Net wor k Wor ki ng Group R Finlayson
Request for Comments: 5219 Li ve Networks, Inc.
obsol etes: 3119 February 2008
Cat egory: Standard Track

A More Loss-Tol erant RTP Payl oad Format for MP3 Audi o
Status of This Meno

Thi s docunent specifies an Internet standards track protocol for the
Internet conmunity, and requests discussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this nemo is unlimted.

Abst ract

Thi s docunent describes an RTP (Real -Time Protocol) payl oad format
for transporting MPEG (Mving Picture Experts Group) 1 or 2, |ayer
[1l audio (commonly known as "MP3"). This format is an alternative
to that described in RFC 2250, and perfornms better if there is packet
| oss. This docunment obsol etes RFC 3119, correcting typographica
errors in the "SDP usage" section and pseudo-code appendi ces.

Fi nl ayson St andards Track [Page 1]

RFC 5219 February 2008

Tabl e of Contents

1. IntroduCti On ... e 2
2. Termnol 0gy . ..o 3
3. The Structure of MP3 Frames 3
4. A New Payload Format e 4
4.1, ADU FramBS 4
4.2. ADU DeSCri Pt OrS ..ot 4
4.3. Packing Rul €S 5
4.4. RTP Header Fields e 6
4.5. Handling Received Data 6
5. Handling Multiple MPEG Audio Layersc.iiiiinnn... 6
6. Frame Packetizing and Depacketizing 7
7. ADU Frame Interleaving 8
8. TANA Considerati ONS 10
9. SDP Usage 11
10. Security Considerati OnNsS 11
11. Acknow edgemBnt S 11
12. Normative References e 12
Appendi x A. Transl ating between "MP3 Franes" and "ADU Frames" 13

A. 1. Converting a Sequence of "MP3 Frames"
to a Sequence of "ADU Frames" 14

A. 2. Converting a Sequence of "ADU Frames"
to a Sequence of "MP3 Frames"c.c.iiiiiiiia.. 15
Appendi x B. Interleaving and Deinterleaving 18
B.1. Interleaving a Sequence of "ADU Franmes" 18
B.2. Deinterleaving a Sequence of (Interleaved) "ADU Franes" ...19
Appendi x C. Changes from RFC 3119 20

1. Introduction

Wil e the RTP payload format defined in RFC 2250 [1] is generally
applicable to all forms of MPEG audio or video, it is sub-optimal for
MPEG 1 or 2, layer IIl audio (commonly known as "MP3"). The reason
for this is that an MP3 frame is not a true "Application Data Unit"

-- it contains a back-pointer to data in earlier frames, and so
cannot be decoded i ndependently of these earlier frames. Because RFC
2250 defines that packet boundaries coincide with frame boundaries,

it handl es packet |loss inefficiently when carrying MP3 data. The

| oss of an MP3 frane will render sonme data in previous (or future)
frames useless, even if they are received w thout |oss.

In this docunent, we define an alternative RTP payload format for MP3
audio. This format uses a data-preserving rearrangenent of the
original MPEG franmes, so that packet boundaries now coincide with
true MP3 "Application Data Units", which can also (optionally) be
rearranged in an interleaving pattern. This new format is therefore
nore data efficient than RFC 2250 in the face of packet |oss.

Fi nl ayson St andards Track [Page 2]

RFC 5219 February 2008

2.

Ter m nol ogy

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [2].

The Structure of MP3 Franes

In this section we give a brief overview of the structure of an MP3
frane. (For a nore detailed description, see the MPEG 1 audi o [3]
and MPEG 2 audio [4] specifications.)

Each MPEG audio frame begins with a 4-byte header. Information
defined by this header includes:

- \Wiether the audio is MPEG 1 or MPEG 2.

- Wiether the audio is layer I, Il, or Ill. (The remainder of this
docunent assunes layer I1I, i.e., "MP3" franes.)

- Vhether the audio is nmono or stereo.

- Vhether or not there is a 2-byte CRC field follow ng the header

- (indirectly) The size of the frane.

The foll owi ng structures appear after the header

- (optionally) A 2-byte Cyclic Redundancy Check (CRC) field
- A "side info" structure. This has the follow ng I ength:
- 32 bytes for MPEG 1 stereo
- 17 bytes for MPEG 1 nobno, or for MPEG 2 stereo
- 9 bytes for MPEG 2 nono
- Encoded audi o data, plus optional ancillary data (filling out the
rest of the frane)

For the purpose of this docunent, the "side info" structure is the
nost important, because it defines the location and size of the
"Application Data Unit" (ADU) that an MP3 decoder will process. In
particular, the "side info" structure defines:

- "main_data _begin": This is a back-pointer (in bytes) to the start
of the ADU. The back-pointer is counted fromthe begi nning of the
frame, and counts only encoded audi o data and any ancillary data
(i.e., ignoring any header, CRC, or "side info" fields).

An MP3 decoder processes each ADU i ndependently. The ADUs wil |
generally vary in length, but their average length will, of course,

Fi nl ayson St andards Track [Page 3]

RFC 5219 February 2008

be that of the of the MP3 frames (nminus the | ength of the header
CRC, and "side info" fields). (In MPEG literature, this ADUis
sonetines referred to as a "bit reservoir".)

4. A New Payl oad For mat

As noted in [5], a payload format shoul d be designed S0 that packet

boundari es coincide with "codec frane boundaries" -- i.e., with ADUs.
In the RFC 2250 payl oad format for MPEG audio [1], each RTP packet
payl oad contains MP3 frames. |In this new payl oad format for MP3

audi o, however, each RTP packet payl oad contains "ADU frames"”, each
preceded by an "ADU descriptor”.

4.1. ADU Franes
An "ADU frame" is defined as:

- The 4-byte MPEG header (the sane as the original MP3 frane,
except that the first 11 bits are (optionally) replaced by an
"I nterl eaving Sequence Nunber", as described in Section 7
bel ow)

- The optional 2-byte CRC field (the same as the original M3
frane)

- The "side info" structure (the same as the original MP3 framne)
- The conpl ete sequence of encoded audi o data (and any ancillary
data) for the ADU (i.e., running fromthe start of this MP3
frane’s "mmi n_dat a_begi n" back-pointer, up to the start of the

next MP3 frame’ s back-pointer)

Note that there is a one-to-one mappi ng between MP3 franes and ADU
franes. Because MP3 franes are self-describing, with the bitrate
(and sanpling frequency) encoded within the 4-byte MPEG header, the
sane is true for ADU frames. Therefore, as with MP3 streans, the
bitrate can change within a stream and may be used for congestion
control

4.2. ADU Descriptors

Wthin each RTP packet payl oad, each "ADU frane" is preceded by a

1- or 2-byte "ADU descriptor", which gives the size of the ADU and

i ndi cates whether or not this packet’s data is a continuation of the
previ ous packet’s data. (This occurs only when a single "ADU
descriptor"” + "ADU frane" is too large to fit within an RTP packet.)

Fi nl ayson St andards Track [Page 4]

RFC 5219 February 2008

An ADU descriptor consists of the follow ng fields:

- "C': Continuation flag (1 bit): 1, if the data follow ng the ADU
descriptor is a continuation of an ADU frame that was too
large to fit within a single RTP packet; 0O otherw se.

- "T": Descriptor Type flag (1 bit):
O0if this is a 1-byte ADU descriptor;
1if thisis a 2-byte ADU descriptor.

- "ADU size" (6 or 14 bits): The size (in bytes) of the ADU frame
that will follow this ADU descriptor (i.e., NOT including the
size of the descriptor itself). A 2-byte ADU descriptor
(with a 14-bit "ADU size" field) is used for ADU frame sizes
of 64 bytes or nore. For smaller ADU frane sizes, senders
MAY alternatively use a 1-byte ADU descriptor (with a 6-bit
"ADU size" field). Receivers MIST be able to accept an ADU
descriptor of either size.

Thus, a 1-byte ADU descriptor is formatted as foll ows:

01234567
T ok Ik S R
| CJ0] ADU size |
S i S

and a 2-byte ADU descriptor is formatted as foll ows:

0 1

0123456789012345
T S
| d 1] ADU size (14 bits) |
T T S S S

4.3. Packing Rul es

Each RTP packet payl oad begins with an "ADU descriptor”, followed by
"ADU frame" data. Normally, this "ADU descriptor" + "ADU frame" wll
fit completely within the RTP packet. |In this case, nore than one
successive "ADU descriptor" + "ADU frame" MAY be packed into a single
RTP packet, provided that they all fit conpletely.

If, however, a single "ADU descriptor" + "ADU frame" is too large to
fit within an RTP packet, then the "ADU frame" is split across two or
nore successi ve RTP packets. Each such packet begins with an ADU
descriptor. The first packet’s descriptor has a "C' (continuation)
flag of 0; the follow ng packets’ descriptors each have a "C' flag of
1. Each descriptor, in this case, has the sanme "ADU size" value: the

Fi nl ayson St andards Track [Page 5]

RFC 5219 February 2008

size of the entire "ADU frane" (not just the portion that will fit
within a single RTP packet). Each such packet (even the |ast one)
contains only one "ADU descriptor".

4.4, RTP Header Fields

Payl oad Type: The (static) payload type 14 that was defined for
MPEG audi o [6] MUST NOT be used. Instead, a different, dynamc
payl oad type MJST be used -- i.e., one within the range [96..127].

M bit: This payl oad format defines no use for this bit. Senders
SHOULD set this bit to zero in each outgoing packet.

Timestanp: This is a 32-bit, 90 kHz timestanp, representing the
presentation tine of the first ADU packed within the packet.

4.5. Handling Received Data

Note that no information is |lost by converting a sequence of MP3
franes to a correspondi ng sequence of "ADU franmes", so a receiving
RTP i mpl ement ation can either feed the ADU franmes directly to an
appropriately nodi fi ed MP3 decoder, or convert them back into a
sequence of MP3 franes, as described in Appendi x A 2 bel ow.

5. Handling Multiple MPEG Audi o Layers

The RTP payl oad format described here is intended only for MPEG 1 or
2, layer |1l audio ("MP3"). In contrast, layer | and layer Il frames
are self-contained, without a back-pointer to earlier frames.

However, it is possible (although unusual) for a sequence of audio

franes to consist of a mxture of layer Il franes, and layer | or 11
franes. Wen such a sequence is transmitted, only layer Il frames
are converted to ADUs; layer | or Il frames are sent "as is’ (except
for the prepending of an "ADU descriptor"). Simlarly, the receiver
of a sequence of franes -- using this payload format -- |eaves |ayer
I and Il frames untouched (after renpving the prepended "ADU
descriptor"), but converts layer Ill frames from"ADU franes" to

regular MP3 franes. (Recall that each frame’'s layer is identified
fromits 4-byte MPEG header.)

If you are transmtting a stream consisting *only* of |layer | or
layer Il frames (i.e., without any MP3 data), then there is no
benefit to using this payload format, *unless* you are using the
i nterl eaving mechani sm described in Section 7 bel ow.

Fi nl ayson St andards Track [Page 6]

RFC 5219 February 2008

6.

Frame Packetizi ng and Depacketi zi ng

The transmi ssion of a sequence of MP3 franes takes the follow ng
st eps:

MP3 franes
-1-> ADU frames
-2-> interl eaved ADU frames
-3-> RTP packets

Step 1 is the conversion of a sequence of MP3 frames to a
correspondi ng sequence of ADU franes, and takes place as described in
Sections 3 and 4.1 above. (Note al so the pseudo-code in Appendi x
Al.)

Step 2 is the reordering of the sequence of ADU franes in an
(optional) interleaving pattern, prior to packetization, as described
in section 7 below. (Note also the pseudo-code in Appendix B.1.)
Interl eaving hel ps reduce the effect of packet |oss by distributing
consecutive ADU franes over non-consecutive packets. (Note that
because of the back-pointer in MP3 frames, interleaving can be
applied -- in general -- only to ADU frames. Thus, interleaving was
not possible for RFC 2250.)

Step 3 is the packetizing of a sequence of (interleaved) ADU franes
into RTP packets -- as described in section 4.3 above. Each packet’s
RTP timestanp is the presentation tine of the first ADU that is
packed within it. Note that if interleaving was done in step 2, the
RTP ti mestanps on outgoi ng packets will not necessarily be
nonot oni cal | y nondecr easi ng.

Simlarly, a sequence of received RTP packets is handl ed as foll ows:

RTP packets
-4-> RTP packets ordered by RTP sequence number
-5-> interl eaved ADU franes
-6-> ADU franes
-7-> MP3 frames

Step 4 is the usual sorting of incom ng RTP packets using the RTP
seqguence nunber.

Step 5 is the depacketizing of ADU franes from RTP packets -- i.e.,
the reverse of step 3. As part of this process, a receiver uses the
"C' (continuation) flag in the ADU descriptor to notice when an ADU
frane is split over nore than one packet (and to discard the ADU
frane entirely if one of these packets is lost).

Fi nl ayson St andards Track [Page 7]

RFC 5219 February 2008

Step 6 is the rearrangi ng of the sequence of ADU frames back to its
original order (except for ADU frames m ssing due to packet |oss), as
described in Section 7 below. (Note also the pseudo-code in Appendi x
B.2.)

Step 7 is the conversion of the sequence of ADU franes into a
correspondi ng sequence of MP3 franes -- i.e., the reverse of step 1
(Note al so the pseudo-code in Appendix A .2.) Wth an appropriately
nodi fi ed MP3 decoder, an inplenmentation may onmit this step; instead,
it could feed ADU franes directly to the (nodified) MP3 decoder

7. ADU Frame Interleaving

In MPEG audio frames (MPEG 1 or 2; all layers), the high-order 11
bits of the 4-byte MPEG header (’'syncword’) are always all-one (i.e.
OXFFE). When reordering a sequence of ADU franmes for transni ssion,
we reuse these 11 bits as an "Interl eaving Sequence Number" (1 SN)
(Upon reception, they are replaced with OXFFE once again.)

The structure of the ISNis (a,b), where:

- == bits 0-7: 8-bit Interleave Index (wthin Cycle)
- == bits 8-10: 3-bit Interleave Cycle Count

That is, the 4-byte MPEG header is reused as foll ows:

0 1 2 3
01234567890123456789012345678901
B s i S i I i S S S i i

| Interleave Idx | CycCt| The rest of the original MPEG header
s S S o T i i S S i (i

Exanpl e: Consider the followi ng interleave cycle (of size 8):
1,3,5,7,0,2,4,6

(This particular pattern has the property that any |oss of up to four

consecutive ADUs in the interleaved streamwll lead to a

dei nterl eaved streamwi th no gaps greater than one.) This produces

the follow ng sequence of | SNs:

(1,0) (3,0) (5,0) (7,0) (0,0) (2,0) (4,0) (6,0) (1,1) (3,1) (5,1)
etc.

Fi nl ayson St andards Track [Page 8]

RFC 5219 February 2008

So, in this exanple, a sequence of ADU franes
foOflf2 f3 f4 f51f6 f7 f8 f9 (etc.)
woul d get reordered, in step 2, into:

(1,0)f1 (3,0)f3 (5,0)f5 (7,0)f7 (0,0)f0 (2,0)f2 (4,0)f4 (6,06
(1,1)f9 (3,1)f11 (5, 1)f13 (etc.)

and the reverse reordering (along with replacenent of the OxFFE)
woul d occur upon reception

The reason for breaking the ISNinto "Interleave Cycle Count" and
“Interl eave Index" (rather than just treating it as a single 11-bit
counter) is to give receivers a way of know ng when an ADU frane
shoul d be 'released’ to the ADU >MP3 conversion process (step 7
above), rather than waiting for nore interleaved ADU franes to
arrive. For instance, in the exanple above, when the receiver sees a
franme with I SN (<sonething> 1), it knows that it can rel ease al
previously seen frames with | SN (<sonet hing>, 0), even if sone other
(<sonet hing>, 0) frames remain m ssing due to packet | oss. An 8-bit
Interl eave Index allows interleave cycles of size up to 256.

The choice of an interleaving order can be nade independently of RTP
packeti zation. Thus, a sinple inplenentation could choose an
interleaving order first, reorder the ADU frames accordingly (step
2), then sinmply pack them sequentially into RTP packets (step 3).
However, the size of ADU franes -- and thus the nunber of ADU franes
that will fit in each RTP packet -- will typically vary in size, so a
nore optinmal inplenentation would conbine steps 2 and 3, by choosing
an interleaving order that better reflected the nunber of ADU franes
packed within each RTP packet.

Each receiving inplenentation of this payload format MJST recogni ze
the 1SN and be able to performdeinterleaving of incom ng ADU franes
(step 6). However, a sending inplenentation of this payload fornat
MAY choose not to performinterleaving -- i.e., by onitting step 2.
In this case, the high-order 11 bits in each 4-byte MPEG header woul d
remain at OXFFE. Receiving inplenmentations would thus see a sequence
of identical 1SNs (all OxFFE). They would handle this in the sane
way as if the Interleave Cycle Count changed wi th each ADU frame, by
sinmply releasing the sequence of incomng ADU frames sequentially to
the ADU->MP3 conversion process (step 7), without reordering. (Note
al so the pseudo-code in Appendix B.2.)

Fi nl ayson St andards Track [Page 9]

RFC 5219 February 2008

8. | ANA Consi derations
Medi a type nane: audio
Medi a subtype: npa-robust
Requi red paraneters: none
Optional parameters: none
Encodi ng consi derati ons:
This type is defined only for transfer via RTP, as specified in

RFC 5219.

Security considerations:
See the "Security Considerations" section of RFC 5219.

Interoperability considerations:
This encoding is inconmpatible with both the "audi o/ npa" and
"audi o/ npeg" mnedi a types.

Publ i shed specification:
The 1S IEC MPEG 1 [3] and MPEG 2 [4] audi o specifications, and
RFC 5219.

Applications that use this nedia type:
Audi o streaning tools (transmitting and receiving)

Additional information: none

Person & email address to contact for further information:
Ross Fi nl ayson
finlayson@ive555. com

I nt ended usage: COVMON

Aut hor/ Change control | er

Aut hor: Ross Finl ayson
Change controller: | ETF AVT Wrking G oup

Fi nl ayson St andards Track [Page 10]

RFC 5219 February 2008

9.

10.

11.

SDP Usage

When conveying information by SDP [7], the encoding name SHALL be
"npa-robust” (the sane as the nedia subtype). An exanple of the
nmedi a representation in SDP is:

mraudi o 49000 RTP/ AVP 121
a=rtpmap: 121 npa-r obust/ 90000

Note that the RTP tinestanp frequency MJST be 90000.
Security Considerations

If a session using this payload format is being encrypted, and
interleaving is being used, then the sender SHOULD ensure that any
change of encryption key coincides with a start of a new interleave
cycle. Apart fromthis, the security considerations for this payl oad
format are identical to those noted for RFC 2250 [1].

Acknowl edgenent s

The suggestion of adding an interleaving option (using the first bits
of the MPEG 'syncword -- which would otherwi se be all-ones -- as an
interleaving index) is due to Dave Singer and Stefan Gewinner. In

addi ti on, Dave Singer provided val uabl e feedback that helped clarify

and i nprove the description of this payload format. Feedback from
Chris Sloan led to the addition of an "ADU descriptor" precedi ng each
ADU frame in the RTP packet.

Fi nl ayson St andards Track [Page 11]

RFC 5219 February 2008

12. Normati ve References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Hof f man, D., Fernando, G, Goyal, V., and M Civanlar, "RTP
Payl oad Format for MPEGL/ MPER Vi deo", RFC 2250, January 1998.

Bradner, S., "Key words for use in RFCs to | ndicate Requirenent
Level s", BCP 14, RFC 2119, WMarch 1997.

| SO I EC International Standard 11172-3; "Codi ng of noving
pi ctures and associated audio for digital storage media up to
about 1,5 Mits/s -- Part 3: Audio", 1993.

| SO I EC International Standard 13818-3; "Generic codi ng of noving
pi ctures and associated audio information -- Part 3: Audio",
1998.

Handl ey, M and C. Perkins, "Guidelines for Witers of RTP
Payl oad Format Specifications", BCP 36, RFC 2736, Decenber 1999.

Schul zrinne, H and S. Casner, "RTP Profile for Audi o and Vi deo
Conferences with Mninmal Control", STD 65, RFC 3551, July 2003.

Handl ey, M, Jacobson, V., and C Perkins, "SDP: Session
Description Protocol", RFC 4566, July 2006.

Fi nl ayson St andards Track [Page 12]

RFC 5219

Appendi x

February 2008

A. Transl ating between "MP3 Franes" and "ADU Franes"

The foll owi ng ' pseudo code’ describes how a sender using this payl oad
format can translate a sequence of regular "MP3 Frames" to "ADU
Frames”, and how a receiver can performthe reverse translation: from
"ADU Franmes" to "MP3 Franes".

We first define the follow ng abstract data structures:

- "Segnent": A record that represents either a "MP3 Frame" or an
"ADU Frame". It consists of the followi ng fields:

"header": the 4-byte MPEG header

"header Si ze": a constant (== 4)

"sidelnfo": the 'side info' structure, *including* the optiona
2-byte CRC field, if present

"sidelnfoSize": the size (in bytes) of the above structure
"franeData": the remaining data in this franme

"franeDat aSi ze": the size (in bytes) of the above data
"backpoi nter": the value (expressed in bytes) of the

backpoi nter for this frame

"aduDat aSi ze": the size (in bytes) of the ADU associated with
this frane. (If the frane is already an "ADU Frane", then
aduDat aSi ze == franeDat aSi ze)

"mp3FraneSi ze": the total size (in bytes) that this frame would
have if it were a regular "MP3 Frane". (If it is already a
"MP3 Frame", then np3FraneSi ze == header Si ze + sidel nfoSize +
franeDat aSi ze) Note that this size can be derived conpletely
from "header".

- "Segnent Queue": A FIFO queue of "Segments", with operations

Fi nl ayson

voi d enqueue(Segnent)

Segnment dequeue()

Bool ean i sEnpty()

Segnment head()

Segnent tail ()

Segnent previous(Segnent): returns the segnent prior to a
gi ven one

Segnment next (Segnment): returns the segnent after a given one
unsi gned total DataSi ze(): returns the sum of the
"franeDat aSi ze" fields of each entry in the queue

St andards Track [Page 13]

RFC 5219 February 2008

A. 1. Converting a Sequence of "MP3 Franes" to a Sequence of
"ADU Fr anes"

Segnment Queue pendi ngMP3Frames; // initially enpty
while (1) {
/1 Enqueue new MP3 Frames, until we have enough data to
/1l generate the ADU for a frane:
do {
int total Dat aSi zeBef or e
= pendi ngMP3Fr anes. t ot al Dat aSi ze() ;

Segnent newkFrane = 'the next MP3 Frane’;
pendi ngMP3Fr anes. enqueue(newkr ane) ;

int total DataSi zeAfter
= pendi ngMP3Fr anes. t ot al Dat aSi ze() ;
} while (total Dat aSi zeBef ore < newkr ane. backpoi nter |
t ot al Dat aSi zeAfter < newFr ane. adubDat aSi ze) ;

/1 W now have enough data to generate the ADU for the nost
/1 recently enqueued frane (i.e., the tail of the queue).
[l (The earlier franes in the queue -- if any -- nust be

/1 discarded, as we don’'t have enough data to generate

/1 their ADUs.)

Segnent tail Frane = pendi ngMP3Franes.tail ();

/1 Qutput the header and side info:
out put (t ai | Frame. header) ;
out put (t ai | Frane. si del nf o) ;

/1l Go back to the frane that contains the start of our
/1 ADU dat a
int offset = 0;
Segnment cur Frame = tail Frane;
int prevBytes = tail Frane. backpointer;
while (prevBytes > 0) {
cur Frame = pendi ngMP3Fr anes. previ ous(cur Frane) ;
i nt dataHere = curFrane. franeDat aSi ze;
if (dataHere < prevBytes) {
prevBytes -= dataHere;
} else {
of fset = dataHere - prevBytes;
br eak;

}

/1 Dequeue any franmes that we no | onger need:
whi | e (pendi ngMP3Fr anes. head() != curFrame) {

Fi nl ayson St andards Track [Page 14]

RFC 5219 February 2008

pendi ngMP3Fr anes. dequeue() ;
}

/1 Qutput, fromthe remaining frames, the ADU data that
[l we want:

int bytesToUse = tail Frane. adubDat aSi ze;
whil e (bytesToUse > 0) {
int dataHere = curFrane. franeDat aSi ze - of fset;
i nt bytesUsedHere
= dataHere < bytesToUse ? dataHere :
byt esToUse;

out put (" byt esUsedHere" bytes from
curFrane. franebData, starting from"offset");

byt esToUse -= byt esUsedHer e;
of fset = O;
cur Frame = pendi ngMP3Fr anes. next (cur Frane) ;

}

A. 2. Converting a Sequence of "ADU Franes" to a Sequence of
"MP3 Frames"

Segnment Queue pendi ngADUFranes; // initially enmpty
while (1) {
whil e (needToGet AnADU()) {
Segnment newADU = 't he next ADU Frame’;
pendi ngADUFr anes. enqueue(newADU) ;

i nsert DunmyADUs| f Necessary();
}

gener at eFr ameFr omHead ADU() ;
}

Bool ean needToGet AnNADU() {
/1 Checks whether we need to enqueue one or nore new ADUs

/1 before we have enough data to generate a frane for the
/1 head ADU.

Bool ean needToEnqueue = True;

i f (!pendi ngADUFranes. i sempty()) {
Segnment cur ADU = pendi ngADUFr anes. head() ;
i nt endOf HeadFrame = cur ADU. np3FraneSi ze
- cur ADU. header Si ze - cur ADU. si del nf 0oSi ze;
int franeOffset = O;

Fi nl ayson St andards Track [Page 15]

RFC 5219 February 2008

while (1) {

int endOData = frameO fset

- cur ADU. backpoi nter +
cur ADU. adubDat aSi ze;

if (endOf Data >= endOf HeadFrame) {
/1 W have enough data to generate a
/1 frame.
needToEnqueue = Fal se;
br eak;

}

frameOf f set += cur ADU. np3Fr aneSi ze

- cur ADU. header Si ze

- cur ADU. si del nf 0Si ze;
if (cur ADU == pendi ngADUFranes.tail ()) break;
cur ADU = pendi ngADUFr anres. next (cur ADU) ;

}

return needToEnqueue;

}

voi d gener at eFr aneFr onHeadADU() {
Segnent cur ADU = pendi ngADUFr anes. head() ;

/1 Qutput the header and side info:
out put (cur ADU. header) ;
out put (cur ADU. si del nf o) ;

/1 Begin by zeroing out the rest of the frane, in case the
/1 ADU data doesn't fill it in conpletely:
i nt endOf HeadFrame = cur ADU. np3FraneSi ze
- cur ADU. header Si ze - cur ADU. si del nf 0Si ze;
out put (" endOf HeadFr ane" zero bytes);

/1 Fill in the frame with appropriate ADU data fromthis and
/1 subsequent ADUs:

int franeOffset = 0;

int toOffset = 0;

while (toOfset < endOf HeadFrame) {
int startOfData = franeOffset - cur ADU. backpoi nter;
if (startOf Data > endO HeadFrane) ({
break; // no nore ADUs are needed

}
int endOData = startOf Data + cur ADU. aduDat aSi ze;

if (endOf Data > endOf HeadFr ane) {
endOf Dat a = endOf HeadFr ane;

Fi nl ayson St andards Track [Page 16]

RFC 5219 February 2008

}

int fronffset;
if (startOData <= toOfset) {
fromOffset = toOffset - start Of Dat a;
startO Data = toOf f set ;
if (endOData < startOData) {
endOf Data = start O Dat a;

} else {
fromOf fset = O;

/1 | eave sone zero bytes beforehand:
toO fset = startOf Dat a;

}

int bytesUsedHere = endOfData - start O Dat a;
output(starting at offset "toOfset", "bytesUsedHere"

bytes from "&cur ADU. franeData[fromOf fset]");
toOf fset += bytesUsedHere;

frameOf f set += cur ADU. np3Fr aneSi ze
- cur ADU. header Si ze - cur ADU. si del nf 0Si ze;
cur ADU = pendi ngADUFr anes. next (cur ADU) ;

}

pendi ngADUFr anes. dequeue() ;
}

voi d i nsert DummyADUs| f Necessary() {
/1l The tail segment (ADU) is assunmed to have been recently
/1 enqueued. |If its backpointer would overlap the data
/1 of the previous ADU, then we need to insert one or nore
[l empty, 'dumry’ ADUs ahead of it. (This situation
/1 should occur only if an internediate ADU was ni ssi ng
/1l -- e.g., due to packet |o0ss.)
while (1) {
Segnent tail ADU = pendi ngADUFranes. tail ();
int prevADUend; // relative to the start
of the tail ADU

i f (pendi ngADUFr anes. head() != tail ADU) {
/1 there is a previous ADU
Segnent prevADU
= pendi ngADUFr anes. previ ous(tail ADU) ;
pr evADUend
= prevADU. np3Fr aneSi ze +
pr evADU. backpoi nt er

Fi nl ayson St andards Track [Page 17]

RFC 5219 February 2008

- prevADU. header Si ze
- prevADU. si del nf 0Si ze;
i f (prevADU. aduDat aSi ze > prevADUend) {
[l this shouldn’t happen if the
/1 previous ADU was wel | -fornmed
prevADUend = O;
} else {
prevADUend -= prevADU. adubDat aSi ze;

} else {
prevADUend = O;
}

if (tail ADU. backpoi nter > prevADUend) {
/[l Insert a dummy’ ADU in front of the tail
/1 This ADU can have the sane "header" (and thus,
/1 "nmp3FranmeSi ze") as the tail ADU, but should
/1 have a "backpointer"” of "prevADUend", and
/1 an "aduDat aSi ze" of zero. The sinplest
/1 way to do this is to copy the "sidelnfo" from
/1 the tail ADU, replace the val ue of
/1 "main_data_begin" with "prevADUend", and set
/1 all of the "part2_3 length" fields to zero.
} else {
break; // no nore dumry ADUs need to be
/1 inserted

}

Appendi x B. Interleaving and Dei nterl eaving

The foll owi ng ' pseudo code’ describes how a sender can reorder a
sequence of "ADU Frames" according to an interleaving pattern
step 2), and how a receiver can performthe reverse reordering (step

(

6) .
B.1. Interleaving a Sequence of "ADU Franes"

We first define the follow ng abstract data structures:

- "interleaveCycleSize": an integer in the range [1..256] --
"interleaveCycle": an array, of size "interleaveCycleSize",
contai ni ng some perrmutation of the integers fromthe set [0 .
interl eaveCycl eSi ze-1] e.g., if "interleaveCycleSize" == 8,
"interl eaveCycle" mght contain: 1,3,5,7,0,2,4,6

- "inverselnterl eaveCycle": an array containing the inverse of the
permutation in "interleaveCycle" -- i.e., such that

Fi nl ayson St andards Track [Page 18]

RFC 5219 February 2008

i nterl eaveCycl e[inverselnterl eaveCycle[i]] ==

- "ii": the current Interleave Index (initially 0)

- "icc": the current Interleave Cycle Count (initially 0)

- "aduFranmeBuffer": an array, of size "interleaveCycleSize", of ADU
Frames that are awaiting packetization

while (1) {
int positionOf Next Frame = inverselnterl eaveCycle[ii];
aduFr ameBuf f er [posi ti onOf Next Franme] = the next ADU frane;
repl ace the high-order 11 bits of this franme’s MPEG header

with (ii,icc);
/1 Note: Be sure to |leave the remaining 21 bits
/] as is
if (++ii == interleaveCycleSize) {

/1 We've finished this cycle, so pass al
/1 pending frames to the packetizing step
for (int i =0; i < interleaveCycleSize; ++i) {
pass aduFranmeBuffer[i] to the packetizing step;
}

ii =0
icc = (icc+l)uB;

B.2. Deinterleaving a Sequence of (Interleaved) "ADU Franes"

We first define the follow ng abstract data structures:

"ii": the Interleave Index fromthe current incom ng ADU frane

- "icc": the Interleave Cycle Count fromthe current incom ng ADU
frame

- "iilLastSeen": the nost recently seen Interleave Index (initially,
some integer *not* in the range [O0..255])

- "icclLastSeen": the nost recently seen Interl eave Cycl e Count
(initially, some integer *not* in the range [0..7])

- "aduFrameBuffer": an array, of size 256, of (pointers to) ADU
Frames that have just been depacketized (initially, all entries

are NULL)
while (1) {
aduFrame = the next ADU frame fromthe depacketizing step;
(ii,icc) = "the high-order 11 bits of aduFrame’s MPEG

header"; "the high-order 11 bits of aduFrane’s MPEG
header" = OxFFE
/] Note: Be sure to |leave the remaining 21 bits
/[l as is

Fi nl ayson St andards Track [Page 19]

RFC 5219 February 2008

if (icc '=iccLastSeen || ii == iilastSeen) {
/1l We've started a new interl eave cycle
/1 (or interleaving was not used). Release al
/1 pending ADU frames to the ADU->MP3 conversion

/] step:
for (int i =0; i < 256; ++i) {
if (aduFraneBuffer[i] != NULL) {
rel ease aduFranmeBuffer[i];
aduFrameBuffer[i] = NULL
}
}
}
iilLastSeen = ii;
i ccLast Seen = icc;
aduFranmeBuffer[ii] = aduFrarne;

}
Appendi x C. Changes from RFC 3119

The primary change from RFC 3119 is to correct the encoding nanme in
the "SDP usage" section. The correct encoding name is "npa-robust"”.
Al so, the term"nedia type" replaces "mme type". Finally, sone

m nor bug fixes and clarifications were nade to the (non-nornative)
pseudo code in Appendi x A and Appendi x B

Fi nl ayson St andards Track [Page 20]

RFC 5219 February 2008

Aut hor’ s Addr ess

Ross Fi nl ayson,

Li ve Networks, Inc.

650 Castro St., suite 120-196
Mount ai n Vi ew, CA 94041

USA

EMai | : finlayson@ive555. com
URI: http://ww.live555. con

Fi nl ayson St andards Track [Page 21]

RFC 5219 February 2008

Ful | Copyright Statenent
Copyright (C The IETF Trust (2008).

Thi s docunent is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.

Thi s docunent and the information contained herein are provided on an
"AS | S' basis and THE CONTRI BUTOR, THE ORGANI ZATI ON HE/ SHE REPRESENTS
OR | S SPONSORED BY (I F ANY), THE | NTERNET SOCI ETY, THE | ETF TRUST AND
THE | NTERNET ENG NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES, EXPRESS
OR | MPLI ED, | NCLUDI NG BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF
THE | NFORVATI ON HEREI' N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE

Intell ectual Property

The | ETF takes no position regarding the validity or scope of any
Intell ectual Property Rights or other rights that m ght be clained to
pertain to the inplenentation or use of the technol ogy described in
this document or the extent to which any |icense under such rights

m ght or mght not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC docunents can be
found in BCP 78 and BCP 79.

Copi es of IPR disclosures made to the | ETF Secretariat and any
assurances of licenses to be nmade available, or the result of an
attenpt nade to obtain a general |icense or permission for the use of
such proprietary rights by inplenenters or users of this
specification can be obtained fromthe |ETF on-line | PR repository at
http://ww.ietf.org/ipr.

The 1ETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to inpl enent
this standard. Pl ease address the infornation to the |IETF at
ietf-ipr@etf.org.

Fi nl ayson St andards Track [Page 22]

