffxPSUrfmqCHXaI9wOGY
Encoding this JWE Authentication Tag as BASE64URL(JWE Authentication
Tag) gives this value:
Mz-VPPyU4RlcuYv1IwIvzw
A.4.7. Complete JWE JSON Serialization Representation
The complete JWE JSON Serialization for these values is as follows
(with line breaks within values for display purposes only):
{
"protected":
"eyJlbmMiOiJBMTI4Q0JDLUhTMjU2In0",
"unprotected":
{"jku":"https://server.example.com/keys.jwks"},
"recipients":[
{"header":
{"alg":"RSA1_5","kid":"2011-04-29"},
"encrypted_key":
"UGhIOguC7IuEvf_NPVaXsGMoLOmwvc1GyqlIKOK1nN94nHPoltGRhWhw7Zx0-
kFm1NJn8LE9XShH59_i8J0PH5ZZyNfGy2xGdULU7sHNF6Gp2vPLgNZ__deLKx
GHZ7PcHALUzoOegEI-8E66jX2E4zyJKx-YxzZIItRzC5hlRirb6Y5Cl_p-ko3
YvkkysZIFNPccxRU7qve1WYPxqbb2Yw8kZqa2rMWI5ng8OtvzlV7elprCbuPh
cCdZ6XDP0_F8rkXds2vE4X-ncOIM8hAYHHi29NX0mcKiRaD0-D-ljQTP-cFPg
wCp6X-nZZd9OHBv-B3oWh2TbqmScqXMR4gp_A"},
{"header":
{"alg":"A128KW","kid":"7"},
"encrypted_key":
"6KB707dM9YTIgHtLvtgWQ8mKwboJW3of9locizkDTHzBC2IlrT1oOQ"}],
"iv":
"AxY8DCtDaGlsbGljb3RoZQ",
"ciphertext":
"KDlTtXchhZTGufMYmOYGS4HffxPSUrfmqCHXaI9wOGY",
"tag":
"Mz-VPPyU4RlcuYv1IwIvzw"
}
Jones & Hildebrand Expires July 17, 2015 [Page 45]
Internet-Draft JSON Web Encryption (JWE) January 2015
A.5. Example JWE using Flattened JWE JSON Serialization
This section contains an example using the flattened JWE JSON
Serialization syntax. This example demonstrates the capability for
encrypting the plaintext to a single recipient in a flattened JSON
structure.
The values in this example are the same as those for the second
recipient of the previous example in Appendix A.4.
The complete JWE JSON Serialization for these values is as follows
(with line breaks within values for display purposes only):
{
"protected":
"eyJlbmMiOiJBMTI4Q0JDLUhTMjU2In0",
"unprotected":
{"jku":"https://server.example.com/keys.jwks"},
"header":
{"alg":"A128KW","kid":"7"},
"encrypted_key":
"6KB707dM9YTIgHtLvtgWQ8mKwboJW3of9locizkDTHzBC2IlrT1oOQ",
"iv":
"AxY8DCtDaGlsbGljb3RoZQ",
"ciphertext":
"KDlTtXchhZTGufMYmOYGS4HffxPSUrfmqCHXaI9wOGY",
"tag":
"Mz-VPPyU4RlcuYv1IwIvzw"
}
Appendix B. Example AES_128_CBC_HMAC_SHA_256 Computation
This example shows the steps in the AES_128_CBC_HMAC_SHA_256
authenticated encryption computation using the values from the
example in Appendix A.3. As described where this algorithm is
defined in Sections 5.2 and 5.2.3 of JWA, the AES_CBC_HMAC_SHA2
family of algorithms are implemented using Advanced Encryption
Standard (AES) in Cipher Block Chaining (CBC) mode with PKCS #7
padding to perform the encryption and an HMAC SHA-2 function to
perform the integrity calculation - in this case, HMAC SHA-256.
B.1. Extract MAC_KEY and ENC_KEY from Key
The 256 bit AES_128_CBC_HMAC_SHA_256 key K used in this example
(using JSON array notation) is:
[4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106,
Jones & Hildebrand Expires July 17, 2015 [Page 46]
Internet-Draft JSON Web Encryption (JWE) January 2015
206, 107, 124, 212, 45, 111, 107, 9, 219, 200, 177, 0, 240, 143, 156,
44, 207]
Use the first 128 bits of this key as the HMAC SHA-256 key MAC_KEY,
which is:
[4, 211, 31, 197, 84, 157, 252, 254, 11, 100, 157, 250, 63, 170, 106,
206]
Use the last 128 bits of this key as the AES CBC key ENC_KEY, which
is:
[107, 124, 212, 45, 111, 107, 9, 219, 200, 177, 0, 240, 143, 156, 44,
207]
Note that the MAC key comes before the encryption key in the input
key K; this is in the opposite order of the algorithm names in the
identifiers "AES_128_CBC_HMAC_SHA_256" and "A128CBC-HS256".
B.2. Encrypt Plaintext to Create Ciphertext
Encrypt the Plaintext with AES in Cipher Block Chaining (CBC) mode
using PKCS #7 padding using the ENC_KEY above. The Plaintext in this
example is:
[76, 105, 118, 101, 32, 108, 111, 110, 103, 32, 97, 110, 100, 32,
112, 114, 111, 115, 112, 101, 114, 46]
The encryption result is as follows, which is the Ciphertext output:
[40, 57, 83, 181, 119, 33, 133, 148, 198, 185, 243, 24, 152, 230, 6,
75, 129, 223, 127, 19, 210, 82, 183, 230, 168, 33, 215, 104, 143,
112, 56, 102]
B.3. 64 Bit Big Endian Representation of AAD Length
The Additional Authenticated Data (AAD) in this example is:
[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 66, 77, 84, 73, 52,
83, 49, 99, 105, 76, 67, 74, 108, 98, 109, 77, 105, 79, 105, 74, 66,
77, 84, 73, 52, 81, 48, 74, 68, 76, 85, 104, 84, 77, 106, 85, 50, 73,
110, 48]
This AAD is 51 bytes long, which is 408 bits long. The octet string
AL, which is the number of bits in AAD expressed as a big endian 64
bit unsigned integer is:
[0, 0, 0, 0, 0, 0, 1, 152]
Jones & Hildebrand Expires July 17, 2015 [Page 47]
Internet-Draft JSON Web Encryption (JWE) January 2015
B.4. Initialization Vector Value
The Initialization Vector value used in this example is:
[3, 22, 60, 12, 43, 67, 104, 105, 108, 108, 105, 99, 111, 116, 104,
101]
B.5. Create Input to HMAC Computation
Concatenate the AAD, the Initialization Vector, the Ciphertext, and
the AL value. The result of this concatenation is:
[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 66, 77, 84, 73, 52,
83, 49, 99, 105, 76, 67, 74, 108, 98, 109, 77, 105, 79, 105, 74, 66,
77, 84, 73, 52, 81, 48, 74, 68, 76, 85, 104, 84, 77, 106, 85, 50, 73,
110, 48, 3, 22, 60, 12, 43, 67, 104, 105, 108, 108, 105, 99, 111,
116, 104, 101, 40, 57, 83, 181, 119, 33, 133, 148, 198, 185, 243, 24,
152, 230, 6, 75, 129, 223, 127, 19, 210, 82, 183, 230, 168, 33, 215,
104, 143, 112, 56, 102, 0, 0, 0, 0, 0, 0, 1, 152]
B.6. Compute HMAC Value
Compute the HMAC SHA-256 of the concatenated value above. This
result M is:
[83, 73, 191, 98, 104, 205, 211, 128, 201, 189, 199, 133, 32, 38,
194, 85, 9, 84, 229, 201, 219, 135, 44, 252, 145, 102, 179, 140, 105,
86, 229, 116]
B.7. Truncate HMAC Value to Create Authentication Tag
Use the first half (128 bits) of the HMAC output M as the
Authentication Tag output T. This truncated value is:
[83, 73, 191, 98, 104, 205, 211, 128, 201, 189, 199, 133, 32, 38,
194, 85]
Appendix C. Acknowledgements
Solutions for encrypting JSON content were also explored by JSON
Simple Encryption [JSE] and JavaScript Message Security Format
[I-D.rescorla-jsms], both of which significantly influenced this
draft. This draft attempts to explicitly reuse as many of the
relevant concepts from XML Encryption 1.1
[W3C.REC-xmlenc-core1-20130411] and RFC 5652 [RFC5652] as possible,
while utilizing simple, compact JSON-based data structures.
Jones & Hildebrand Expires July 17, 2015 [Page 48]
Internet-Draft JSON Web Encryption (JWE) January 2015
Special thanks are due to John Bradley, Eric Rescorla, and Nat
Sakimura for the discussions that helped inform the content of this
specification, to Eric Rescorla and Joe Hildebrand for allowing the
reuse of text from [I-D.rescorla-jsms] in this document, and to Eric
Rescorla for co-authoring many drafts of this specification.
Thanks to Axel Nennker, Emmanuel Raviart, Brian Campbell, and Edmund
Jay for validating the examples in this specification.
This specification is the work of the JOSE Working Group, which
includes dozens of active and dedicated participants. In particular,
the following individuals contributed ideas, feedback, and wording
that influenced this specification:
Richard Barnes, John Bradley, Brian Campbell, Alissa Cooper, Breno de
Medeiros, Stephen Farrell, Dick Hardt, Jeff Hodges, Russ Housley,
Edmund Jay, Scott Kelly, Stephen Kent, Barry Leiba, James Manger,
Matt Miller, Kathleen Moriarty, Tony Nadalin, Hideki Nara, Axel
Nennker, Ray Polk, Emmanuel Raviart, Eric Rescorla, Pete Resnick, Nat
Sakimura, Jim Schaad, Hannes Tschofenig, and Sean Turner.
Jim Schaad and Karen O'Donoghue chaired the JOSE working group and
Sean Turner, Stephen Farrell, and Kathleen Moriarty served as
Security area directors during the creation of this specification.
Appendix D. Document History
[[ to be removed by the RFC Editor before publication as an RFC ]]
-40
o Clarified the definitions of UTF8(STRING) and ASCII(STRING).
-39
o No changes were made, other than to the version number and date.
-38
o Replaced uses of the phrases "JWS object" and "JWE object" with
"JWS" and "JWE".
o Added member names to the JWE JSON Serialization Overview.
o Applied other minor editorial improvements.
-37
Jones & Hildebrand Expires July 17, 2015 [Page 49]
Internet-Draft JSON Web Encryption (JWE) January 2015
o Restricted algorithm names to using only ASCII characters.
o When describing actions taken as a result of validation failures,
changed statements about rejecting the JWE to statements about
considering the JWE to be invalid.
o Added the CRT parameter values to example RSA private key
representations.
-36
o Defined a flattened JWE JSON Serialization syntax, which is
optimized for the single recipient case.
o Clarified where white space and line breaks may occur in JSON
objects by referencing Section 2 of RFC 7159.
-35
o Addressed AppsDir reviews by Ray Polk.
-34
o Addressed IESG review comments by Barry Leiba, Alissa Cooper, Pete
Resnick, Stephen Farrell, and Richard Barnes.
-33
o Noted that certificate thumbprints are also sometimes known as
certificate fingerprints.
o Changed to use the term "authenticated encryption" instead of
"encryption", where appropriate.
o Acknowledged additional contributors.
-32
o Addressed Gen-ART review comments by Russ Housley.
o Addressed secdir review comments by Scott Kelly, Tero Kivinen, and
Stephen Kent.
-31
o Updated the reference to draft-mcgrew-aead-aes-cbc-hmac-sha2.
-30
Jones & Hildebrand Expires July 17, 2015 [Page 50]
Internet-Draft JSON Web Encryption (JWE) January 2015
o Added subsection headings within the Overview section for the two
serializations.
o Added references and cleaned up the reference syntax in a few
places.
o Applied minor wording changes to the Security Considerations
section and made other local editorial improvements.
-29
o Replaced the terms JWS Header, JWE Header, and JWT Header with a
single JOSE Header term defined in the JWS specification. This
also enabled a single Header Parameter definition to be used and
reduced other areas of duplication between specifications.
-28
o Specified the use of PKCS #7 padding with AES CBC, rather than
PKCS #5. (PKCS #7 is a superset of PKCS #5, and is appropriate
for the 16 octet blocks used by AES CBC.)
o Revised the introduction to the Security Considerations section.
Also moved a security consideration item here from the JWA draft.
-27
o Described additional security considerations.
o Added the "x5t#S256" (X.509 Certificate SHA-256 Thumbprint) header
parameter.
-26
o Noted that octet sequences are depicted using JSON array notation.
o Updated references, including to W3C specifications.
-25
o Corrected two external section number references that had changed.
o Corrected a typo in an algorithm name in the prose of an example.
-24
o Corrected complete JSON Serialization example.
Jones & Hildebrand Expires July 17, 2015 [Page 51]
Internet-Draft JSON Web Encryption (JWE) January 2015
o Replaced uses of the term "associated data" wherever it was used
to refer to a data value with "additional authenticated data",
since both terms were being used as synonyms, causing confusion.
o Updated the JSON reference to RFC 7159.
o Thanked Eric Rescorla for helping to author of most of the drafts
of this specification and removed him from the current author
list.
-23
o Corrected a use of the word "payload" to "plaintext".
-22
o Corrected RFC 2119 terminology usage.
o Replaced references to draft-ietf-json-rfc4627bis with RFC 7158.
-21
o Changed some references from being normative to informative,
addressing issue #90.
o Applied review comments to the JSON Serialization section,
addressing issue #178.
-20
o Made terminology definitions more consistent, addressing issue
#165.
o Restructured the JSON Serialization section to call out the
parameters used in hanging lists, addressing issue #178.
o Replaced references to RFC 4627 with draft-ietf-json-rfc4627bis,
addressing issue #90.
-19
o Reordered the key selection parameters.
-18
o Updated the mandatory-to-implement (MTI) language to say that
applications using this specification need to specify what
serialization and serialization features are used for that
Jones & Hildebrand Expires July 17, 2015 [Page 52]
Internet-Draft JSON Web Encryption (JWE) January 2015
application, addressing issue #176.
o Changes to address editorial and minor issues #89, #135, #165,
#174, #175, #177, #179, and #180.
o Used Header Parameter Description registry field.
-17
o Refined the "typ" and "cty" definitions to always be MIME Media
Types, with the omission of "application/" prefixes recommended
for brevity, addressing issue #50.
o Updated the mandatory-to-implement (MTI) language to say that
general-purpose implementations must implement the single
recipient case for both serializations whereas special-purpose
implementations can implement just one serialization if that meets
the needs of the use cases the implementation is designed for,
addressing issue #176.
o Explicitly named all the logical components of a JWE and defined
the processing rules and serializations in terms of those
components, addressing issues #60, #61, and #62.
o Replaced verbose repetitive phases such as "base64url encode the
octets of the UTF-8 representation of X" with mathematical
notation such as "BASE64URL(UTF8(X))".
o Header Parameters and processing rules occurring in both JWS and
JWE are now referenced in JWS by JWE, rather than duplicated,
addressing issue #57.
o Terms used in multiple documents are now defined in one place and
incorporated by reference. Some lightly used or obvious terms
were also removed. This addresses issue #58.
-16
o Changes to address editorial and minor issues #163, #168, #169,
#170, #172, and #173.
-15
o Clarified that it is an application decision which recipients'
encrypted content must successfully validate for the JWE to be
accepted, addressing issue #35.
Jones & Hildebrand Expires July 17, 2015 [Page 53]
Internet-Draft JSON Web Encryption (JWE) January 2015
o Changes to address editorial issues #34, #164, and #169.
-14
o Clarified that the "protected", "unprotected", "header", "iv",
"tag", and "encrypted_key" parameters are to be omitted in the JWE
JSON Serialization when their values would be empty. Stated that
the "recipients" array must always be present.
-13
o Added an "aad" (Additional Authenticated Data) member for the JWE
JSON Serialization, enabling Additional Authenticated Data to be
supplied that is not double base64url encoded, addressing issue
#29.
-12
o Clarified that the "typ" and "cty" header parameters are used in
an application-specific manner and have no effect upon the JWE
processing.
o Replaced the MIME types "application/jwe+json" and
"application/jwe" with "application/jose+json" and
"application/jose".
o Stated that recipients MUST either reject JWEs with duplicate
Header Parameter Names or use a JSON parser that returns only the
lexically last duplicate member name.
o Moved the "epk", "apu", and "apv" Header Parameter definitions to
be with the algorithm descriptions that use them.
o Added a Serializations section with parallel treatment of the JWE
Compact Serialization and the JWE JSON Serialization and also
moved the former Implementation Considerations content there.
o Restored use of the term "AEAD".
o Changed terminology from "block encryption" to "content
encryption".
-11
o Added Key Identification section.
o Removed the Encrypted Key value from the AAD computation since it
is already effectively integrity protected by the encryption
Jones & Hildebrand Expires July 17, 2015 [Page 54]
Internet-Draft JSON Web Encryption (JWE) January 2015
process. The AAD value now only contains the representation of
the JWE Encrypted Header.
o For the JWE JSON Serialization, enable Header Parameter values to
be specified in any of three parameters: the "protected" member
that is integrity protected and shared among all recipients, the
"unprotected" member that is not integrity protected and shared
among all recipients, and the "header" member that is not
integrity protected and specific to a particular recipient. (This
does not affect the JWE Compact Serialization, in which all Header
Parameter values are in a single integrity protected JWE Header
value.)
o Shortened the names "authentication_tag" to "tag" and
"initialization_vector" to "iv" in the JWE JSON Serialization,
addressing issue #20.
o Removed "apv" (agreement PartyVInfo) since it is no longer used.
o Removed suggested compact serialization for multiple recipients.
o Changed the MIME type name "application/jwe-js" to
"application/jwe+json", addressing issue #22.
o Tightened the description of the "crit" (critical) header
parameter.
-10
o Changed the JWE processing rules for multiple recipients so that a
single AAD value contains the header parameters and encrypted key
values for all the recipients, enabling AES GCM to be safely used
for multiple recipients.
o Added an appendix suggesting a possible compact serialization for
JWEs with multiple recipients.
-09
o Added JWE JSON Serialization, as specified by
draft-jones-jose-jwe-json-serialization-04.
o Registered "application/jwe-js" MIME type and "JWE-JS" typ header
parameter value.
o Defined that the default action for header parameters that are not
understood is to ignore them unless specifically designated as
"MUST be understood" or included in the new "crit" (critical)
Jones & Hildebrand Expires July 17, 2015 [Page 55]
Internet-Draft JSON Web Encryption (JWE) January 2015
header parameter list. This addressed issue #6.
o Corrected "x5c" description. This addressed issue #12.
o Changed from using the term "byte" to "octet" when referring to 8
bit values.
o Added Key Management Mode definitions to terminology section and
used the defined terms to provide clearer key management
instructions. This addressed issue #5.
o Added text about preventing the recipient from behaving as an
oracle during decryption, especially when using RSAES-PKCS1-V1_5.
o Changed from using the term "Integrity Value" to "Authentication
Tag".
o Changed member name from "integrity_value" to "authentication_tag"
in the JWE JSON Serialization.
o Removed Initialization Vector from the AAD value since it is
already integrity protected by all of the authenticated encryption
algorithms specified in the JWA specification.
o Replaced "A128CBC+HS256" and "A256CBC+HS512" with "A128CBC-HS256"
and "A256CBC-HS512". The new algorithms perform the same
cryptographic computations as [I-D.mcgrew-aead-aes-cbc-hmac-sha2],
but with the Initialization Vector and Authentication Tag values
remaining separate from the Ciphertext value in the output
representation. Also deleted the header parameters "epu"
(encryption PartyUInfo) and "epv" (encryption PartyVInfo), since
they are no longer used.
-08
o Replaced uses of the term "AEAD" with "Authenticated Encryption",
since the term AEAD in the RFC 5116 sense implied the use of a
particular data representation, rather than just referring to the
class of algorithms that perform authenticated encryption with
associated data.
o Applied editorial improvements suggested by Jeff Hodges and Hannes
Tschofenig. Many of these simplified the terminology used.
o Clarified statements of the form "This header parameter is
OPTIONAL" to "Use of this header parameter is OPTIONAL".
Jones & Hildebrand Expires July 17, 2015 [Page 56]
Internet-Draft JSON Web Encryption (JWE) January 2015
o Added a Header Parameter Usage Location(s) field to the IANA JSON
Web Signature and Encryption Header Parameters registry.
o Added seriesInfo information to Internet Draft references.
-07
o Added a data length prefix to PartyUInfo and PartyVInfo values.
o Updated values for example AES CBC calculations.
o Made several local editorial changes to clean up loose ends left
over from to the decision to only support block encryption methods
providing integrity. One of these changes was to explicitly state
that the "enc" (encryption method) algorithm must be an
Authenticated Encryption algorithm with a specified key length.
-06
o Removed the "int" and "kdf" parameters and defined the new
composite Authenticated Encryption algorithms "A128CBC+HS256" and
"A256CBC+HS512" to replace the former uses of AES CBC, which
required the use of separate integrity and key derivation
functions.
o Included additional values in the Concat KDF calculation -- the
desired output size and the algorithm value, and optionally
PartyUInfo and PartyVInfo values. Added the optional header
parameters "apu" (agreement PartyUInfo), "apv" (agreement
PartyVInfo), "epu" (encryption PartyUInfo), and "epv" (encryption
PartyVInfo). Updated the KDF examples accordingly.
o Promoted Initialization Vector from being a header parameter to
being a top-level JWE element. This saves approximately 16 bytes
in the compact serialization, which is a significant savings for
some use cases. Promoting the Initialization Vector out of the
header also avoids repeating this shared value in the JSON
serialization.
o Changed "x5c" (X.509 Certificate Chain) representation from being
a single string to being an array of strings, each containing a
single base64 encoded DER certificate value, representing elements
of the certificate chain.
o Added an AES Key Wrap example.
o Reordered the encryption steps so CMK creation is first, when
required.
Jones & Hildebrand Expires July 17, 2015 [Page 57]
Internet-Draft JSON Web Encryption (JWE) January 2015
o Correct statements in examples about which algorithms produce
reproducible results.
-05
o Support both direct encryption using a shared or agreed upon
symmetric key, and the use of a shared or agreed upon symmetric
key to key wrap the CMK.
o Added statement that "StringOrURI values are compared as case-
sensitive strings with no transformations or canonicalizations
applied".
o Updated open issues.
o Indented artwork elements to better distinguish them from the body
text.
-04
o Refer to the registries as the primary sources of defined values
and then secondarily reference the sections defining the initial
contents of the registries.
o Normatively reference XML Encryption 1.1 for its security
considerations.
o Reference draft-jones-jose-jwe-json-serialization instead of
draft-jones-json-web-encryption-json-serialization.
o Described additional open issues.
o Applied editorial suggestions.
-03
o Added the "kdf" (key derivation function) header parameter to
provide crypto agility for key derivation. The default KDF
remains the Concat KDF with the SHA-256 digest function.
o Reordered encryption steps so that the Encoded JWE Header is
always created before it is needed as an input to the
Authenticated Encryption "additional authenticated data"
parameter.
o Added the "cty" (content type) header parameter for declaring type
information about the secured content, as opposed to the "typ"
(type) header parameter, which declares type information about
Jones & Hildebrand Expires July 17, 2015 [Page 58]
Internet-Draft JSON Web Encryption (JWE) January 2015
this object.
o Moved description of how to determine whether a header is for a
JWS or a JWE from the JWT spec to the JWE spec.
o Added complete encryption examples for both Authenticated
Encryption and non-Authenticated Encryption algorithms.
o Added complete key derivation examples.
o Added "Collision Resistant Namespace" to the terminology section.
o Reference ITU.X690.1994 for DER encoding.
o Added Registry Contents sections to populate registry values.
o Numerous editorial improvements.
-02
o When using Authenticated Encryption algorithms (such as AES GCM),
use the "additional authenticated data" parameter to provide
integrity for the header, encrypted key, and ciphertext and use
the resulting "authentication tag" value as the JWE Authentication
Tag.
o Defined KDF output key sizes.
o Generalized text to allow key agreement to be employed as an
alternative to key wrapping or key encryption.
o Changed compression algorithm from gzip to DEFLATE.
o Clarified that it is an error when a "kid" value is included and
no matching key is found.
o Clarified that JWEs with duplicate Header Parameter Names MUST be
rejected.
o Clarified the relationship between "typ" header parameter values
and MIME types.
o Registered application/jwe MIME type and "JWE" typ header
parameter value.
o Simplified JWK terminology to get replace the "JWK Key Object" and
"JWK Container Object" terms with simply "JSON Web Key (JWK)" and
"JSON Web Key Set (JWK Set)" and to eliminate potential confusion
Jones & Hildebrand Expires July 17, 2015 [Page 59]
Internet-Draft JSON Web Encryption (JWE) January 2015
between single keys and sets of keys. As part of this change, the
Header Parameter Name for a public key value was changed from
"jpk" (JSON Public Key) to "jwk" (JSON Web Key).
o Added suggestion on defining additional header parameters such as
"x5t#S256" in the future for certificate thumbprints using hash
algorithms other than SHA-1.
o Specify RFC 2818 server identity validation, rather than RFC 6125
(paralleling the same decision in the OAuth specs).
o Generalized language to refer to Message Authentication Codes
(MACs) rather than Hash-based Message Authentication Codes (HMACs)
unless in a context specific to HMAC algorithms.
o Reformatted to give each header parameter its own section heading.
-01
o Added an integrity check for non-Authenticated Encryption
algorithms.
o Added "jpk" and "x5c" header parameters for including JWK public
keys and X.509 certificate chains directly in the header.
o Clarified that this specification is defining the JWE Compact
Serialization. Referenced the new JWE-JS spec, which defines the
JWE JSON Serialization.
o Added text "New header parameters should be introduced sparingly
since an implementation that does not understand a parameter MUST
reject the JWE".
o Clarified that the order of the encryption and decryption steps is
not significant in cases where there are no dependencies between
the inputs and outputs of the steps.
o Made other editorial improvements suggested by JOSE working group
participants.
-00
o Created the initial IETF draft based upon
draft-jones-json-web-encryption-02 with no normative changes.
o Changed terminology to no longer call both digital signatures and
HMACs "signatures".
Jones & Hildebrand Expires July 17, 2015 [Page 60]
Internet-Draft JSON Web Encryption (JWE) January 2015
Authors' Addresses
Michael B. Jones
Microsoft
Email: mbj@microsoft.com
URI: http://self-issued.info/
Joe Hildebrand
Cisco Systems, Inc.
Email: jhildebr@cisco.com
Jones & Hildebrand Expires July 17, 2015 [Page 61]