Internet DRAFT - draft-ietf-tls-negotiated-ff-dhe
draft-ietf-tls-negotiated-ff-dhe
Internet Engineering Task Force D. Gillmor
Internet-Draft ACLU
Updates: 4492, 5246, 4346, 2246 (if June 1, 2015
approved)
Intended status: Standards Track
Expires: December 3, 2015
Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for TLS
draft-ietf-tls-negotiated-ff-dhe-10
Abstract
Traditional finite-field-based Diffie-Hellman (DH) key exchange
during the TLS handshake suffers from a number of security,
interoperability, and efficiency shortcomings. These shortcomings
arise from lack of clarity about which DH group parameters TLS
servers should offer and clients should accept. This document offers
a solution to these shortcomings for compatible peers by using a
section of the TLS "EC Named Curve Registry" to establish common
finite-field DH parameters with known structure and a mechanism for
peers to negotiate support for these groups.
This draft updates TLS versions 1.0 [RFC2246], 1.1 [RFC4346], and 1.2
[RFC5246], as well as the TLS ECC extensions [RFC4492].
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on December 3, 2015.
Copyright Notice
Copyright (c) 2015 IETF Trust and the persons identified as the
document authors. All rights reserved.
Gillmor Expires December 3, 2015 [Page 1]
Internet-Draft Negotiated-FF-DHE-for-TLS June 2015
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1. Requirements Language . . . . . . . . . . . . . . . . . . 3
1.2. Vocabulary . . . . . . . . . . . . . . . . . . . . . . . 4
2. Named Group Overview . . . . . . . . . . . . . . . . . . . . 4
3. Client Behavior . . . . . . . . . . . . . . . . . . . . . . . 5
3.1. Client Local Policy on Custom Groups . . . . . . . . . . 6
4. Server Behavior . . . . . . . . . . . . . . . . . . . . . . . 6
5. Optimizations . . . . . . . . . . . . . . . . . . . . . . . . 7
5.1. Checking the Peer's Public Key . . . . . . . . . . . . . 8
5.2. Short Exponents . . . . . . . . . . . . . . . . . . . . . 8
5.3. Table Acceleration . . . . . . . . . . . . . . . . . . . 8
6. Operational Considerations . . . . . . . . . . . . . . . . . 8
6.1. Preference Ordering . . . . . . . . . . . . . . . . . . . 9
7. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 9
8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 9
9. Security Considerations . . . . . . . . . . . . . . . . . . . 10
9.1. Negotiation resistance to active attacks . . . . . . . . 10
9.2. Group strength considerations . . . . . . . . . . . . . . 11
9.3. Finite-Field DHE only . . . . . . . . . . . . . . . . . . 12
9.4. Deprecating weak groups . . . . . . . . . . . . . . . . . 12
9.5. Choice of groups . . . . . . . . . . . . . . . . . . . . 12
9.6. Timing attacks . . . . . . . . . . . . . . . . . . . . . 13
9.7. Replay attacks from non-negotiated FFDHE . . . . . . . . 13
9.8. Forward Secrecy . . . . . . . . . . . . . . . . . . . . . 13
9.9. False Start . . . . . . . . . . . . . . . . . . . . . . . 14
10. Privacy Considerations . . . . . . . . . . . . . . . . . . . 14
10.1. Client fingerprinting . . . . . . . . . . . . . . . . . 14
11. References . . . . . . . . . . . . . . . . . . . . . . . . . 15
11.1. Normative References . . . . . . . . . . . . . . . . . . 15
11.2. Informative References . . . . . . . . . . . . . . . . . 15
11.3. URIs . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Appendix A. Named Group Registry . . . . . . . . . . . . . . . . 17
A.1. ffdhe2048 . . . . . . . . . . . . . . . . . . . . . . . . 17
A.2. ffdhe3072 . . . . . . . . . . . . . . . . . . . . . . . . 18
A.3. ffdhe4096 . . . . . . . . . . . . . . . . . . . . . . . . 20
A.4. ffdhe6144 . . . . . . . . . . . . . . . . . . . . . . . . 21
Gillmor Expires December 3, 2015 [Page 2]
Internet-Draft Negotiated-FF-DHE-for-TLS June 2015
A.5. ffdhe8192 . . . . . . . . . . . . . . . . . . . . . . . . 23
Author's Address . . . . . . . . . . . . . . . . . . . . . . . . 26
1. Introduction
Traditional TLS [RFC5246] offers a Diffie-Hellman ephemeral (DHE) key
exchange mode which provides Forward Secrecy for the connection. The
client offers a ciphersuite in the ClientHello that includes DHE, and
the server offers the client group parameters generator g and modulus
p. If the client does not consider the group strong enough (e.g., if
p is too small, or if p is not prime, or there are small subgroups
that cannot be easily avoided), or if it is unable to process the
group for other reasons, the client has no recourse but to terminate
the connection.
Conversely, when a TLS server receives a suggestion for a DHE
ciphersuite from a client, it has no way of knowing what kinds of DH
groups the client is capable of handling, or what the client's
security requirements are for this key exchange session. For
example, some widely-distributed TLS clients are not capable of DH
groups where p > 1024 bits. Other TLS clients may by policy wish to
use DHE only if the server can offer a stronger group (and are
willing to use a non-PFS key-exchange mechanism otherwise). The
server has no way of knowing which type of client is connecting, but
must select DH parameters with insufficient knowledge.
Additionally, the DH parameters selected by the server may have a
known structure which renders them secure against a small subgroup
attack, but a client receiving an arbitrary p and g has no efficient
way to verify that the structure of a new group is reasonable for
use.
This modification to TLS solves these problems by using a section of
the "EC Named Curves" registry to select common DH groups with known
structure and defining the use of the "elliptic_curves(10)" extension
(described here as "Supported Groups" extension) for clients
advertising support for DHE with these groups. This document also
provides guidance for compatible peers to take advantage of the
additional security, availability, and efficiency offered.
The use of this mechanism by one compatible peer when interacting
with a non-compatible peer should have no detrimental effects.
1.1. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
Gillmor Expires December 3, 2015 [Page 3]
Internet-Draft Negotiated-FF-DHE-for-TLS June 2015
document are to be interpreted as described in [RFC2119]. The term
"PRIVATE USE" is to be interpreted as described in [RFC5226].
1.2. Vocabulary
The terms "DHE" or "FFDHE" are used in this document to refer to the
finite-field-based Diffie-Hellman ephemeral key exchange mechanism in
TLS. TLS also supports elliptic-curve-based Diffie-Hellman (ECDHE)
ephemeral key exchanges [RFC4492], but this document does not
document their use. A registry previously used only by ECHDE-capable
implementations is expanded in this document to cover FFDHE groups as
well. "FFDHE ciphersuites" is used in this document to refer
exclusively to ciphersuites with FFDHE key exchange mechanisms, but
note that these suites are typically labeled with a TLS_DHE_ prefix.
2. Named Group Overview
We use previously-unallocated codepoints within the extension
currently known as "elliptic_curves" (section 5.1.1. of [RFC4492]) to
indicate known finite field groups. The extension's semantics are
expanded from "Supported Elliptic Curves" to "Supported Groups". The
semantics of the extension's data type (enum NamedCurve) is also
expanded from "named curve" to "named group".
Additionally, we explicitly relax the requirement about when the
Supported Groups extension can be sent. This extension MAY be sent
by the client when either FFDHE or ECDHE ciphersuites are listed.
Codepoints in the NamedCurve registry with a high byte of 0x01 (that
is, between 256 and 511 inclusive) are set aside for FFDHE groups,
though only a small number of them are initially defined and we do
not expect many other FFDHE groups to be added to this range. No
codepoints outside of this range will be allocated to FFDHE groups.
The new code points for the NamedCurve registry are:
enum {
// other already defined elliptic curves (see RFC 4492)
ffdhe2048(256), ffdhe3072(257), ffdhe4096(258),
ffdhe6144(259), ffdhe8192(260),
//
} NamedCurve;
These additions to the Named Curve registry are described in detail
in Appendix A. They are all safe primes derived from the base of the
natural logarithm ("e"), with the high and low 64 bits set to 1 for
efficient Montgomery or Barrett reduction.
Gillmor Expires December 3, 2015 [Page 4]
Internet-Draft Negotiated-FF-DHE-for-TLS June 2015
The use of the base of the natural logarithm here is as a "nothing-
up-my-sleeve" number. The goal is to guarantee that the bits in the
middle of the modulus are effectively random, while avoiding any
suspicion that the primes have secretly been selected to be weak
according to some secret criteria. [RFC3526] used pi for this value.
See Section 9.5 for reasons that this draft does not reuse pi.
3. Client Behavior
A TLS client that is capable of using strong finite field Diffie-
Hellman groups can advertise its capabilities and its preferences for
stronger key exchange by using this mechanism.
The compatible client that wants to be able to negotiate strong FFDHE
sends a "Supported Groups" extension (identified by type
elliptic_curves(10) in [RFC4492]) in the ClientHello, and include a
list of known FFDHE groups in the extension data, ordered from most
preferred to least preferred. If the client also supports and wants
to offer ECDHE key exchange, it MUST use a single "Supported Groups"
extension to include all supported groups (both ECDHE and FFDHE
groups). The ordering SHOULD be based on client preference, but see
Section 6.1 for more nuance.
A client that offers a "Supported Groups" extension containing an
FFDHE group SHOULD also include at least one FFDHE ciphersuite in the
Client Hello.
A client that offers a group MUST be able and willing to perform a DH
key exchange using that group.
A client that offers one or more FFDHE groups in the "Supported
Groups" extension and an FFDHE ciphersuite, and receives an FFDHE
ciphersuite from the server SHOULD take the following steps upon
receiving the ServerKeyExchange:
For non-anonymous ciphersuites where the offered Certificate is
valid and appropriate for the peer, validate the signature over
the ServerDHParams. If not valid, terminate the connection.
If the signature over ServerDHParams is valid, compare the
selected dh_p and dh_g with the FFDHE groups offered by the
client. If none of the offered groups match, the server is not
compatible with this draft. The client MAY decide to continue the
connection if the selected group is acceptable under local policy,
or it MAY decide to terminate the connection with a fatal
insufficient_security(71) alert.
Gillmor Expires December 3, 2015 [Page 5]
Internet-Draft Negotiated-FF-DHE-for-TLS June 2015
If the client continues (either because the server offered a
matching group, or because local policy permits the offered custom
group), the client MUST verify that dh_Ys is in the range 1 <
dh_Ys < dh_p - 1. If dh_Ys is not in this range, the client MUST
terminate the connection with a fatal handshake_failure(40) alert.
If dh_Ys is in range, then the client SHOULD continue with the
connection as usual.
3.1. Client Local Policy on Custom Groups
Compatible clients that are willing to accept FFDHE ciphersuites from
non-compatible servers may have local policy about what custom FFDHE
groups they are willing to accept. This local policy presents a risk
to clients, who may accept weakly-protected communications from
misconfigured servers.
This draft cannot enumerate all possible safe local policy (the
safest may be to simply reject all custom groups), but compatible
clients that accept some custom groups from the server MUST do at
least cursory checks on group size, and may take other properties
into consideration as well.
A compatible client that accepts FFDHE ciphersuites using custom
groups from non-compatible servers MUST reject any group with |dh_p|
< 768 bits, and SHOULD reject any group with |dh_p| < 1024 bits.
A compatible client that rejects a non-compatible server's custom
group may decide to retry the connection while omitting all FFDHE
ciphersuites from the ClientHello. A client SHOULD only use this
approach if it successfully verified the server's expected signature
over the ServerDHParams, to avoid being forced by an active attacker
into a non-preferred ciphersuite.
4. Server Behavior
If a compatible TLS server receives a Supported Groups extension from
a client that includes any FFDHE group (i.e. any codepoint between
256 and 511 inclusive, even if unknown to the server), and if none of
the client-proposed FFDHE groups are known and acceptable to the
server, then the server MUST NOT select an FFDHE ciphersuite. In
this case, the server SHOULD select an acceptable non-FFDHE
ciphersuite from the client's offered list. If the extension is
present with FFDHE groups, none of the client's offered groups are
acceptable by the server, and none of the client's proposed non-FFDHE
ciphersuites are acceptable to the server, the server MUST end the
connection with a fatal TLS alert of type insufficient_security(71).
Gillmor Expires December 3, 2015 [Page 6]
Internet-Draft Negotiated-FF-DHE-for-TLS June 2015
If at least one FFDHE ciphersuite is present in the client
ciphersuite list, and the Supported Groups extension is either absent
from the ClientHello entirely or contains no FFDHE groups (i.e. no
codepoints between 256 and 511 inclusive), then the server knows that
the client is not compatible with this document. In this scenario, a
server MAY select a non-FFDHE ciphersuite, or MAY select an FFDHE
ciphersuite and offer an FFDHE group of its choice to the client as
part of a traditional ServerKeyExchange.
A compatible TLS server that receives the Supported Groups extension
with FFDHE codepoints in it, and which selects an FFDHE ciphersuite
MUST select one of the client's offered groups. The server indicates
the choice of group to the client by sending the group's parameters
as usual in the ServerKeyExchange as described in section 7.4.3 of
[RFC5246].
A TLS server MUST NOT select a named FFDHE group that was not offered
by a compatible client.
A TLS server MUST NOT select an FFDHE ciphersuite if the client did
not offer one, even if the client offered an FFDHE group in the
Supported Groups extension.
If a non-anonymous FFDHE ciphersuite is selected, and the TLS client
has used this extension to offer an FFDHE group of comparable or
greater strength than the server's public key, the server SHOULD
select an FFDHE group at least as strong as the server's public key.
For example, if the server has a 3072-bit RSA key, and the client
offers only ffdhe2048 and ffdhe4096, the server SHOULD select
ffdhe4096.
When an FFDHE ciphersuite is selected, and the client sends a
ClientKeyExchange, the server MUST verify that 1 < dh_Yc < dh_p - 1.
If dh_Yc is out of range, the server MUST terminate the connection
with fatal handshake_failure(40) alert.
5. Optimizations
In a key exchange with a successfully negotiated known FFDHE group,
both peers know that the group in question uses a safe prime as a
modulus, and that the group in use is of size p-1 or (p-1)/2. This
allows at least three optimizations that can be used to improve
performance.
Gillmor Expires December 3, 2015 [Page 7]
Internet-Draft Negotiated-FF-DHE-for-TLS June 2015
5.1. Checking the Peer's Public Key
Peers MUST validate each other's public key Y (dh_Ys offered by the
server or dh_Yc offered by the client) by ensuring that 1 < Y < p-1.
This simple check ensures that the remote peer is properly behaved
and isn't forcing the local system into the 2-element subgroup.
To reach the same assurance with an unknown group, the client would
need to verify the primality of the modulus, learn the factors of
p-1, and test both the generator g and Y against each factor to avoid
small subgroup attacks.
5.2. Short Exponents
Traditional Finite Field Diffie-Hellman has each peer choose their
secret exponent from the range [2,p-2]. Using exponentiation by
squaring, this means each peer must do roughly 2*log_2(p)
multiplications, twice (once for the generator and once for the
peer's public key).
Peers concerned with performance may also prefer to choose their
secret exponent from a smaller range, doing fewer multiplications,
while retaining the same level of overall security. Each named group
indicates its approximate security level, and provides a lower-bound
on the range of secret exponents that should preserve it. For
example, rather than doing 2*2*3072 multiplications for a ffdhe3072
handshake, each peer can choose to do 2*2*275 multiplications by
choosing their secret exponent from the range [2^274,2^275] (that is,
a m-bit integer where m is at least 275) and still keep the same
approximate security level.
A similar short-exponent approach is suggested in SSH's Diffie-
Hellman key exchange (See section 6.2 of [RFC4419]).
5.3. Table Acceleration
Peers wishing to further accelerate FFDHE key exchange can also pre-
compute a table of powers of the generator of a known group. This is
a memory vs. time tradeoff, and it only accelerates the first
exponentiation of the ephemeral DH exchange (the fixed-base
exponentiation). The variable-base exponentiation (using the peer's
public exponent as a base) still needs to be calculated as normal.
6. Operational Considerations
Gillmor Expires December 3, 2015 [Page 8]
Internet-Draft Negotiated-FF-DHE-for-TLS June 2015
6.1. Preference Ordering
The ordering of named groups in the Supported Groups extension may
contain some ECDHE groups and some FFDHE groups. These SHOULD be
ranked in the order preferred by the client.
However, the ClientHello also contains list of desired ciphersuites,
also ranked in preference order. This presents the possibility of
conflicted preferences. For example, if the ClientHello contains a
CipherSuite with two choices in order
<TLS_DHE_RSA_WITH_AES_128_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA> and the Supported Groups
Extension contains two choices in order <secp256r1,ffdhe3072> then
there is a clear contradiction. Clients SHOULD NOT present such a
contradiction since it does not represent a sensible ordering. A
server that encounters such an contradiction when selecting between
an ECDHE or FFDHE key exchange mechanism while trying to respect
client preferences SHOULD give priority to the Supported Groups
extension (in the example case, it should select
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA with secp256r1), but MAY resolve
the contradiction any way it sees fit.
More subtly, clients MAY interleave preferences between ECDHE and
FFDHE groups, for example if stronger groups are preferred regardless
of cost, but weaker groups are acceptable, the Supported Groups
extension could consist of:
<ffdhe8192,secp384p1,ffdhe3072,secp256r1>. In this example, with the
same CipherSuite offered as the previous example, a server configured
to respect client preferences and with support for all listed groups
SHOULD select TLS_DHE_RSA_WITH_AES_128_CBC_SHA with ffdhe8192. A
server configured to respect client preferences and with support for
only secp384p1 and ffdhe3072 SHOULD select
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA with secp384p1.
7. Acknowledgements
Thanks to Fedor Brunner, Dave Fergemann, Niels Ferguson, Sandy
Harris, Tero Kivinen, Watson Ladd, Nikos Mavrogiannopolous, Niels
Moeller, Bodo Moeller, Kenny Paterson, Eric Rescorla, Tom Ritter,
Rene Struik, Martin Thomson, Sean Turner, and other members of the
TLS Working Group for their comments and suggestions on this draft.
Any mistakes here are not theirs.
8. IANA Considerations
IANA maintains the registry currently known as EC Named Curves
(originally defined in [RFC4492] and updated by [RFC7027]) at [1].
Gillmor Expires December 3, 2015 [Page 9]
Internet-Draft Negotiated-FF-DHE-for-TLS June 2015
This document expands the semantics of this registry slightly, to
include groups based on finite fields in addition to groups based on
elliptic curves. IANA should add a range designation to that
registry, indicating that values from 256-511 (inclusive) are set
aside for "Finite Field Diffie-Hellman groups", and that all other
entries in the registry are "Elliptic curve groups".
This document allocates five well-defined codepoints in the registry
for specific Finite Field Diffie-Hellman groups defined in
Appendix A.
In addition, the four highest codepoints in this range (508-511,
inclusive) are designated for PRIVATE USE by peers who have
privately-developed Finite Field Diffie-Hellman groups that they wish
to signal internally.
The updated registry section should be as follows:
+---------------------+-------------+---------+-----------------+
| Value | Description | DTLS-OK | Reference |
+---------------------+-------------+---------+-----------------+
| 256 | ffdhe2048 | Y | [this document] |
| 257 | ffdhe3072 | Y | [this document] |
| 258 | ffdhe4096 | Y | [this document] |
| 259 | ffdhe6144 | Y | [this document] |
| 260 | ffdhe8192 | Y | [this document] |
| 508-511 (inclusive) | PRIVATE USE | - | - |
+---------------------+-------------+---------+-----------------+
9. Security Considerations
9.1. Negotiation resistance to active attacks
Because the contents of the Supported Groups extension are hashed in
the finished message, an active MITM that tries to filter or omit
groups will cause the handshake to fail, but possibly not before
getting the peer to do something they would not otherwise have done.
An attacker who impersonates the server can try to do any of the
following:
Pretend that a non-compatible server is actually capable of this
extension, and select a group from the client's list, causing the
client to select a group it is willing to negotiate. It is
unclear how this would be an effective attack.
Gillmor Expires December 3, 2015 [Page 10]
Internet-Draft Negotiated-FF-DHE-for-TLS June 2015
Pretend that a compatible server is actually non-compatible by
negotiating a non-FFDHE ciphersuite. This is no different than
MITM ciphersuite filtering.
Pretend that a compatible server is actually non-compatible by
negotiating a DHE ciphersuite, with a custom (perhaps weak) group
selected by the attacker. This is no worse than the current
scenario, and would require the attacker to be able to sign the
ServerDHParams, which should not be possible without access to the
server's secret key.
An attacker who impersonates the client can try to do the following:
Pretend that a compatible client is not compatible (e.g., by not
offering the Supported Groups extension, or by replacing the
Supported Groups extension with one that includes no FFDHE
groups). This could cause the server to negotiate a weaker DHE
group during the handshake, or to select a non-FFDHE ciphersuite,
but it would fail to complete during the final check of the
Finished message.
Pretend that a non-compatible client is compatible (e.g., by
adding the Supported Groups extension, or by adding FFDHE groups
to the extension). This could cause the server to select a
particular named group in the ServerKeyExchange, or to avoid
selecting an FFDHE ciphersuite. The peers would fail to compute
the final check of the Finished message.
Change the list of groups offered by the client (e.g., by removing
the stronger of the set of groups offered). This could cause the
server to negotiate a weaker group than desired, but again should
be caught by the check in the Finished message.
9.2. Group strength considerations
TLS implementations using FFDHE key exchange should consider the
strength of the group they negotiate. The strength of the selected
group is one of the factors that define the connection's resiliance
against attacks on the session's confidentiality and integrity, since
the session keys are derived from the DHE handshake.
While attacks on integrity must generally happen while the session is
in progress, attacks against session confidentiality can happen
significantly later, if the entire TLS session is stored for offline
analysis. Therefore, FFDHE groups should be selected by clients and
servers based on confidentiality guarantees they need. Sessions
which need extremely long-term confidentiality should prefer stronger
groups.
Gillmor Expires December 3, 2015 [Page 11]
Internet-Draft Negotiated-FF-DHE-for-TLS June 2015
[ENISA] provides rough estimates of group resistance to attack, and
recommends that forward-looking implementations ("future systems")
should use FFDHE group sizes of at least 3072 bits. ffdhe3072 is
intended for use in these implementations.
Other sources (e.g., [NIST]) estimate the security levels of the DLOG
problem to be slightly more difficult than [ENISA]. This document's
suggested minimum exponent sizes in Appendix A for implementations
that use the short exponents optimization (Section 5.2) are
deliberately conservative to account for the range of these
estimates.
9.3. Finite-Field DHE only
Note that this document specifically targets only finite field-based
Diffie-Hellman ephemeral key exchange mechanisms. It does not cover
the non-ephemeral DH key exchange mechanisms, nor does it address
elliptic curve DHE (ECDHE) key exchange, which is defined in
[RFC4492].
Measured by computational cost to the TLS peers, ECDHE appears today
to offer much a stronger key exchange mechanism than FFDHE.
9.4. Deprecating weak groups
Advances in hardware or in finite field cryptanalysis may cause some
of the negotiated groups to not provide the desired security margins,
as indicated by the estimated work factor of an adversary to discover
the premaster secret (and may therefore compromise the
confidentiality and integrity of the TLS session).
Revisions of this document should mark known-weak groups as
explicitly deprecated for use in TLS, and should update the estimated
work factor needed to break the group, if the cryptanalysis has
changed. Implementations that require strong confidentiality and
integrity guarantees should avoid using deprecated groups and should
be updated when the estimated security margins are updated.
9.5. Choice of groups
Other lists of named finite field Diffie-Hellman groups
[STRONGSWAN-IKE] exist. This draft chooses to not reuse them for
several reasons:
Using the same groups in multiple protocols increases the value
for an attacker with the resources to crack any single group.
Gillmor Expires December 3, 2015 [Page 12]
Internet-Draft Negotiated-FF-DHE-for-TLS June 2015
The IKE groups include weak groups like MODP768 which are
unacceptable for secure TLS traffic.
Mixing group parameters across multiple implementations leaves
open the possibility of some sort of cross-protocol attack. This
shouldn't be relevant for ephemeral scenarios, and even with non-
ephemeral keying, services shouldn't share keys; however, using
different groups avoids these failure modes entirely.
9.6. Timing attacks
Any implementation of finite field Diffie-Hellman key exchange should
use constant-time modular-exponentiation implementations. This is
particularly true for those implementations that ever re-use DHE
secret keys (so-called "semi-static" ephemeral keying) or share DHE
secret keys across a multiple machines (e.g., in a load-balancer
situation).
9.7. Replay attacks from non-negotiated FFDHE
[SECURE-RESUMPTION], [CROSS-PROTOCOL], and [SSL3-ANALYSIS] all show a
malicious peer using a bad FFDHE group to maneuver a client into
selecting a pre-master secret of the peer's choice, which can be
replayed to another server using a non-FFDHE key exchange, and can
then be bootstrapped to replay client authentication.
To prevent this attack (barring the fixes proposed in
[SESSION-HASH]), a client would need not only to implement this
draft, but also to reject non-negotiated FFDHE ciphersuites whose
group structure it cannot afford to verify. Such a client would need
to abort the initial handshake and reconnect to the server in
question without listing any FFDHE ciphersuites on the subsequent
connection.
This tradeoff may be too costly for most TLS clients today, but may
be a reasonable choice for clients performing client certificate
authentication, or who have other reason to be concerned about
server-controlled pre-master secrets.
9.8. Forward Secrecy
One of the main reasons to prefer FFDHE ciphersuites is Forward
Secrecy, the ability to resist decryption even if when the endpoint's
long-term secret key (usually RSA) is revealed in the future.
This property depends on both sides of the connection discarding
their ephemeral keys promptly. Implementations should wipe their
Gillmor Expires December 3, 2015 [Page 13]
Internet-Draft Negotiated-FF-DHE-for-TLS June 2015
FFDHE secret key material from memory as soon as it is no longer
needed, and should never store it in persistent storage.
Forward secrecy also depends on the strength of the Diffie-Hellman
group; using a very strong symmetric cipher like AES256 with a
forward-secret ciphersuite, but generating the keys with a much
weaker group like dhe2048 simply moves the adversary's cost from
attacking the symmetric cipher to attacking the dh_Ys or dh_Yc
ephemeral keyshares.
If the goal is to provide forward secrecy, attention should be paid
to all parts of the ciphersuite selection process, both key exchange
and symmetric cipher choice.
9.9. False Start
Clients capable of TLS False Start [FALSE-START] may receive a
proposed FFDHE group from a server that is attacker-controlled. In
particular, the attacker can modify the ClientHello to strip the
proposed FFDHE groups, which may cause the server to offer a weaker
FFDHE group than it should, and this will not be detected until
receipt of the server's Finished message. This could cause a client
using the False Start protocol modification to send data encrypted
under a weak key agreement.
Clients should have their own classification of FFDHE groups that are
"cryptographically strong" in the same sense described in the
description of symmetric ciphers in [FALSE-START], and SHOULD offer
at least one of these in the initial handshake if they contemplate
using the False Start protocol modification with an FFDHE
ciphersuite.
Compatible clients performing a full handshake MUST NOT use the False
Start protocol modification if the server selects an FFDHE
ciphersuite but sends a group that is not cryptographically strong
from the client's perspective.
10. Privacy Considerations
10.1. Client fingerprinting
This extension provides a few additional bits of information to
distinguish between classes of TLS clients (see e.g.
[PANOPTICLICK]). To minimize this sort of fingerprinting, clients
SHOULD support all named groups at or above their minimum security
threshhold. New named groups SHOULD NOT be added to the registry
without consideration of the cost of browser fingerprinting.
Gillmor Expires December 3, 2015 [Page 14]
Internet-Draft Negotiated-FF-DHE-for-TLS June 2015
11. References
11.1. Normative References
[FALSE-START]
Langley, A., Modadugu, N., and B. Moeller, "Transport
Layer Security (TLS) False Start", Work in Progress,
draft-bmoeller-tls-falsestart-01, November 2014.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC4492] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
for Transport Layer Security (TLS)", RFC 4492, May 2006.
[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", BCP 26, RFC 5226,
May 2008.
[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.
11.2. Informative References
[CROSS-PROTOCOL]
Mavrogiannopolous, N., Vercauteren, F., Velichkov, V., and
B. Preneel, "A Cross-Protocol Attack on the TLS Protocol",
October 2012,
<http://www.cosic.esat.kuleuven.be/publications/
article-2216.pdf>.
[ECRYPTII]
European Network of Excellence in Cryptology II, "ECRYPT
II Yearly Report on Algorithms and Keysizes (2011-2012)",
September 2012,
<http://www.ecrypt.eu.org/documents/D.SPA.20.pdf>.
[ENISA] European Union Agency for Network and Information Security
Agency, "Algorithms, Key Sizes and Parameters Report,
version 1.0", October 2013,
<http://www.enisa.europa.eu/activities/identity-and-
trust/library/deliverables/
algorithms-key-sizes-and-parameters-report>.
Gillmor Expires December 3, 2015 [Page 15]
Internet-Draft Negotiated-FF-DHE-for-TLS June 2015
[NIST] National Institute of Standards and Technology, "NIST
Special Publication 800-57. Recommendation for key
management - Part 1: General (Revision 3)", 2012,
<http://csrc.nist.gov/publications/nistpubs/800-57/
sp800-57_part1_rev3_general.pdf>.
[PANOPTICLICK]
Electronic Frontier Foundation, "Panopticlick: How Unique
- and Trackable - Is Your Browser?", 2010,
<https://panopticlick.eff.org/>.
[RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.
[RFC3526] Kivinen, T. and M. Kojo, "More Modular Exponential (MODP)
Diffie-Hellman groups for Internet Key Exchange (IKE)",
RFC 3526, May 2003.
[RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.1", RFC 4346, April 2006.
[RFC4419] Friedl, M., Provos, N., and W. Simpson, "Diffie-Hellman
Group Exchange for the Secure Shell (SSH) Transport Layer
Protocol", RFC 4419, March 2006.
[RFC7027] Merkle, J. and M. Lochter, "Elliptic Curve Cryptography
(ECC) Brainpool Curves for Transport Layer Security
(TLS)", RFC 7027, October 2013.
[SECURE-RESUMPTION]
Delignat-Lavaud, A., Bhargavan, K., and A. Pironti,
"Triple Handshakes Considered Harmful: Breaking and Fixing
Authentication over TLS", March 2014, <https://secure-
resumption.com/>.
[SESSION-HASH]
Bhargavan, K., Delignat-Lavaud, A., Pironti, A., Langley,
A., and M. Ray, "Triple Handshakes Considered Harmful:
Breaking and Fixing Authentication over TLS", March 2014,
<https://secure-resumption.com/draft-bhargavan-tls-
session-hash-00.txt>.
[SSL3-ANALYSIS]
Schneier, B. and D. Wagner, "Analysis of the SSL 3.0
protocol", 1996, <https://www.schneier.com/paper-ssl.pdf>.
Gillmor Expires December 3, 2015 [Page 16]
Internet-Draft Negotiated-FF-DHE-for-TLS June 2015
[STRONGSWAN-IKE]
Brunner, T. and A. Steffen, "Diffie Hellman Groups in
IKEv2 Cipher Suites", October 2013,
<https://wiki.strongswan.org/projects/strongswan/wiki/
IKEv2CipherSuites#Diffie-Hellman-Groups>.
11.3. URIs
[1] https://www.iana.org/assignments/tls-parameters/tls-
parameters.xhtml#tls-parameters-8
Appendix A. Named Group Registry
Each description below indicates the group itself, its derivation,
its expected strength (estimated roughly from guidelines in
[ECRYPTII]), and whether it is recommended for use in TLS key
exchange at the given security level. It is not recommended to add
further finite field groups to the NamedCurves registry; any attempt
to do so should consider Section 10.1.
The primes in these finite field groups are all safe primes, that is,
a prime p is a safe prime when q = (p-1)/2 is also prime. Where e is
the base of the natural logarithm, and square brackets denote the
floor operation, the groups which initially populate this registry
are derived for a given bitlength b by finding the lowest positive
integer X that creates a safe prime p where:
p = 2^b - 2^{b-64} + {[2^{b-130} e] + X } * 2^64 - 1
New additions of FFDHE groups to this registry may use this same
derivation (e.g., with different bitlengths) or may choose their
parameters in a different way, but must be clear about how the
parameters were derived.
New additions of FFDHE groups MUST use a safe prime as the modulus to
enable the inexpensive peer verification described in Section 5.1.
A.1. ffdhe2048
The 2048-bit group has registry value 256, and is calculated from the
following formula:
The modulus is: p = 2^2048 - 2^1984 + {[2^1918 * e] + 560316 } * 2^64
- 1
The hexadecimal representation of p is:
Gillmor Expires December 3, 2015 [Page 17]
Internet-Draft Negotiated-FF-DHE-for-TLS June 2015
FFFFFFFF FFFFFFFF ADF85458 A2BB4A9A AFDC5620 273D3CF1
D8B9C583 CE2D3695 A9E13641 146433FB CC939DCE 249B3EF9
7D2FE363 630C75D8 F681B202 AEC4617A D3DF1ED5 D5FD6561
2433F51F 5F066ED0 85636555 3DED1AF3 B557135E 7F57C935
984F0C70 E0E68B77 E2A689DA F3EFE872 1DF158A1 36ADE735
30ACCA4F 483A797A BC0AB182 B324FB61 D108A94B B2C8E3FB
B96ADAB7 60D7F468 1D4F42A3 DE394DF4 AE56EDE7 6372BB19
0B07A7C8 EE0A6D70 9E02FCE1 CDF7E2EC C03404CD 28342F61
9172FE9C E98583FF 8E4F1232 EEF28183 C3FE3B1B 4C6FAD73
3BB5FCBC 2EC22005 C58EF183 7D1683B2 C6F34A26 C1B2EFFA
886B4238 61285C97 FFFFFFFF FFFFFFFF
The generator is: g = 2
The group size is: q = (p-1)/2
The hexadecimal representation of q is:
7FFFFFFF FFFFFFFF D6FC2A2C 515DA54D 57EE2B10 139E9E78
EC5CE2C1 E7169B4A D4F09B20 8A3219FD E649CEE7 124D9F7C
BE97F1B1 B1863AEC 7B40D901 576230BD 69EF8F6A EAFEB2B0
9219FA8F AF833768 42B1B2AA 9EF68D79 DAAB89AF 3FABE49A
CC278638 707345BB F15344ED 79F7F439 0EF8AC50 9B56F39A
98566527 A41D3CBD 5E0558C1 59927DB0 E88454A5 D96471FD
DCB56D5B B06BFA34 0EA7A151 EF1CA6FA 572B76F3 B1B95D8C
8583D3E4 770536B8 4F017E70 E6FBF176 601A0266 941A17B0
C8B97F4E 74C2C1FF C7278919 777940C1 E1FF1D8D A637D6B9
9DDAFE5E 17611002 E2C778C1 BE8B41D9 6379A513 60D977FD
4435A11C 30942E4B FFFFFFFF FFFFFFFF
The estimated symmetric-equivalent strength of this group is 103
bits.
Peers using ffdhe2048 that want to optimize their key exchange with a
short exponent (Section 5.2) should choose a secret key of at least
225 bits.
A.2. ffdhe3072
The 3072-bit prime has registry value 257, and is calculated from the
following formula:
The modulus is: p = 2^3072 - 2^3008 + {[2^2942 * e] + 2625351} * 2^64
-1
The hexadecimal representation of p is:
Gillmor Expires December 3, 2015 [Page 18]
Internet-Draft Negotiated-FF-DHE-for-TLS June 2015
FFFFFFFF FFFFFFFF ADF85458 A2BB4A9A AFDC5620 273D3CF1
D8B9C583 CE2D3695 A9E13641 146433FB CC939DCE 249B3EF9
7D2FE363 630C75D8 F681B202 AEC4617A D3DF1ED5 D5FD6561
2433F51F 5F066ED0 85636555 3DED1AF3 B557135E 7F57C935
984F0C70 E0E68B77 E2A689DA F3EFE872 1DF158A1 36ADE735
30ACCA4F 483A797A BC0AB182 B324FB61 D108A94B B2C8E3FB
B96ADAB7 60D7F468 1D4F42A3 DE394DF4 AE56EDE7 6372BB19
0B07A7C8 EE0A6D70 9E02FCE1 CDF7E2EC C03404CD 28342F61
9172FE9C E98583FF 8E4F1232 EEF28183 C3FE3B1B 4C6FAD73
3BB5FCBC 2EC22005 C58EF183 7D1683B2 C6F34A26 C1B2EFFA
886B4238 611FCFDC DE355B3B 6519035B BC34F4DE F99C0238
61B46FC9 D6E6C907 7AD91D26 91F7F7EE 598CB0FA C186D91C
AEFE1309 85139270 B4130C93 BC437944 F4FD4452 E2D74DD3
64F2E21E 71F54BFF 5CAE82AB 9C9DF69E E86D2BC5 22363A0D
ABC52197 9B0DEADA 1DBF9A42 D5C4484E 0ABCD06B FA53DDEF
3C1B20EE 3FD59D7C 25E41D2B 66C62E37 FFFFFFFF FFFFFFFF
The generator is: g = 2
The group size is: q = (p-1)/2
The hexadecimal representation of q is:
7FFFFFFF FFFFFFFF D6FC2A2C 515DA54D 57EE2B10 139E9E78
EC5CE2C1 E7169B4A D4F09B20 8A3219FD E649CEE7 124D9F7C
BE97F1B1 B1863AEC 7B40D901 576230BD 69EF8F6A EAFEB2B0
9219FA8F AF833768 42B1B2AA 9EF68D79 DAAB89AF 3FABE49A
CC278638 707345BB F15344ED 79F7F439 0EF8AC50 9B56F39A
98566527 A41D3CBD 5E0558C1 59927DB0 E88454A5 D96471FD
DCB56D5B B06BFA34 0EA7A151 EF1CA6FA 572B76F3 B1B95D8C
8583D3E4 770536B8 4F017E70 E6FBF176 601A0266 941A17B0
C8B97F4E 74C2C1FF C7278919 777940C1 E1FF1D8D A637D6B9
9DDAFE5E 17611002 E2C778C1 BE8B41D9 6379A513 60D977FD
4435A11C 308FE7EE 6F1AAD9D B28C81AD DE1A7A6F 7CCE011C
30DA37E4 EB736483 BD6C8E93 48FBFBF7 2CC6587D 60C36C8E
577F0984 C289C938 5A098649 DE21BCA2 7A7EA229 716BA6E9
B279710F 38FAA5FF AE574155 CE4EFB4F 743695E2 911B1D06
D5E290CB CD86F56D 0EDFCD21 6AE22427 055E6835 FD29EEF7
9E0D9077 1FEACEBE 12F20E95 B363171B FFFFFFFF FFFFFFFF
The estimated symmetric-equivalent strength of this group is 125
bits.
Peers using ffdhe3072 that want to optimize their key exchange with a
short exponent (Section 5.2) should choose a secret key of at least
275 bits.
Gillmor Expires December 3, 2015 [Page 19]
Internet-Draft Negotiated-FF-DHE-for-TLS June 2015
A.3. ffdhe4096
The 4096-bit group has registry value 258, and is calculated from the
following formula:
The modulus is: p = 2^4096 - 2^4032 + {[2^3966 * e] + 5736041} * 2^64
- 1
The hexadecimal representation of p is:
FFFFFFFF FFFFFFFF ADF85458 A2BB4A9A AFDC5620 273D3CF1
D8B9C583 CE2D3695 A9E13641 146433FB CC939DCE 249B3EF9
7D2FE363 630C75D8 F681B202 AEC4617A D3DF1ED5 D5FD6561
2433F51F 5F066ED0 85636555 3DED1AF3 B557135E 7F57C935
984F0C70 E0E68B77 E2A689DA F3EFE872 1DF158A1 36ADE735
30ACCA4F 483A797A BC0AB182 B324FB61 D108A94B B2C8E3FB
B96ADAB7 60D7F468 1D4F42A3 DE394DF4 AE56EDE7 6372BB19
0B07A7C8 EE0A6D70 9E02FCE1 CDF7E2EC C03404CD 28342F61
9172FE9C E98583FF 8E4F1232 EEF28183 C3FE3B1B 4C6FAD73
3BB5FCBC 2EC22005 C58EF183 7D1683B2 C6F34A26 C1B2EFFA
886B4238 611FCFDC DE355B3B 6519035B BC34F4DE F99C0238
61B46FC9 D6E6C907 7AD91D26 91F7F7EE 598CB0FA C186D91C
AEFE1309 85139270 B4130C93 BC437944 F4FD4452 E2D74DD3
64F2E21E 71F54BFF 5CAE82AB 9C9DF69E E86D2BC5 22363A0D
ABC52197 9B0DEADA 1DBF9A42 D5C4484E 0ABCD06B FA53DDEF
3C1B20EE 3FD59D7C 25E41D2B 669E1EF1 6E6F52C3 164DF4FB
7930E9E4 E58857B6 AC7D5F42 D69F6D18 7763CF1D 55034004
87F55BA5 7E31CC7A 7135C886 EFB4318A ED6A1E01 2D9E6832
A907600A 918130C4 6DC778F9 71AD0038 092999A3 33CB8B7A
1A1DB93D 7140003C 2A4ECEA9 F98D0ACC 0A8291CD CEC97DCF
8EC9B55A 7F88A46B 4DB5A851 F44182E1 C68A007E 5E655F6A
FFFFFFFF FFFFFFFF
The generator is: g = 2
The group size is: q = (p-1)/2
The hexadecimal representation of q is:
Gillmor Expires December 3, 2015 [Page 20]
Internet-Draft Negotiated-FF-DHE-for-TLS June 2015
7FFFFFFF FFFFFFFF D6FC2A2C 515DA54D 57EE2B10 139E9E78
EC5CE2C1 E7169B4A D4F09B20 8A3219FD E649CEE7 124D9F7C
BE97F1B1 B1863AEC 7B40D901 576230BD 69EF8F6A EAFEB2B0
9219FA8F AF833768 42B1B2AA 9EF68D79 DAAB89AF 3FABE49A
CC278638 707345BB F15344ED 79F7F439 0EF8AC50 9B56F39A
98566527 A41D3CBD 5E0558C1 59927DB0 E88454A5 D96471FD
DCB56D5B B06BFA34 0EA7A151 EF1CA6FA 572B76F3 B1B95D8C
8583D3E4 770536B8 4F017E70 E6FBF176 601A0266 941A17B0
C8B97F4E 74C2C1FF C7278919 777940C1 E1FF1D8D A637D6B9
9DDAFE5E 17611002 E2C778C1 BE8B41D9 6379A513 60D977FD
4435A11C 308FE7EE 6F1AAD9D B28C81AD DE1A7A6F 7CCE011C
30DA37E4 EB736483 BD6C8E93 48FBFBF7 2CC6587D 60C36C8E
577F0984 C289C938 5A098649 DE21BCA2 7A7EA229 716BA6E9
B279710F 38FAA5FF AE574155 CE4EFB4F 743695E2 911B1D06
D5E290CB CD86F56D 0EDFCD21 6AE22427 055E6835 FD29EEF7
9E0D9077 1FEACEBE 12F20E95 B34F0F78 B737A961 8B26FA7D
BC9874F2 72C42BDB 563EAFA1 6B4FB68C 3BB1E78E AA81A002
43FAADD2 BF18E63D 389AE443 77DA18C5 76B50F00 96CF3419
5483B005 48C09862 36E3BC7C B8D6801C 0494CCD1 99E5C5BD
0D0EDC9E B8A0001E 15276754 FCC68566 054148E6 E764BEE7
C764DAAD 3FC45235 A6DAD428 FA20C170 E345003F 2F32AFB5
7FFFFFFF FFFFFFFF
The estimated symmetric-equivalent strength of this group is 150
bits.
Peers using ffdhe4096 that want to optimize their key exchange with a
short exponent (Section 5.2) should choose a secret key of at least
325 bits.
A.4. ffdhe6144
The 6144-bit group has registry value 259, and is calculated from the
following formula:
The modulus is: p = 2^6144 - 2^6080 + {[2^6014 * e] + 15705020} *
2^64 - 1
The hexadecimal representation of p is:
Gillmor Expires December 3, 2015 [Page 21]
Internet-Draft Negotiated-FF-DHE-for-TLS June 2015
FFFFFFFF FFFFFFFF ADF85458 A2BB4A9A AFDC5620 273D3CF1
D8B9C583 CE2D3695 A9E13641 146433FB CC939DCE 249B3EF9
7D2FE363 630C75D8 F681B202 AEC4617A D3DF1ED5 D5FD6561
2433F51F 5F066ED0 85636555 3DED1AF3 B557135E 7F57C935
984F0C70 E0E68B77 E2A689DA F3EFE872 1DF158A1 36ADE735
30ACCA4F 483A797A BC0AB182 B324FB61 D108A94B B2C8E3FB
B96ADAB7 60D7F468 1D4F42A3 DE394DF4 AE56EDE7 6372BB19
0B07A7C8 EE0A6D70 9E02FCE1 CDF7E2EC C03404CD 28342F61
9172FE9C E98583FF 8E4F1232 EEF28183 C3FE3B1B 4C6FAD73
3BB5FCBC 2EC22005 C58EF183 7D1683B2 C6F34A26 C1B2EFFA
886B4238 611FCFDC DE355B3B 6519035B BC34F4DE F99C0238
61B46FC9 D6E6C907 7AD91D26 91F7F7EE 598CB0FA C186D91C
AEFE1309 85139270 B4130C93 BC437944 F4FD4452 E2D74DD3
64F2E21E 71F54BFF 5CAE82AB 9C9DF69E E86D2BC5 22363A0D
ABC52197 9B0DEADA 1DBF9A42 D5C4484E 0ABCD06B FA53DDEF
3C1B20EE 3FD59D7C 25E41D2B 669E1EF1 6E6F52C3 164DF4FB
7930E9E4 E58857B6 AC7D5F42 D69F6D18 7763CF1D 55034004
87F55BA5 7E31CC7A 7135C886 EFB4318A ED6A1E01 2D9E6832
A907600A 918130C4 6DC778F9 71AD0038 092999A3 33CB8B7A
1A1DB93D 7140003C 2A4ECEA9 F98D0ACC 0A8291CD CEC97DCF
8EC9B55A 7F88A46B 4DB5A851 F44182E1 C68A007E 5E0DD902
0BFD64B6 45036C7A 4E677D2C 38532A3A 23BA4442 CAF53EA6
3BB45432 9B7624C8 917BDD64 B1C0FD4C B38E8C33 4C701C3A
CDAD0657 FCCFEC71 9B1F5C3E 4E46041F 388147FB 4CFDB477
A52471F7 A9A96910 B855322E DB6340D8 A00EF092 350511E3
0ABEC1FF F9E3A26E 7FB29F8C 183023C3 587E38DA 0077D9B4
763E4E4B 94B2BBC1 94C6651E 77CAF992 EEAAC023 2A281BF6
B3A739C1 22611682 0AE8DB58 47A67CBE F9C9091B 462D538C
D72B0374 6AE77F5E 62292C31 1562A846 505DC82D B854338A
E49F5235 C95B9117 8CCF2DD5 CACEF403 EC9D1810 C6272B04
5B3B71F9 DC6B80D6 3FDD4A8E 9ADB1E69 62A69526 D43161C1
A41D570D 7938DAD4 A40E329C D0E40E65 FFFFFFFF FFFFFFFF
The generator is: g = 2
The group size is: q = (p-1)/2
The hexadecimal representation of q is:
Gillmor Expires December 3, 2015 [Page 22]
Internet-Draft Negotiated-FF-DHE-for-TLS June 2015
7FFFFFFF FFFFFFFF D6FC2A2C 515DA54D 57EE2B10 139E9E78
EC5CE2C1 E7169B4A D4F09B20 8A3219FD E649CEE7 124D9F7C
BE97F1B1 B1863AEC 7B40D901 576230BD 69EF8F6A EAFEB2B0
9219FA8F AF833768 42B1B2AA 9EF68D79 DAAB89AF 3FABE49A
CC278638 707345BB F15344ED 79F7F439 0EF8AC50 9B56F39A
98566527 A41D3CBD 5E0558C1 59927DB0 E88454A5 D96471FD
DCB56D5B B06BFA34 0EA7A151 EF1CA6FA 572B76F3 B1B95D8C
8583D3E4 770536B8 4F017E70 E6FBF176 601A0266 941A17B0
C8B97F4E 74C2C1FF C7278919 777940C1 E1FF1D8D A637D6B9
9DDAFE5E 17611002 E2C778C1 BE8B41D9 6379A513 60D977FD
4435A11C 308FE7EE 6F1AAD9D B28C81AD DE1A7A6F 7CCE011C
30DA37E4 EB736483 BD6C8E93 48FBFBF7 2CC6587D 60C36C8E
577F0984 C289C938 5A098649 DE21BCA2 7A7EA229 716BA6E9
B279710F 38FAA5FF AE574155 CE4EFB4F 743695E2 911B1D06
D5E290CB CD86F56D 0EDFCD21 6AE22427 055E6835 FD29EEF7
9E0D9077 1FEACEBE 12F20E95 B34F0F78 B737A961 8B26FA7D
BC9874F2 72C42BDB 563EAFA1 6B4FB68C 3BB1E78E AA81A002
43FAADD2 BF18E63D 389AE443 77DA18C5 76B50F00 96CF3419
5483B005 48C09862 36E3BC7C B8D6801C 0494CCD1 99E5C5BD
0D0EDC9E B8A0001E 15276754 FCC68566 054148E6 E764BEE7
C764DAAD 3FC45235 A6DAD428 FA20C170 E345003F 2F06EC81
05FEB25B 2281B63D 2733BE96 1C29951D 11DD2221 657A9F53
1DDA2A19 4DBB1264 48BDEEB2 58E07EA6 59C74619 A6380E1D
66D6832B FE67F638 CD8FAE1F 2723020F 9C40A3FD A67EDA3B
D29238FB D4D4B488 5C2A9917 6DB1A06C 50077849 1A8288F1
855F60FF FCF1D137 3FD94FC6 0C1811E1 AC3F1C6D 003BECDA
3B1F2725 CA595DE0 CA63328F 3BE57CC9 77556011 95140DFB
59D39CE0 91308B41 05746DAC 23D33E5F 7CE4848D A316A9C6
6B9581BA 3573BFAF 31149618 8AB15423 282EE416 DC2A19C5
724FA91A E4ADC88B C66796EA E5677A01 F64E8C08 63139582
2D9DB8FC EE35C06B 1FEEA547 4D6D8F34 B1534A93 6A18B0E0
D20EAB86 BC9C6D6A 5207194E 68720732 FFFFFFFF FFFFFFFF
The estimated symmetric-equivalent strength of this group is 175
bits.
Peers using ffdhe6144 that want to optimize their key exchange with a
short exponent (Section 5.2) should choose a secret key of at least
375 bits.
A.5. ffdhe8192
The 8192-bit group has registry value 260, and is calculated from the
following formula:
The modulus is: p = 2^8192 - 2^8128 + {[2^8062 * e] + 10965728} *
2^64 - 1
Gillmor Expires December 3, 2015 [Page 23]
Internet-Draft Negotiated-FF-DHE-for-TLS June 2015
The hexadecimal representation of p is:
FFFFFFFF FFFFFFFF ADF85458 A2BB4A9A AFDC5620 273D3CF1
D8B9C583 CE2D3695 A9E13641 146433FB CC939DCE 249B3EF9
7D2FE363 630C75D8 F681B202 AEC4617A D3DF1ED5 D5FD6561
2433F51F 5F066ED0 85636555 3DED1AF3 B557135E 7F57C935
984F0C70 E0E68B77 E2A689DA F3EFE872 1DF158A1 36ADE735
30ACCA4F 483A797A BC0AB182 B324FB61 D108A94B B2C8E3FB
B96ADAB7 60D7F468 1D4F42A3 DE394DF4 AE56EDE7 6372BB19
0B07A7C8 EE0A6D70 9E02FCE1 CDF7E2EC C03404CD 28342F61
9172FE9C E98583FF 8E4F1232 EEF28183 C3FE3B1B 4C6FAD73
3BB5FCBC 2EC22005 C58EF183 7D1683B2 C6F34A26 C1B2EFFA
886B4238 611FCFDC DE355B3B 6519035B BC34F4DE F99C0238
61B46FC9 D6E6C907 7AD91D26 91F7F7EE 598CB0FA C186D91C
AEFE1309 85139270 B4130C93 BC437944 F4FD4452 E2D74DD3
64F2E21E 71F54BFF 5CAE82AB 9C9DF69E E86D2BC5 22363A0D
ABC52197 9B0DEADA 1DBF9A42 D5C4484E 0ABCD06B FA53DDEF
3C1B20EE 3FD59D7C 25E41D2B 669E1EF1 6E6F52C3 164DF4FB
7930E9E4 E58857B6 AC7D5F42 D69F6D18 7763CF1D 55034004
87F55BA5 7E31CC7A 7135C886 EFB4318A ED6A1E01 2D9E6832
A907600A 918130C4 6DC778F9 71AD0038 092999A3 33CB8B7A
1A1DB93D 7140003C 2A4ECEA9 F98D0ACC 0A8291CD CEC97DCF
8EC9B55A 7F88A46B 4DB5A851 F44182E1 C68A007E 5E0DD902
0BFD64B6 45036C7A 4E677D2C 38532A3A 23BA4442 CAF53EA6
3BB45432 9B7624C8 917BDD64 B1C0FD4C B38E8C33 4C701C3A
CDAD0657 FCCFEC71 9B1F5C3E 4E46041F 388147FB 4CFDB477
A52471F7 A9A96910 B855322E DB6340D8 A00EF092 350511E3
0ABEC1FF F9E3A26E 7FB29F8C 183023C3 587E38DA 0077D9B4
763E4E4B 94B2BBC1 94C6651E 77CAF992 EEAAC023 2A281BF6
B3A739C1 22611682 0AE8DB58 47A67CBE F9C9091B 462D538C
D72B0374 6AE77F5E 62292C31 1562A846 505DC82D B854338A
E49F5235 C95B9117 8CCF2DD5 CACEF403 EC9D1810 C6272B04
5B3B71F9 DC6B80D6 3FDD4A8E 9ADB1E69 62A69526 D43161C1
A41D570D 7938DAD4 A40E329C CFF46AAA 36AD004C F600C838
1E425A31 D951AE64 FDB23FCE C9509D43 687FEB69 EDD1CC5E
0B8CC3BD F64B10EF 86B63142 A3AB8829 555B2F74 7C932665
CB2C0F1C C01BD702 29388839 D2AF05E4 54504AC7 8B758282
2846C0BA 35C35F5C 59160CC0 46FD8251 541FC68C 9C86B022
BB709987 6A460E74 51A8A931 09703FEE 1C217E6C 3826E52C
51AA691E 0E423CFC 99E9E316 50C1217B 624816CD AD9A95F9
D5B80194 88D9C0A0 A1FE3075 A577E231 83F81D4A 3F2FA457
1EFC8CE0 BA8A4FE8 B6855DFE 72B0A66E DED2FBAB FBE58A30
FAFABE1C 5D71A87E 2F741EF8 C1FE86FE A6BBFDE5 30677F0D
97D11D49 F7A8443D 0822E506 A9F4614E 011E2A94 838FF88C
D68C8BB7 C5C6424C FFFFFFFF FFFFFFFF
The generator is: g = 2
Gillmor Expires December 3, 2015 [Page 24]
Internet-Draft Negotiated-FF-DHE-for-TLS June 2015
The group size is: q = (p-1)/2
The hexadecimal representation of q is:
7FFFFFFF FFFFFFFF D6FC2A2C 515DA54D 57EE2B10 139E9E78
EC5CE2C1 E7169B4A D4F09B20 8A3219FD E649CEE7 124D9F7C
BE97F1B1 B1863AEC 7B40D901 576230BD 69EF8F6A EAFEB2B0
9219FA8F AF833768 42B1B2AA 9EF68D79 DAAB89AF 3FABE49A
CC278638 707345BB F15344ED 79F7F439 0EF8AC50 9B56F39A
98566527 A41D3CBD 5E0558C1 59927DB0 E88454A5 D96471FD
DCB56D5B B06BFA34 0EA7A151 EF1CA6FA 572B76F3 B1B95D8C
8583D3E4 770536B8 4F017E70 E6FBF176 601A0266 941A17B0
C8B97F4E 74C2C1FF C7278919 777940C1 E1FF1D8D A637D6B9
9DDAFE5E 17611002 E2C778C1 BE8B41D9 6379A513 60D977FD
4435A11C 308FE7EE 6F1AAD9D B28C81AD DE1A7A6F 7CCE011C
30DA37E4 EB736483 BD6C8E93 48FBFBF7 2CC6587D 60C36C8E
577F0984 C289C938 5A098649 DE21BCA2 7A7EA229 716BA6E9
B279710F 38FAA5FF AE574155 CE4EFB4F 743695E2 911B1D06
D5E290CB CD86F56D 0EDFCD21 6AE22427 055E6835 FD29EEF7
9E0D9077 1FEACEBE 12F20E95 B34F0F78 B737A961 8B26FA7D
BC9874F2 72C42BDB 563EAFA1 6B4FB68C 3BB1E78E AA81A002
43FAADD2 BF18E63D 389AE443 77DA18C5 76B50F00 96CF3419
5483B005 48C09862 36E3BC7C B8D6801C 0494CCD1 99E5C5BD
0D0EDC9E B8A0001E 15276754 FCC68566 054148E6 E764BEE7
C764DAAD 3FC45235 A6DAD428 FA20C170 E345003F 2F06EC81
05FEB25B 2281B63D 2733BE96 1C29951D 11DD2221 657A9F53
1DDA2A19 4DBB1264 48BDEEB2 58E07EA6 59C74619 A6380E1D
66D6832B FE67F638 CD8FAE1F 2723020F 9C40A3FD A67EDA3B
D29238FB D4D4B488 5C2A9917 6DB1A06C 50077849 1A8288F1
855F60FF FCF1D137 3FD94FC6 0C1811E1 AC3F1C6D 003BECDA
3B1F2725 CA595DE0 CA63328F 3BE57CC9 77556011 95140DFB
59D39CE0 91308B41 05746DAC 23D33E5F 7CE4848D A316A9C6
6B9581BA 3573BFAF 31149618 8AB15423 282EE416 DC2A19C5
724FA91A E4ADC88B C66796EA E5677A01 F64E8C08 63139582
2D9DB8FC EE35C06B 1FEEA547 4D6D8F34 B1534A93 6A18B0E0
D20EAB86 BC9C6D6A 5207194E 67FA3555 1B568026 7B00641C
0F212D18 ECA8D732 7ED91FE7 64A84EA1 B43FF5B4 F6E8E62F
05C661DE FB258877 C35B18A1 51D5C414 AAAD97BA 3E499332
E596078E 600DEB81 149C441C E95782F2 2A282563 C5BAC141
1423605D 1AE1AFAE 2C8B0660 237EC128 AA0FE346 4E435811
5DB84CC3 B523073A 28D45498 84B81FF7 0E10BF36 1C137296
28D5348F 07211E7E 4CF4F18B 286090BD B1240B66 D6CD4AFC
EADC00CA 446CE050 50FF183A D2BBF118 C1FC0EA5 1F97D22B
8F7E4670 5D4527F4 5B42AEFF 39585337 6F697DD5 FDF2C518
7D7D5F0E 2EB8D43F 17BA0F7C 60FF437F 535DFEF2 9833BF86
CBE88EA4 FBD4221E 84117283 54FA30A7 008F154A 41C7FC46
6B4645DB E2E32126 7FFFFFFF FFFFFFFF
Gillmor Expires December 3, 2015 [Page 25]
Internet-Draft Negotiated-FF-DHE-for-TLS June 2015
The estimated symmetric-equivalent strength of this group is 192
bits.
Peers using ffdhe8192 that want to optimize their key exchange with a
short exponent (Section 5.2) should choose a secret key of at least
400 bits.
Author's Address
Daniel Kahn Gillmor
ACLU
125 Broad Street, 18th Floor
New York, NY 10004
USA
Email: dkg@fifthhorseman.net
Gillmor Expires December 3, 2015 [Page 26]