Net wor k Wor ki ng Group J. loannidis
Request for Comments: 1235 G Maguire, Jr.
Col unbi a University

Depart nent of Conputer Science

June 1991

The Coherent File Distribution Protoco
Status of this Menp

This meno descri bes the Coherent File Distribution Protocol (CFDP).
This is an Experinental Protocol for the Internet comunity.

Di scussi on and suggestions for inprovenment are requested. Pl ease
refer to the current edition of the "I AB Oficial Protocol Standards”
for the standardi zation state and status of this protocol
Distribution of this menmo is unlinited.

| nt roducti on

The Coherent File Distribution Protocol (CFDP) has been designed to
speed up one-to-many file transfer operations that exhibit traffic
coherence on nedia with broadcast capability. Exanples of such
coherent file transfers are identical diskless workstations booting
si mul t aneously, software upgrades being distributed to nore than one
machines at a site, a certain "object"” (bitmap, graph, plain text,
etc.) that is being discussed in a real-tinme electronic conference or
class being sent to all participants, and so on

In all these cases, we have a |limted nunber of servers, usually only
one, and <n> clients (where <n> can be large) that are being sent the
same file. |If these files are sent via nultiple one-to-one
transfers, the load on both the server and the network is greatly

i ncreased, as the same data are sent <n> tines.

We propose a file distribution protocol that takes advantage of the
br oadcast nature of the conmunications nedium (e.g., fiber, ethernet,
packet radio) to drastically reduce the tinme needed for file transfer
and the inpact on the file server and the network. Wile this
protocol was devel oped to allow the simltaneous booting of diskless
wor kst ati ons over our experinmental packet-radio network, it can be
used in any situation where coherent transfers take place.

CFDP was originally designed as a back-end protocol; a front-end
interface (to convert file names and requests for themto file

handl es) is still needed, but a nunber of existing protocols can be
adapted to use with CFDP. Two such reference applications have been
devel oped; one is for diskless booting of workstations, a sinplified

loannidis & Maguire, Jr. [Page 1]

RFC 1235 CFDP June 1991

BOOTP [3] daenbn (which we call sbootpd) and a sinple, TFTP-1ike
front end (which we call vtftp). |In addition, our CFDP server has
been extended to provide this front-end interface. W do not
consider this front-end part of the CFDP protocol, however, we
present it in this docunent to provide a conplete example.

The two clients and the CFDP server are avail able as reference

i mpl enentati ons for anonynmous ftp fromthe site CS. COLUMBI A. EDU
(128.59.16.20) in directory pub/cfdp/. Al so, a companion docunent
("BOOTP extensions to support CFDP") lists the "vendor extensions"
for BOOTP (a-la RFC-1084 [4]) that apply here.

Overvi ew

CFDP is inplemented as a protocol on top of UDP [5], but it can be

i mpl enented on top of any protocol that supports broadcast datagrans.
Mor eover, when IP nulticast [6] inplenmentations becone nore

wi despread, it would nake nore sense to use a nmulticast address to

di stribute CFDP packets, in order to reduce the overhead of non-
partici pati ng nmachi nes.

A CFDP client that wants to receive a file first contacts a server to
acquire a "ticket" for the file in question. This server could be a
sui tably nodified BOOTP server, the equivalent of the tftpd daenon,

etc. The server responds with a 32-bit ticket that will be used in
the actual file transfers, the block size sent with each packet
(which we shall call "BLKSZ" fromnow on), and the size (in bytes) of

the file being transferred ("FILSZ"). BLKSZ should be a power of
two. A good value for BLKSZ is 512. This way the total packet size
(I Pheader +UDPheader +CFDPheader +dat a=20+8+12+512=552), is kept well
under the magi c nunber 576, the mninmum MU for | P networks [7].
Note that this choice of BLKSZ supports transfers of files that are
up to 32 Moytes in size. At this point, the client should allocate
enough buffer space (in nmenmory, or on disk) so that received packets
can be placed directly where they belong, in a way simlar to the
Net BLT protocol [8].

It is assumed that the CFDP server will also be inforned about the
ticket so that it can respond to requests. This can be done, for
exanpl e, by having the CFDP server and the ticket server keep the
table of ticket-to-filename mappings in shared nenory, or having the
CFDP server |istening on a socket for this information. To reduce
overhead, it is reconmended that the CFDP server be the sanme process
as the front-end (ticket) server.

After the client has received the ticket for the file, it starts

listening for (broadcast) packets with the same ticket, that may
exi st due to an in-progress transfer of the sane file. |If it cannot

| oannidis & Maguire, Jr. [Page 2]

RFC 1235 CFDP June 1991

detect any traffic, it sends to the CFDP server a request to start
transmtting the whole file. The server then sends the entire file
in small, equal -sized packets consisting of the ticket, the packet
sequence nunber, the actual length of data in this packet (equal to
BLKSZ, except for the last packet in the transfer), a 32-bit
checksum and the BLKSZ bytes of data. Upon receipt of each packet,
the client checksuns it, marks the correspondi ng bl ock as received
and places its contents in the appropriate place in the local file.
If the client does not receive any packets within a timeout period,
it sends to the CFDP server a request indicating which packets it has
not yet received, and then goes back to the receiving node. This
process is repeated until the client has received all blocks of the
file.

The CFDP server accepts requests for an entire file ("full" file
requests, "FULREQ's), or requests for a set of BLKSZ bl ocks
("partial” file requests, "PARREQ's). 1In the first case, the server

subsequent |y broadcasts the entire file, whereas in the second it
only broadcasts the bl ocks requested. |f a FULREQ or a PARREQ
arrives while a transfer (of the sane file) is in progress, the
requests are ignored. Wen the server has sent all the requested
packets, it returns to its idle state.

The CFDP server listens for requests on UDP/IP port "cfdpsrv"'. The
clients accept packets on UDP/IP port "cfdpcln" (both to be defined
by the site adnministrator), and this is the destination of the
server’'s broadcasts. Those two port nunmbers are sent to the client
with the initial handshake packet, along with the ticket. |If the
m nimal ticket server is inplenmented as described later in this
docunent, it is reconmended (for interoperability reasons) that it
listens for requests on UDP/IP port 120 ("cfdptkt").

Let us now examine the protocol in nore detail
Pr ot ocol Specification
Initial Handshake (not strictly part of the protocol):

The client must acquire a ticket for the file it wishes to transfer,
and the CFDP server should be inforned of the ticket/filenane

mappi ng. Again, this can be done inside a BOOIP server, a nodified
TFTP server, etc., or it can be part of the CFDP server itself. W
present here a suggested protocol for this phase.

The client sends a "Request Ticket" (REQIKT) request to the CFDP
Ti cket server, using UDP port "cfdptkt". |[If the address of the

server i s unknown, the packet can be sent to the | ocal broadcast
address. Figure 1 shows the format of this packet.

| oannidis & Maguire, Jr. [Page 3]

RFC 1235 CFDP June 1991

0 1 2 3
01234567890123456789012345678901
T S i i S i I S Sk i S SR S

1R1 | 1Q | 1T1 | 1K1 |
I T S it SN S S T S T -

+-

/ /
\ Fil ename, null-term nated, up to 512 octets \
/ /
B s i S i I i S S S i i

Fig. 1. "ReQuest TicKet" packet.

The filenane is limted to 512 octets. This should not cause a
problemin nmost, if not all, cases.

The ticket server replies with a "This is Your Ticket" (TIYT) packet
containing the ticket. Figure 2 shows the format of this packet.

0 1 2 3
01234567890123456789012345678901
B s i S i I i S S S i i
| T | ok | Y | T |
e s S i e e e et s I R SR
| “ticket" |
T Lk R e T e i ik i Sl TR R o

| BLKSZ (by default 512)

B s i S i I i S S S i i
| FI LSZ |
e s S i e S e e t ik ok S R SR S S
| | P address of CFDP server (network order)
Lk e e T S i i i SEI TR R e
| client UDP port# (cfdpcln) | server UDP port# (cfdpsrv)
B s i S i I i S S S i i

Fig. 2. "This |Is Your Ticket" packet.

The reply is sent to the UDP port that the RQIK request cane from
The I P address of the CFDP server is provided because the origina
handshake server is not necessarily on the same machine as the ticket
server, let alone the sane process. Simlarly, the cfdpcln and
cfdpsrv port nunbers (in network order) are conmunicated to the
client. |If the client does not use this ticket server, but rather
uses BOOTP or something else, that other server should be responsible
for providing the values of cfdpcln and cfdpsrv. The ticket server

al so conmunicates this ticket/filenane/filesize to the real CFDP
server. 1t is recomended that the ticket requests be handl ed by the

| oannidis & Maguire, Jr. [Page 4]

RFC 1235 CFDP June 1991

regul ar CFDP server, in which case informng the CFDP server of the
ticket/filenane binding is trivial (as it is internal to the
process) .

Once the client has received the ticket for the filenane it has
requested, the file distribution can proceed.

Client Protocol

Once the ticket has been established, the client starts |listening for
br oadcast packets on the cfdpcln/udp port that have the same "ticket"
as the one it is interested in. In the state diagram bel ow, the
client is in the CLSTART state. |If the client can detect no packets
with that ticket within a specified tinmeout period, "TOUT-1", it
assunes that no transfer is in progress. It then sends a FULREQ
packet (see discussion above) to the CFDP server, asking it to start
transmtting the file, and goes back to the CLSTART state (so that it
can time out again if the FULREQ packet is lost). Figure 3 shows the
format of the FULREQ packet.

0 1 2 3
01234567890123456789012345678901
i i S T S S S s S S S i ai i i ST
| "ticket" |
S I e
| checksum |
I e i i i S A S S S S S e

| "F | 0 | l ength ==
i i S T S S S s S S S i ai i i ST

Fig. 3: FULREQ (FULI file REQuest) packet.
When the first packet arrives, the client nmoves to the RXING state

and starts processing packets. Figure 4 shows the fornat of a data
packet .

| oannidis & Maguire, Jr. [Page 5]

RFC 1235 CFDP June 1991

0 1 2 3
01234567890123456789012345678901
R T i T e e i T S L e e e i T St R S S S S s e I S R
| "ticket" |
B s i S i I i S S S i i
| checksum |
e b i T T e T S s S R S e T O i i Tk i RIS S S
| bl ock nunber | data | ength |
R T i T e e i T S L e e e i T St R S S S S s e I S R

| |
/ /
\ up to BLKSZ octets of data \
/ /
| |
R Rt i i i i e T I I S S S R i e S R e e i s o
Fig. 4: Data Packet

The format is self-explanatory. "Block nunber"” the offset (in

mul tiples of BLKSZ) fromthe beginning of the file, data length is
al ways BLKSZ except for the very |last packet, where it can be |ess
than that, and the rest is data.

As each packet arrives, the client verifies the checksum and pl aces
the data in the appropriate position in the file. Wiile the file is
i nconpl ete and packets keep arriving, the client stays in the RXING
state, processing them |If the client does not receive any packets
within a specified period of tine, "TOQUT-2", it tinmes out and noves
to the I NCMPLT state. There, it determ nes which packets have not
yet been received and transmts a PARREQ request to the server. This
request consists of as many bl ock nunbers as will fit in the data
area of a data packet. |f one such request is not enough to request
all mssing packets, nore will be requested when the server has
finished sending this batch and the client tines out. Also, if the
client has sent a PARREQ and has not received any data packets wthin
a tinmeout period, "TQUT-3", it retransmts the same PARREQ Figure 5
shows the format of the PARtial REQuest packet.

| oannidis & Maguire, Jr. [Page 6]

RFC 1235 CFDP June 1991

0 1 2 3
01234567890123456789012345678901
T T R i e e e e o S e SRR R
| "ticket" |
B s i S i I i S S S i i
| checksum |
e s S i e S e e t ik ok S R SR S S

| P | 0 | data | ength (2*N)

e E C ks e T e e th i S S SER N N
Bl ock #0 | Bl ock #1
Bl ock #2 | Bl ock #3

| |
| |
/ /
\ data (bl ock nunbers requested) \
/ /
| Bl ock #N-2 | Bl ock #N-1
B i aT T ST S O S it T ol STEE S U SR U S e O S S N S S
Fig. 5. PARREQ (PARtial file REQuest) packet.

When al |l packets have been received the client enters the CLEND state
and stops |istening.

Figure 6 summarizes the client’s operations in a state di agram

| oannidis & Maguire, Jr. [Page 7]

RFC 1235 CFDP June 1991

S +

| CLSTART |

| | <--

| send | | timeout TOUT-1
| FULREQ | ----"

e .

R + R +
| 1 NCVPLT | | RXING
| | ti meout | | <---.
| send | <-----emmmmm- | process | | received packet
| PARREQ | TOUT- 2 | packet | ----
| | | |
R + R +
~
| | | finished
l___) |
ti meout \%
TOUT- 3 L +
| CLEND |
. +

Fig. 6: Cient State Transition D agram

Server Protocol:

As described above, the CFDP server accepts two kinds of requests: a
request for a full file transfer, "FULREQ', and a request for a
partial (some blocks only) file transfer, "PARREQ'. For the first,

it is instructed to start sending out the contents of a file. For
the second, it will only send out the requested bl ocks. The server
shoul d know at all times which files correspond to which "tickets",
and handl e them appropriately. Note that this may run into

i mpl enentation limts on sone Uni x systens (e.g., on ol der systens, a
process could only have 20 files open at any one tine), but that
shoul d not nornally pose a problem

The server is initially in the SIDLE state, idling (see diagram
below). When it receives a FULREQ packet, it goes to the FULSND
state, whence it broadcasts the entire contents of the file whose
ticket was specified in the FULREQ packet. Wien it is done, it goes
back to the SIDLE state. When it receives a PARREQ packet, it goes to
the PARSND state and broadcasts the bl ocks specified in the PARREQ
packet. Wen it has finished processing the bl ock request, it goes

| oannidis & Maguire, Jr. [Page 8]

RFC 1235 CFDP June 1991

once again back to the SIDLE state

recei ve Foeemm - + recei ve

B L R | SIDLE |--------------- .

| FULREQ R + PARREQ |

| roon |

| | |

Y | | Y
E R + | | E R +
| FULSND | | | | PARSND
| | done | | done |
| send |------------ ' B | send |
| entire | | req ed
| file | | bl ocks |
- + - +

Fig. 7: Server State Transition D agram
Packet Formats

The structure of the packets has been already described. In al
packet formats, nunbers are assumed to be in network order ("big-
endi an"), including the ticket and the checksum

The checksumis the two's conpl enent of the unsigned 32-bit sumwith
no end-around-carry (to facilitate inplenmentation) of the rest of the
packet. Thus, to conpute the checksum the sender sets that field to
zero and adds the contents of the packet including the header. The
it takes the two’s conpl ement of that sum and uses it as the
checksum Simlarly, the receiver just adds the entire contents of
the packet, ignoring overflows, and the result should be zero.

Tuneabl e Paraneters: Packet Size, Delays and Ti nmeouts

It is recoomended that the packet size be |ess than the m ni num MU
on the connected network where the file transfers are taking pl ace.
W want this so that there be no fragnentati on; one UDP packet should
correspond to one hardware packet. It is further reconmended that
the packet size be a power of two, so that offsets into the file can
be conputed fromthe bl ock nunber by a sinple |ogical shift
operation. Also, it is usually the case that page-aligned transfers
are faster on machines with a paged address space. Small packet
sizes are inefficient, since the header will be a larger fraction of
the packet, and packets larger than the MU will be fragnented. A
good selection for BLKSZ is 512 or 1024. Using that BLKSZ, one can
transfer files up to 32MB or 64MB respectively (since the limt is
the 16-bit packet sequence nunber). This is adequate for all but
copying conplete disks, and it allows twi ce as many packets to be

| oannidis & Maguire, Jr. [Page 9]

RFC 1235

June 1991

requested in a PARREQ request than if the sequence nunber were 32

bits. If larger files nust be transferred,
mul tiple |ogical files,

they could be treated as
each with a size of 32MB (or 64MB)

Since nost UDP/IP inplenentations do not buffer enough UDP dat agr ans,
the server should not transmt packets faster than its clients can
consunme them Since this is a one-to-nmany transfer, it is not

desirable to use flowcontro

overrun the clients.

to ensure that the server does not

Rat her, we insert a snmall delay between packets

transmtted. A good estimate of the proper delay between two
successi ve packets is twice the amount of time it takes for the
interface to transmt a packet.
program can be used to provide an estimate of this, by specifying the
sane packet length on the conmmand |ine as the expected CFDP packet

l ength (usually 524 bytes).

On Uni x inplenentations, the ping

The tineouts for the client are harder to conpute. Wile there is a
provision for the three tineouts (TOUT-1, TOUT-2 and TOUT-3) to be
different, there is no conpelling reason not to nake themthe sane.
Experinmental ly, we have determ ned that a tineout of 6-8 tines the

transfer tine for a packet works best.

A tinmeout of |less than that

runs the risk of mstaking a transient network problemfor a tineout,

and nore than that delays the transfer too nuch.

Summary

To summarize, here is the tineline of a sanple file distribution

using CFDP to three clients.
bl ocks. States are capitalized,
sign, replies are followed by a '>’
with a '# sign, and actions are in parentheses:

SERVER CLI ENT1
| DLE
CLSTART
<TKRQ
TIYT>
(timeout)
<FULREQ
#0 RXI NG
(rx 0)
#1 (rx 1)
#2 (rx 2)
TIYT>
#3 (rx 3)

| oannidis & Maguire, Jr.

CLI ENT- 2

CLSTART
<TKRQ

—

(listens)

K=
5

Here we request a file with eight
requests are preceded with a ' <
bl ock nunbers are preceded

comment s

everybody idle

CL1 wants a file
requests ticket
server replies
listens for traffic
full request

CL1 starts receiving

CL2 decides to join
SRV still sending
responds to TKRQ

CL2 |istens
found traffic

[Page 10]

RFC 1235 CFDP June 1991

#4

#5

TIYT>

#6

#7

| DLE

#5

| DLE

#0
#1
#2
#3

| DLE

#4
#5
#5

| DLE

(rx 4) (rx 4) CLSTART CL3 joins in
<TKRQ
(mi ssed) (rx 5) CL1 missed a packet
(l'istens)
(rx 6) (rx 6) RXI NG CL3 found traffic
(rx 7) (rx 7) (rx 7) Server finished
(wait) (wait) (wait) CL1 nanaged to
(timeout) (wait) (wait) ti meout
<PARRE(J 5] (tineout) (timeout) CL1 bl ockrequests. ..
(rx 5) <PARRE(Q 0123] <PARREQ 0123456] ignored by SRV
CLEND CL1 has all packets
(wait) (wait) CL2+3 missed #5
(timeout) (timeout)
<PARRE(J 0123] <PARREQ 0123456] CL2's req gets
(rx 0) (rx 0) t hrough, CL3 ignored
(rx 1) (rx 1) novi ng al ong
(rx 2) (rx 2)
(rx 3) (rx 3)
CLEND (wai t) CL2 finished
(timeout)
<PARRE(Q] 456]
(rx 4)
(rx 5)
(rx 6)
CLEND CL3 fi ni shed

Ref er ences

[1]

[2]

[3]

[4]

[5]

[6]

Sollins, K, "The TFTP Protocol (Revision 2)", RFC 783, MT, June
1981.

Fi nl ayson, R, "Bootstrap Loading Using TFTP", RFC 906, Stanford,
June 1984.

Croft, W, and J. Glnore, "Bootstrap Protocol", RFC 951,
Stanford and SUN M crosystens, Septenber 1985.

Reynol ds, J., "BOOTP Vendor Information Extensions", RFC 1084,
USC/ I nformati on Sciences Institute, Decenber 1988.

Postel, J., "User Datagram Protocol", RFC 768, USC/ I nfornation
Sci ences Institute, August 1980.

Deering, S., "Host Extensions for IP Milticasting", RFC 1112,
Stanford University, August 1989.

| oannidis & Maguire, Jr. [Page 11]

RFC 1235 CFDP June 1991
[7] Postel, J., "Internet Protocol - DARPA |Internet Program Protocol
Specification", RFC 791, DARPA, Septenber 1981.

[8 dark, D., Lanmbert, M, and L. Zhang, "NETBLT: A Bul k Data
Transfer Protocol", RFC 998, M T, March 1987.

Security Considerations
Security issues are not discussed in this meno.
Aut hors’ Addresses
John | oannidis
Col unbi a University
Depart ment of Conputer Science
450 Conputer Science
New Yor k, Ny 10027
EMail: ji@s.col unbia.edu
Gerald Q Maguire, Jr.
Col unbi a University
Depart nent of Conputer Science
450 Conputer Science
New York, NY 10027
Phone: (212) 854-2736

EMai | : maguire@s. col unbi a. edu

| oannidis & Maguire, Jr. [Page 12]

