Internet DRAFT - draft-kamei-p2p-experiments-japan
draft-kamei-p2p-experiments-japan
P2PRG S. Kamei
Internet-Draft NTT Communications
Intended status: Informational T. Momose
Expires: April 18, 2013 Cisco Systems
T. Inoue
T. Nishitani
NTT Communications
October 15, 2012
ALTO-Like Activities and Experiments in P2P Network Experiment Council
draft-kamei-p2p-experiments-japan-09
Abstract
This document introduces experiments to clarify how ALTO-like
approach was effective to reduce network traffic made by a Council in
Japan to harmonize P2P technology with the infrastructure. And this
also provides some suggestions that might be useful for ALTO
architecture learned through our experiments. Especially, experiment
for application independent ALTO-like server operation.
Status of this Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on April 18, 2013.
Copyright Notice
Copyright (c) 2012 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
Kamei, et al. Expires April 18, 2013 [Page 1]
Internet-Draft P2P Experiments Japan October 2012
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Background in Japan . . . . . . . . . . . . . . . . . . . . . 3
2.1. P2P traffic . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. Impact on network infrastructure . . . . . . . . . . . . . 4
2.3. The object of P2P Network Experiment Council . . . . . . . 5
3. The object of P2P Network Experiment Council . . . . . . . . . 5
4. The details of the experiments . . . . . . . . . . . . . . . . 7
4.1. Dummy Node . . . . . . . . . . . . . . . . . . . . . . . . 7
5. Hint Server ('08) . . . . . . . . . . . . . . . . . . . . . . 8
6. High-Level Trial Results . . . . . . . . . . . . . . . . . . . 13
6.1. Peer Selection with P2P . . . . . . . . . . . . . . . . . 13
6.2. Peer Selection with the Hint Server . . . . . . . . . . . 13
7. Considerations . . . . . . . . . . . . . . . . . . . . . . . . 14
7.1. Next steps . . . . . . . . . . . . . . . . . . . . . . . . 14
7.2. Feedback to ALTO WG . . . . . . . . . . . . . . . . . . . 15
7.2.1. Hierarchical architecture for ALTO servers . . . . . . 15
7.2.2. Measurement mechanism . . . . . . . . . . . . . . . . 15
8. Security Considerations . . . . . . . . . . . . . . . . . . . 16
9. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 16
10. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 16
11. Informative References . . . . . . . . . . . . . . . . . . . . 16
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 17
Kamei, et al. Expires April 18, 2013 [Page 2]
Internet-Draft P2P Experiments Japan October 2012
1. Introduction
An overlay network, which is used by P2P and other applications,
offers the advantage of allowing flexible provision of services while
hiding the lower layer network. The downside is that inefficient
routes are often taken in the lower IP network, thereby increasing
the network load. Several proposals have been made to build an
overlay network that takes account of the information about the lower
layer network. [1] [2] Since the management of the Internet is highly
distributed, it is difficult to implement such proposals and thus
optimize a network without the cooperation of network providers.
Recently, the controversy between the overlay network and the network
providers about network resource wastefulness has been rekindled.
Under these circumstances, some researchers have studied overlay
network control technology that takes account of the network topology
information obtained from network providers.
One of the activities concerning this issue has been made by the P2P
Network Experiment Council in Japan. We planned some experiments in
the council. This document reports on the issues addressed and
experiments being made by the council.
This experiment made from 2007 to 2008, because P2P traffic had
reduced due to rivision of copyright law in Japan. And recently,
dominant traffic is HTTP based flash streaming in Japan, U.S, and so
on. However, P2P traffic remains in large traffic, like PPStreaming,
in Asia (except Japan)[3], and P2P technology is very userful in such
a realtime streaming area.
Our experience in this experiment might be useful for ALTO
architecture, especially for application independent and multi
application ALTO-like server operations. We suggest that generic
measurement mechanism is important because each application has
different mechanism and it is difficult to compare the effectiveness.
This document is a product of the P2P RG. The views in this document
were considered controversial by the P2P RG but the RG reached a
consensus that the document should still be published.
2. Background in Japan
2.1. P2P traffic
As of 2008, the world most popular P2P file sharing application,
Bittorrent, isn't widely deployed in Japan. Instead, other Japan
specific file sharing P2P applications such as Winny [4], Share [5],
Kamei, et al. Expires April 18, 2013 [Page 3]
Internet-Draft P2P Experiments Japan October 2012
and so on, still occupy 40% of the Internet traffic in Japan even
though many those P2P users were arrested for sharing illegal files
with these P2P apps.
Each P2P file sharing application has a unique protocol and none of
them have a large market share therefore making it hard to
effectively control.
2.2. Impact on network infrastructure
One of the advantage of using P2P technology for content delivery is
that peers exchange content directly among themselves without server
bottleneck. This reduces the load on servers. Also, P2P
applications can reduce upstream traffic from an origin content
server. This reduce server cost dramatically.
It is also known that server cost could be reduced with P2P
technology. However, the story is quite different for network
providers. From the viewpoint of network providers, the traffic that
content servers generate has shifted to the edge network and the
amount of traffic has not necessarily been reduced with using P2P
technology for reducing server cost. Another problem for network
providers that an extremely inefficient routing may be selected has
been raised. It is because overlay network systems are configured
without any regard to the structure of the lower layer network or
network geometry.
In some cases, the total amount of traffic on the Internet used to be
limited by the capacity of servers. For those cases, P2P technology
can improve the scalability of servers , however it may exhaust
network resources. Moreover, using P2P applications increases the
volume of traffic per user remarkably.
Faced with increase in the load on network infrastructure, network
providers are compelled to take actions to overcome the sudden
increase in facilities' cost. Representative actions include placing
content in internet exchanges or data centers, introducing bandwidth
control, and raising the access fees [6].
However, current dominant traffic is HTTP based flash streaming in
Japan, U.S, and so on. However, P2P traffic remains in large
traffic, like PPStreaming, in Asia (except Japan)[3], and P2P
technology is very userful in such a realtime streaming area. The
increase in traffic arising from such a shift may be a great threat
to the network.
Kamei, et al. Expires April 18, 2013 [Page 4]
Internet-Draft P2P Experiments Japan October 2012
2.3. The object of P2P Network Experiment Council
In order to reduce Internet traffic and encourage legitimate use of
P2P technologies, the Japanese government led to establish a new
council called P2P Network Experiment Council conjunction with
commercial P2P application vendors and ISPs in 2006.
Then the council had started to develop regulations that include
several guidelines such like an advance notice to restrict bandwidth
to heavy traffic users. In accordance with the regulations, some
ISPs introduced solutions that reduce traffic caused by P2P file
sharing applications.
Besides this activity, the council also looked for new ways to
control traffic by commercial P2P applications with ISPs, carriers,
contents providers and P2P system vendors. In this work, the council
had experiments that introduced ALTO-like system and observed how the
traffic was reduced by redirecting to proper peers on the real
Internet in Japan.
In our experiment, the council deployed hint servers, which are
described in section 4. Hint servers have a protocol offering
network distance to peers, which is disclosed to P2P application
vendors.
Using hint server, P2P application vendors can introduce ALTO
concepts easily to their P2P distribution systems. Because the
protocol provided of hint servers is independent on specific P2P
application vendors like Bittorrent, the council defines the protocol
to be able to use any P2P application vendors. It needs to gather
network information from ISPs to offer network distance to peers,
however many ISPs dislike to disclose such information to others.
Therefore, hint servers are designed to offer little information
about ISPs' network architecture to P2P application vendors.
To monitor traffic of peers, the council also deployed dummy node,
which are described in section 3.1.
This memo describes the overview of the experiments.
3. The object of P2P Network Experiment Council
Ministry of Internal Affairs and Communications Japan, which has
jurisdiction over information and communication systems in Japan,
held meetings of an advisory panel on network neutrality from 2006 to
2007 in order to study issues related to next generation networks,
such as how to ensure fairness in the use of networks and how to
Kamei, et al. Expires April 18, 2013 [Page 5]
Internet-Draft P2P Experiments Japan October 2012
define fairness in cost burden. The panel took an interest in P2P
technology as a solution to the impending traffic saturation in the
backbone network resulting from the rapid expansion of broadband
access in Japan, and formed a "Working Group on the P2P Network",
which carried out an intensive study of P2P networks.
The Working Group reported that it is necessary to undertake the
following four activities, which are intended to encourage the
government to adopt relevant policies [7]:
o Formulate guidelines to be self-imposed by the industry on P2P
file delivery applications,
o Promote feasibility tests of P2P networks,
o Study the current state of traffic control and promote the sharing
of information,
o Hold working group meetings on traffic control.
The first two proposals led to the establishment of the P2P Network
Experiment Council supported by Ministry of Internal Affairs and
Communications Japan [8]. The Council, with membership from P2P
delivery providers, content holders, and network providers, began a
variety of delivery experiments, which were expected to strengthen
cooperative control between different layers. In contrast to P4P,
which takes a relatively top-down approach of adopting architecture
based on a proposal from a university, the Council is characterized
by its bottom-up approach. The aim of establishing the Council has
been described as follows.
The rapid growth of broadband access enables content delivery
system to deliver high-quality and high-volume videos securely and
efficiently. Although P2P technology is an effective technology
for this requirement, it still has some issues to be coped with.
Therefore, the "P2P Network Experiment Council" was established
with the support of the Japanese Ministry of Internal Affairs and
Communications with its secretariat set up within the Foundation
for MultiMedia Communications (FMMC) in order to formulate
guidelines for providers and conduct feasibility tests so that
users can receive video delivery services safely.
The activities of the P2P Network Experiment Council can be
classified into two categories. The first is activities to formulate
guidelines for the promotion of the commercial use of P2P technology.
These will enable users to use P2P technology safely, and providers
to have clear rules they must observe. The other is feasibility
tests of P2P technology. The next section describes mainly
Kamei, et al. Expires April 18, 2013 [Page 6]
Internet-Draft P2P Experiments Japan October 2012
experiments conducted from 2007 to 2008.
4. The details of the experiments
The council has already learned that the server cost could be reduced
with using P2P technology for contents delivering by investigating
data offered by the members of the council. For example, the data
brought by the vendors shows as follows:
90% of traffic was reduced with UG Live by Utagoe Inc [9].
The costs of delivering to tens of thousand subscribers was
reduced to 1/5 with BBbroadcast with TV Bank Corp. [10]
On the other hand, these reduced server costs may affect network
load. One of the goals of our experiments was to visualize the
impacts and propose an architecture to reduce network load caused by
these new technologies.
In order to visualize the reduction of network cost, we had to
modelize P2P applications and multi-ISP environment. It will also
needed for visualizing the effectiveness of ALTO-like approach.
4.1. Dummy Node
As mentioned before, while the effect of delivery using P2P
technology on reducing the traffic and the load on servers is well
known, traffic behavior in the inter-ISP is not known. In Japan,
there is a backbone traffic report cooperated with ISPs and IXes
[11]. However, this measurement requires to capture packets on
subscribers line to know end user's activity. It is not realistic to
measure the behavior of P2P applications at user terminals connected
to the Internet because that would require a large-scale arrangement
for measurement, such as using Deep Packet Inspection (DPI) on
aggregated lines.
To solve these problems, we put several nodes called 'dummy nodes' in
the ISP's networks. The dummy nodes emulate an end user's PC and P2P
applications are running on the nodes. Every P2P node provided by
participating vendors in the experiment was configured so it always
contacted the hint server.
By introducing dummy nodes, we can observe and evaluate how much P2P
applications have affected networks by measuring the traffic on dummy
nodes. Since this method can't measure every subscriber's traffic,
the accuracy would be less than other methods. But this make it
possible to adapt to situations many different P2P applications
Kamei, et al. Expires April 18, 2013 [Page 7]
Internet-Draft P2P Experiments Japan October 2012
coexist on a network. We can say this is suitable for these
experiments.
A dummy node consists of Intel PC server, Linux(CentOS), VMWare and
Windows XP works on VMWare. With this configuration, all packets can
be captured without any impacts to the network, nodes and application
behaviors. And it enable us to use different P2P applications for
windows and evaluate them generally.
To see behaviors of the node, incoming and outgoing packets are
captured on Linux because every packets are transmitted through it.
In these experiments, we captured source/destination address, port
number, amount of traffic and start/end time to see flow information.
60 Dummy nodes are put on access networks that are closest subscriber
as possible in different 40 ISP networks.
+----------------------+
|+--------------------+|
||+------------------+||
||| P2P Application |||
||| WindowsXP |||
||| +--+ |||
||+--------|N |------+||
|| VMware |e | ||
|+---------|t |-------+|
| Linux |IF| capture|
+----------| |--------+
+--+
Dummy nodes
Figure 1
5. Hint Server ('08)
In Japan, bottleneck in IP networks have been shifting from access
networks to backbone networks and equipments, such as bandwidth
between ISPs and capacity in IXs, since FTTH has rapidly spread all
over Japan. Under these circumstances, the Council proposed a less
restrictive and more flexible cooperation between ISPs than existent
P4P experiments [12]. The proposed method consists of the following
elements: (1) P2P clients, (2) P2P control servers, and (3) a hint
server: a peer selection hint server. (1) and (2) are existing
systems but whether (2) exists depends on each application. (3) is a
server that provides a hint as to the selection of a peer, and plays
a role equivalent to that of ALTO Server. Note that this proposal
Kamei, et al. Expires April 18, 2013 [Page 8]
Internet-Draft P2P Experiments Japan October 2012
was based on results of experiments using dummy nodes. The results
showed that it was possible to reduce unnecessary traffic that flows
across the boundaries of geographical districts or ISPs through
providing information about the physical network to P2P applications.
When a peer joins the network, it registers its location information
(IP address) and supplementary information (line speed, etc.) with&#
12288;the hint server. The hint server calculate network distance
between peers (P2P client) based on network topology information
obtained from the ISP and generates a priority table for peer
selection. The hint server returns the table to the peer.
If all information can be made publicly, the above procedure can
produce a result which is close to overall optimization. However,
some information held by ISPs can often be confidential. Besides, in
some cases, the volume of calculation required to process all
information can be excessive. To avoid these problems, it is planned
to conduct experiments with a limited set of functions, analyze
experiments results, and gradually expand the scope of optimization.
A control mechanism that makes use of all possible information is
difficult not only technically but also difficulties to achieve
coordination among providers. In consideration of these
difficulties, the council has been limiting the implementation and
experiments to the following scope since 2006.
Figure 2 shows an outline of the hint server.
Kamei, et al. Expires April 18, 2013 [Page 9]
Internet-Draft P2P Experiments Japan October 2012
+---------+ GetLocation +-------------GeoIP DB Server---------+
| | +-----------+ | +----------+ +-----------+ |
| |--|IP Address |-->| | GeoIP DB | |Quagga etc | |
| | +-----------+ | +----------+ +-----------+ |
| | | +-------------+ +----------------+ |
| | +-----------+ | | District | | Routing | |
| |--|AS Code: |---| | information | |information(DGP)| |
| | |Regional | | | | | | |
|P2P Peers| |Information| | | Range of | |AS Code(origin) | |
| or | +-----------+ | | IP address | | | |
| Contro| | | +-------------+ +----------------+ |
| Server | +-------------------------------------+
| | | ^
| | PeerSelection v |
| | +-----------+ +--------------------------------------+
| |--|IP Address |-->| +--Priority Node Selection System--+ |
| | | List | | | | |
| | +-----------+ | | Peer candidate ranking | |
| | +-----------+ | | | |
| |--| Ranking |-->| +----------------------------------+ |
| | +-----------+ +--------------------------------------+
+---------+
Peer selection hint server
Figure 2
The network information used by the hint server is not information
solicited from individual ISPs but the AS number and district
information, which are more or less already public. Routing tables
are not generated. Instead, peers within the same ISP or the same
district are selected with higher priority in order to confine
traffic to within the same ISP or the same district.
When the hint server receives an IP address, it returns its attribute
information, to achieve the above. A peer can select a peer based on
the returned information. This operation is called GetLocation.
However, in preparation for the time when it becomes necessary to
hide topology information, an interface is provided through which a
priority order is returned in response to an input of a list of
candidate peers. This operation is called PeerSelection.
Although the target node is selected based on the criterion that it
is within the same ISP or the same district, this type of selection
is not very effective if the number of participating peers is small.
Table 1 shows ratio of peers within the same AS or the same
prefecture calculated from the distribution of ASs and prefectures in
the IP address space from one-day data on a Winny network.
Kamei, et al. Expires April 18, 2013 [Page 10]
Internet-Draft P2P Experiments Japan October 2012
+--------------------+--------+
| Conditions | ratio |
+--------------------+--------+
| AS matches | 6.70% |
| Prefecture matches | 12.76% |
| Both match | 2.09% |
| Neither match | 78.45% |
+--------------------+--------+
Table 1: AS and prefecture distributions
Since, in addition to the above, the presence/absence of content
affects the result, the control of selecting a peer within the same
district may be inadequate. Therefore, it is necessary to introduce
the weight of a continuous quantity that reflects the physical
distance or the AS path length as an indicator of the proximity of
the areas involved.
In consideration of the above, the following two measures are used
for the evaluation of proximity between peers in a hint server.
o AS path length (distance between ISPs)
AS path length calculated from BGP full routes. Since a full
routing table retrieved at an ISP can show only a best path, it
may not get an accurate length if the AS hop of both ISPs is too
large. To avoid this, we use multiple BGP information received
from different ISPs and combine them. Based on this concept, we
used BGP routing information's offered by three ISPs operated by
big telecommunication couriers and made a topology tree. Then it
enables to calculate the shortest path between given two ASes.
o Geographical distance
Distances between peers are measured using physical distance of
prefectural capitals that target peers belong to. The distance
between prefectural capitals is used to calculate physical
distance. Distances between prefectural capitals are sorted into
ascending order, and then into bands, with weights 1 to 15
assigned to them so that there are a more or less equal number of
"capital pairs" in each band. If either of their location is
indefinite, distance is equal to 15 and, if they are in the same
prefecture, distance is equal to 0.
Evaluation of distances between peers showed that the distribution
of distances was almost uniform when distances between peers are
normalized. This result suggests that using normalized distances
expands the area where the control by a Hint Server is effective.
Kamei, et al. Expires April 18, 2013 [Page 11]
Internet-Draft P2P Experiments Japan October 2012
The geographical distance is only used when the AS path length is
same.
An example of the request and the response
o Request
POST /PeerSelection HTTP/1.1
Host: ServerName
User-Agent: ClientName
Content-Type: text/plain; charset=utf-8
v=Version number
[application=Application identifier]
ip=IP address of physical interface
port=Port number of physical interface
[nat={no|upnp|unknown}]
[nat_ip=Global IP address using UPnP]
[nat_port= Global port number using UPnP]
[trans_id=transcation ID]
[pt=Flag of port type]
[ub=upload bandwidth]
[db=download bandwidth]
o Response
HTTP/1.1 200 OK
Date: Timestamp
Content-Type: text/plain; charset=utf-8
Cache-control: max-age=max age
Connection: close
v=Version number
ttl=ttl
server=hint server name
...
trans_id=transaction ID
pt=Flag of port type
client_ip=Peer IP address observed from server
client_port=Peer port number observed from server
numpeers=number of respond peer
n=[src address] dst address / cost / option
Kamei, et al. Expires April 18, 2013 [Page 12]
Internet-Draft P2P Experiments Japan October 2012
6. High-Level Trial Results
6.1. Peer Selection with P2P
Table 2 shows the result of the analysis of communication in a node
of an ISP installed in Tokyo, as an example of measurement results.
In these two experiments we evaluate different P2P applications, in
1st experiment, the P2P topology is generated by tree algorithm, and
in 2nd experiment, it is generated by mesh algorithm. Both of them
result in similar performance.
+-----------------------------------------+------------+------------+
| Conditions | Experiment | Experiment |
| | 1 | 2 |
+-----------------------------------------+------------+------------+
| *Peers selected within the same ISP | 22% | 29% |
| *Peers selected within the same | 19% | 23% |
| district | | |
| *Peers selected within the same | 5% | 7% |
| district and the same ISP | | |
+-----------------------------------------+------------+------------+
Table 2: Percentage of communication within the same ISP
The table shows that the probability of communication with peers in
the same ISP is proportional to the number of population and the
share of the ISP in each district. The data show that peers were
selected at random. Note that the vendor of a P2P application used
in these experiments explained that the mechanism of selection a peer
using network information can be implemented. However, peer
selection is normally based on past information because users often
cannot actually perceive the effect of using network information.
6.2. Peer Selection with the Hint Server
The main objective of these experiments was to verify the operations
of the hint server and P2P applications. The distances between a
dummy node and a peer were obtained from data on the dummy nodes. An
examination of the distances between a dummy node and a peer revealed
that mean value of distance after the hint server was introduced was
reduced by 10% and that 95th percentile was reduced by 5%. The
results show introducing hint server can reduce network loads by P2P
applications.
Kamei, et al. Expires April 18, 2013 [Page 13]
Internet-Draft P2P Experiments Japan October 2012
7. Considerations
We clarified followings throughout our experiments.
1. Dispersed dummy nodes can figure out the behavior of peers and
traffic between inter-ISP networks, which peers are selected by
each peer. Therefore it proves that the importance of peer
selection control mechanism proposed in ALTO.
2. Using our peer selection control mechanism, called hint server,
could achieve significant differences. Our hint server can lead
each peer to select nearer peer.
3. The result of 10% reduction of network cost is not satisfying
effect for ISPs, but the controllability for P2P applicationis
most important point. When they apply this mechanism for their
real ISP network, they will set very large cost for most
expensive network link.
In the experimental result of peer selection control, it is smaller
in intra-ISP traffic than other experiments [13] We think that it is
because there are smaller peers in each area of traffic control.
When there are many peers in one ISP, it is easy to select peers in
the same ISP. However, when there are small peers in one ISP, it is
difficult to select peers in the same ISP. In the situation of our
experiments, there are many ISPs of peers belonging, and there are
relatively smaller peers exist in same ISP.
Moreover, we didn't force P2P vendors to limit their implementation
policy, therefore we can observe differences how each implementations
weigh the information from the hint servers. Especially, in tree
overlay topology P2P applications, such mechanism is very effective,
on the other hand, in mesh overlay system, less effective.
7.1. Next steps
Recent research, we've changed the communication protocol to hint
servers to ALTO based because it is nearly standardized. In our
implementation, PIDs and the value of cost are mapped to ISP subnets,
and ISP distance respectively. We also implement services for
compatibility required by ALTO such as Service Capability and Map
Services. But the Endpoint Cost Service is mainly used because of
backward compatibility of our experiments.
We also study hierarchical hint server structure, in order to control
in coarse inter-ISPs and in detail intra-ISP. It is also effective
for limiting the area of information disclose.
Kamei, et al. Expires April 18, 2013 [Page 14]
Internet-Draft P2P Experiments Japan October 2012
7.2. Feedback to ALTO WG
This section describes what the authors learned with these
experiments would be useful for the ALTO WG.
7.2.1. Hierarchical architecture for ALTO servers
In our experiments, we present the possibility of traffic control
among multi-ISPs and multi-P2P applications using ALTO mechanism. On
the other hand, we found several problems in ISP operations to adapt
the mechanism. One is the granularity of network information from
council members. Among inter-ISP area, it is relatively easy to
treat information for public purpose using BGP full route. On the
other hand, among intra-ISP area, it may be difficult to disclose
private information of each ISP. [14] propose some modification for
ALTO protocol in order to hide ISP information. We propose
hierarchical structures. From the viewpoint of cooperation between
ISPs, fine-grained information is not necessarily required and
moreover it is difficult to exchange the fine-grained information
between ISPs. Considering this situation, the authors use only
coarse-grained information to control backbone traffic in this
experiments, though demand of controlling traffic within an ISP using
fine-grained information may arise in future. Therefore it led us
that introducing hierarchical structure into ALTO is necessary to
cope with both situations. Actually, to adapt a hierarchical control
mechanism which include the following two steps will be useful.
o In the first step, coarse-grained information about whole the
network is used to select ISPs.
o Next, fine-grained information within the ISP is used to select a
peer.
7.2.2. Measurement mechanism
In the experiments, there were two difficulties as follows:
o Evaluating effect of introducing a hint server was difficult,
since P2P applications had their own measurement mechanisms.
o How to treat priority orders of peers suggested by a hint server
could not be predetermined for P2P applications.
From these experiences, the authors consider that clarifying
requirements about measurement mechanisms for P2P applications are
necessary also in ALTO.
Kamei, et al. Expires April 18, 2013 [Page 15]
Internet-Draft P2P Experiments Japan October 2012
8. Security Considerations
This document does not propose any kind of protocol, practice or
standard.
9. IANA Considerations
No need to describe any request regarding number assignment.
10. Acknowledgments
Thanks to strong support by MIC (Ministry of Internal Affairs and
Communications of Japanese government), the council was established.
These experiments were performed under cooperation among P2P Network
Experiment Council members, and DREAMBOAT co.,ltd., Bitmedia Inc.,
Utagoe. Inc. and Toyama IX have especially supported analyses of the
experiments. The authors appreciate Tohru Asami, Hiroshi Esaki and
Tatsuya Yamshita for their constructive comments.
And the authors would like to thank Martin Stiemerling, Stefano
Previdi and Vijay K.Gurbani for the comments on this document.
11. Informative References
[1] R.Kawahara, E.K.Lua, M.Uchida, S.Kamei, H.Yoshino, "On the
Quality of Triangle Inequality Violation Aware Routing Overlay
Architecture", INFOCOM 2009: 2761-2765.
[2] Z.Li, "QRON: QoS-aware routing in overlay networks", IEEE
JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1,
JANUARY 2004.
[3] Sandvine Corp, "Global Internet Phenomena Report: 1H 2012",
September 2012,
<http://www.sandvine.com/news/global_broadband_trends.asp>.
[4] "Winny on Wikipedia", <http://en.wikipedia.org/wiki/Winny>.
[5] "Share on Wikipedia",
<http://en.wikipedia.org/wiki/Share_(P2P)>.
[6] Taniwaki, "Broadband Competition Policy in Japan", 2008,
<http://www.smartireland.jp/en/forum/may-2009/>.
[7] Ministry of Internal Affairs and Communications, "Disclosure of
Kamei, et al. Expires April 18, 2013 [Page 16]
Internet-Draft P2P Experiments Japan October 2012
the Report `Working Group on P2P Networks'",
http://www.soumu.go.jp/menu_news/s-news/2007/070629_11.html,
2007 (in Japanese).
[8] The Foundation for MultiMedia Communications, "The P2P Network
Experiment Council", http://www.fmmc.or.jp/P2P/about.htm, 2007
(in Japanese).
[9] Utagoe Inc., "UGLive technology introduction",
http://www.utagoe.com/en/technology/grid/live/index.html,
March, 2011.
[10] TVBank, "Live Delivery using `BB Broadcast'Achieving 96% Saving
in Traffic!", http:.wwww.tv-bank.com/jp/20081031.html, 2008 (in
Japanese).
[11] Cho, Fukuda, Esaki, and Kato, "The Impact and Implications of
the Growth in Residential User-to-User Traffic", SIGCOMM2006,
pp207-218, Pisa, Italy, September 2006.
[12] Open P4P, "P4P Field Tests: Yale-Pando-Verizon",
http://www.openp4p.net/front/, 2009.
[13] "RFC5632: Comcast's ISP Experiences in a Proactive Network
Provider Participation for P2P (P4P) Technical Trial",
September 2009.
[14] "ALTO H12,draft-kiesel-alto-h12-02 (work in progress)", March
2010.
Authors' Addresses
Satoshi Kamei
NTT Communications Corporation
Granpark Tower 17F, 3-4-1 Shibaura
Minato-ku, Tokyo 108-8118
JP
Phone: +81-50-3812-4697
Email: skame@nttv6.jp
Kamei, et al. Expires April 18, 2013 [Page 17]
Internet-Draft P2P Experiments Japan October 2012
Tsuyoshi Momose
Cisco Systems G.K.
9-7-1 Akasaka
Minato-ku, Tokyo 107-6227
JP
Phone: +81-3-6738-5154
Email: tmomose@cisco.com
Takeshi Inoue
NTT Communications
3-4-1, Shibaura
Minato-ku, Tokyo 108-8118
JP
Phone: +81-3-6733-7177
Email: inoue@jp.ntt.net
Tomohiro Nishitani
NTT Communications
1-1-6, Uchisaiwaicho
Chiyodaku, Tokyo 100-8019
JP
Phone: +81-50-3812-4742
Email: tomohiro.nishitani@ntt.com
Kamei, et al. Expires April 18, 2013 [Page 18]