I nt ernet Engi neering Task Force (1 ETF) C. Jennings

Request for Comments: 6940 G sco
Cat egory: Standards Track B. Lowekanp, Ed

| SSN: 2070-1721 Skype

E. Rescorla

RTFM I nc.

S. Baset

H. Schul zri nne
Col unbi a University
January 2014

REsource LCcation And Di scovery (RELOAD) Base Protoco
Abst r act

Thi s specification defines REsource LCcation And Di scovery (RELQAD),
a peer-to-peer (P2P) signaling protocol for use on the Internet. A
P2P signaling protocol provides its clients with an abstract storage
and nessagi ng service between a set of cooperating peers that form
the overlay network. RELQAD is designed to support a P2P Session
Initiation Protocol (P2PSIP) network, but can be utilized by other
applications with sinilar requirenents by defining new usages that
specify the Kinds of data that need to be stored for a particular
application. RELOAD defines a security nodel based on a certificate
enrol | ment service that provides unique identities. NAT traversal is
a fundanental service of the protocol. RELOAD also allows access
from®"client" nodes that do not need to route traffic or store data
for others.

Status of This Menp
This is an Internet Standards Track document.

Thi s docunent is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the |IETF community. It has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Goup (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformati on about the current status of this docunment, any errata,

and how to provide feedback on it may be obtained at
http://ww. rfc-editor.org/info/rfc6940.

Jenni ngs, et al. St andards Track [Page 1]

RFC 6940 RELOAD Base January 2014

Copyri ght Notice

Copyright (c) 2014 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Thi s docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis document nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Thi s docunent nmay contain material from|ETF Documents or |ETF
Contri butions published or made publicly avail abl e before Novenber
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
nodi fi cati ons of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate |icense fromthe person(s) controlling
the copyright in such materials, this docunent may not be nodified
out side the | ETF Standards Process, and derivative works of it may
not be created outside the | ETF Standards Process, except to format
it for publication as an RFC or to translate it into |anguages ot her
than Engli sh

Tabl e of Contents

1. Introduction Lo 7
1.1 Basic Setting00 8
1.2 Architecture 10

1.2.1 Usage Layer . 13
1.2.2 Message Transport P A
1.2.3. Storage . . P
1.2.4 Topol ogy Plug |n .o 15
1.2.5 Forwar di ng and Li nk NhnagenEnt Layer . e 16
1.3. Security . .)
1.4. Structure of Thrs Docunent e 4

2. Requirements Language S

3. Terminology . . . C e e e 18

4. Overlay Nhnagenent CNervrew 2 §
4.1. Security and ldentification. 21

4.1.1. Shared-Key Securrty 2
4.2. dients . . . K
4.2.1. dient Routrng - ... 24
4.2.2. M nrnuanunctronaIrty Requrrenents for G |ents .. . 25
4.3. Routing 25

Jenni ngs, et al. St andards Track [Page 2]

RFC 6940 RELOAD Base January 2014

4.4. Connectivity Managenent 29
4.5. Overlay Al gorithm Support 30
4.5.1. Support for Pluggable CMerIay Algor|thns 30
4.5.2. Joining, Leaving, and Mintenance Overview 30
4.6. First-Tine Setup . . e 4
4.6.1 Initial Conf|gurat|on . V24
4.6.2. Enrollpent 32
4.6.3 Di agnhostics . . . e e e e ..., 38
5. Application Support CNerV|ew R X
5.1. Data Storage . . R X
5.1.1. Storage Pern155|ons .
5.1.2 Replication .. 35
5.2. Usages . . <19
5.3. Service Di scovery . .)
5.4. Application Cbnnect|V|ty < 14)
6. Overlay Managenment Protocol . . . S 4
6.1. Message Receipt and Formerd|ng S 4
6.1.1. Responsiblel!D 38
6.12.2. Oher ID 38
6.1.3. Opaque ID. . . . - {0
6.2. Symmetric Recursive Rout|ng .
6.2.1. Request Origination 4
6.2.2. Response Origination 42
6.3. Message Structure . . . Y 4
6.3.1. Presentation Language - X
6.3.1.1. Common Definitions 44
6.3.2. Forwarding Header 46
6.3.2.1. Processing Cbnf|gurat|on Sequence Nunbers 49
6.3.2.2. Destination and Via Lists 50
6.3.2.3. Forwarding OQption b2
6.3.3. Message Contents Format . . .« b3
6.3.3.1. Response Codes and Response Errors b4
6.3.4. Security Block 57
6.4. COverlay Topology . . <10
6.4.1. Topology Plug-in ReqU|renents - 60
6.4.2. Methods and Types for Use by Topology Plug |ns . . . 61
6.4.2.1. Join 61
6.4.2.2. Leave 062
6.4.2.3. Update 63
6.4.2.4. RouteQuery 63
6.4.2.5. Probe . . . P o 1+
6.5. Forwarding and Link Nhnagenent Layer e - 4
6.5.1. Attach . . e - Y4
6.5.1.1 Request EEf|n|t|on e e e e o8
6.5.1.2 Response Definition 70
6.5.1.3. UWing ICEwth RELOAD. 171
6.5.1.4. Collecting STUN Servers 1711
6.5.1.5 Gat hering Candidates 72

Jenni ngs, et al. St andards Track [Page 3]

RFC 6940 RELOAD Base

6.5.1.6. Prioritizing Candidates . . .
6.5.1.7. Encoding the Attach Message
6.5.1.8. Verifying | CE Support
6.5.1.9. Role Determi nation
6.5.1.10. Full ICE
6.5.1.11. No-ICE . .
6.5.1.12. Subsequent Cffers and Ansmers .
6.5.1.13. Sending Media .
6.5.1.14. Receiving Media
6.5.2. AppAttach
6.5.2.1. Request Def|n|t|on
6.5.2.2. Response Definition
6.5.3. Ping
6.5.3.1. Request Definition
6.5.3.2. Response Definition
6.5.4. ConfigUpdate
6.5.4.1. Request Def|n|t|on
6.5.4.2. Response Definition
6.6. Overlay Link Layer .
6.6.1. Future Overlay Link Protocols .
6.6.1.1. HP. . .
6.6.1.2. ICE-TCP . . .
6.6.1.3. Message- Cr|ented Transports .
6.6.1.4. Tunneled Transports .
6.6.2. Fram ng Header
6.6.3. Sinple Reliability . .
6.6.3.1. Stop and Wit Sender Algor|thm
6.6.4. DILS/UDP with SR . . .
6.6.5. TLS/TCP with FH, No- ICE
6.6.6. DILS/UDP with SR No-ICE
6.7. Fragnmentation and Reassenbly
7. Data Storage Protoco
7.1. Data Signhature Cbnputatlon
7.2. Data Mdels . . .
7.2.1. Single Val ue
7.2.2. Array . .
7.2.3. Dictionary Coe
7.3. Access Control Policies .
7.3.1. USER- MATCH
7.3.2. NODE- MATCH
7.3.3. USER- NODE- MATCH .
7.3.4. NODE- MULTI PLE .
7. 4. ta Storage Methods
7.

Request Def|n|t|on .
Response Definition

4
Da

1. Store .
4

4

4 Renovi ng Val ues .

NNNA
el
wN ke

Jenni ngs, et al. St andards Track

January 2014

72
73
74
74
74
75
75
75
75
75
76
77
77
77
77
78
78
79
80
81
82
82
82
82
83
84
85
86
86
87
87
88
90
91
91
92
92
93
93
93
93
94
94
94
94
100
101

[Page 4]

RFC 6940 RELOAD Base

7.4.2. Fetch .
7.4.2.1. Request Defr ni t [on
7.4.2.2. Response Definition .
7.4.3. Stat Ce e
7.4.3.1. Request Definition
7.4.3.2. Response Definition .
7.4.4. Find Ce e
7.4.4.1. Request Definition .
7.4.4.2. Response Definition .
7.4.5. Defining New Ki nds

8. Certificate Store Usage .
9. TURN Server Usage .
10. Chord Al gorithm.

10.1. Overview
10. 2. Hash Functlon
10.3. Routing
10. 4. Redundancy .
10.5. Joining . .
10.6. Routing Attaches .
10.7. Updates . . .
10.7.1. Handling hbrghbor Farlures . .
10.7.2. Handling Finger Table Entry Farlure
10. 7. 3. Receiving Updates .
10.7.4. Stabilization . .
10.7.4.1. Updating the hbrghbor TabIe
10.7.4.2. Refreshing the Finger Table
10.7.4.3. Adjusting Finger Table Size
10. 7.

4.4. Detecting Partrtronrng
10.8. Route Query .
10.9. Leaving .
11. Enroll nent and Bootstrap
11.1. Overlay Configuration
11.1.1. RELAX NG Grammar .
11.2. Discovery through Cbnfrguratron Server
11.3. Credentials . . G
11.3.1. Sel f- GEnerated Credentrals .
11.4. Contacting a Bootstrap Node
12. Message Fl ow Exanpl e . S
13. Security Considerations .
13.1. Overview . .
13.2. Attacks on P2P CNerIays -
13.3. Certificate-Based Security .
13. 4. Shared-Secret Security .
13.5. Storage Security .
13.5.1. Authorization .
13.5.2. Distributed Quota
13.5.3. Correctness .
13.5.4. Residual Attacks .

Jenni ngs, et al. St andards Track

January 2014

102
102
104
105
105
106
107
108
108
109
110
110
112
113
114
114
114
115
116
117
118
119
119
120
120
121
122
122
123
123
124
124
132
134
135
137
138
138
144
144
145
145
147
147
147
148
148
149

[Page 5]

RFC 6940 RELOAD Base January 2014

13.6. Routing Security .14
13.6.1. Background . . . e K510
13.6.2 Admi ssi ons Cbntrol Coe .« .« 150
13.6.3. Peer ldentification and Authent|cat|on 1B1
13.6.4. Protecting the Signaling . . S o
13.6.5 Routing Loops and DoS Attacks e 2
13.6.6. Residual Attacks 152

14. | ANA Considerations . 153

14.1. Well-Known URI Registration 153

14.2. Port Registrations . . Y R X

14.3. COverlay Algor|thn1Types P oy

14.4. Access Control Policies 154

14.5. Application-ID. 155

14.6. Data Kind-ID. 155

14.7. Data Mdel 156

14.8. Message Codes . 156

14.9. FError Codes . . e e 1-8

14.10. Overlay Link Types e 51

14.11. Overlay Link Protocols 159

14.12. Forwarding Options 1le0

14.13. Probe Information Types 160

14. 14. Message Extensions 161

14.15. Reload URI Schemre 161
14.15.1. URl Registration 162

14.16. Media Type Registration 162

14.17. XML Namespace Registration 163
14.17.1. Config URL . . 7
14.17.2. Config Chord URL C e e e l64

15. Acknow edgnents e e e l64
16. References . . e e e 165
16.1. Normative References e e e e e 165
16.2. Informative References 167
Appendi x A. Routing Alternatives 1711

Al. lterative vs. Recursive . . . A

A 2 Symmetric vs. Forward Response e A

A3 Direct Response .172

A 4. Relay Peers . . e A<

A.5. Symetric Route Stab|l|ty P A A<

Appendi x B. Wy Cients? . . . P)

B.1 Wiy Not Only Peers?

B. 2 Clients as Application- LeveI Agents T 4

Jenni ngs, et al. St andards Track [Page 6]

RFC 6940 RELOAD Base January 2014

1. Introduction

Thi s docunent defines REsource LCcation And Di scovery (RELOAD), a
peer-to-peer (P2P) signaling protocol for use on the Internet.
RELOAD provi des a generic, self-organizing overlay network service,
al | owi ng nodes to route nessages to other nodes and to store and
retrieve data in the overlay. RELOAD provides several features that
are critical for a successful P2P protocol for the Internet:

Security Framework: A P2P network will often be established anbng a
set of peers that do not trust each other. RELQAD |everages a
central enrollnment server to provide credentials for each peer
whi ch can then be used to authenticate each operation. This
greatly reduces the possible attack surface.

Usage Model: RELQAD is designed to support a variety of
applications, including P2P nultinedia conmunications with the
Session Initiation Protocol (SIP) [SIP-RELOAD]. RELOAD allows the
definition of new application usages, each of which can define its
own data types, along with the rules for their use. This allows
RELOAD to be used with new applications through a sinple
docunent ati on process that supplies the details for each
applicati on.

NAT Traversal: RELOAD is designed to function in environnents where
many, if not nmost, of the nodes are behind NATs or firewalls.
Operations for NAT traversal are part of the base design,

i ncluding using Interactive Connectivity Establishment (1CE)
[RFC5245] to establish new RELOAD or application protocol
connecti ons.

Optimzed Routing: The very nature of overlay algorithns introduces
a requirenent that peers participating in the P2P network route
requests on behalf of other peers in the network. This introduces
a load on those other peers in the formof bandw dth and
processi ng power. RELQOAD has been defined with a sinple,

i ghtwei ght forwardi ng header, thus mninmizing the anount of
effort for intermediate peers.

Pl uggabl e Overlay Al gorithns: RELOAD has been designed with an
abstract interface to the overlay layer to sinplify inplementing a
variety of structured (e.g., distributed hash tables (DHTs)) and
unstructured overlay algorithns. The idea here is that RELQAD
provides a generic structure that can fit nost types of overlay
topol ogies (ring, hyperspace, etc.). To instantiate an actua
networ k, you conbi ne RELOAD with a specific overlay al gorithm
whi ch defines how to construct the overlay topol ogy and route
nessages efficiently withinit. This specification also defines

Jenni ngs, et al. St andards Track [Page 7]

RFC 6940 RELOAD Base January 2014

how RELOAD i s used with the Chord-based [Chord] DHT al gorithm
which is mandatory to inplenment. Specifying a default "mandatory-
to-inplenent"” overlay algorithmpronmotes interoperability, while
extensibility allows selection of overlay algorithms optinized for
a particul ar application.

Support for Clients: RELOAD clients differ from RELOAD peers
primarily in that they do not store information on behal f of other
nodes in the overlay. Rather, they use the overlay only to | ocate
users and resources, as well as to store infornmation and to
cont act other nodes.

These properties were designed specifically to neet the requirenents
for a P2P protocol to support SIP. This docunent defines the base
protocol for the distributed storage and | ocation service, as well as
critical usage for NAT traversal. The SIP Usage itself is described
separately in [SIP-RELOAD]. RELOAD is not |limted to usage by SIP
and coul d serve as a tool for supporting other P2P applications with
sim |l ar needs.

1.1. Basic Setting

In this section, we provide a brief overview of the operationa
setting for RELOAD. A RELQAD Overlay Instance consists of a set of
nodes arranged in a partly connected graph. Each node in the overlay
is assigned a numeric Node-I1D for the lifetine of the node, which
together with the specific overlay algorithmin use, deternmines its
position in the graph and the set of nodes it connects to. The
Node-1D is also tightly coupled to the certificate (see

Section 13.3). The figure bel ow shows a trivial exanple which isn't
drawn fromany particular overlay algorithm but was chosen for
conveni ence of representation

Jenni ngs, et al. St andards Track [Page 8]

RFC 6940 RELOAD Base January 2014

- + - + - +
| Node 10| -------------- | Node 20| -------------- | Node 30|
- + - + - +
| | |
| | |
O + O + O +
| Node 40| -------------- | Node 50| -------------- | Node 60|
- + - + - +
| | |
| | |
N + N + N +
| Node 70| -------------- | Node 80|-------------- | Node 90|
- + - + - +
|
|
- +
| Node 85
| (Aient)|
- +

Because the graph is not fully connected, when a node wants to send a
nmessage to another node, it may need to route it through the network.
For instance, Node 10 can talk directly to nodes 20 and 40, but not
to Node 70. In order to send a nessage to Node 70, it would first
send it to Node 40, with instructions to pass it along to Node 70.
Different overlay algorithns will have different connectivity graphs,
but the general idea behind all of themis to allow any node in the
graph to efficiently reach every other node within a small nunber of
hops.

The RELOAD network is not only a nmessaging network. It is also a
storage network, albeit one designed for small-scal e transient
storage rather than for bulk storage of |arge objects. Records are
stored under numeric addresses, called Resource-1Ds, which occupy the
same space as node identifiers. Peers are responsible for storing
the data associated with some set of addresses, as determ ned by
their Node-1D. For instance, we mght say that every peer is
responsi ble for storing any data val ue which has an address | ess than
or equal to its own Node-ID, but greater than the next | owest

Node-1 D. Thus, Node 20 woul d be responsible for storing val ues
11-20.

RELOAD al so supports clients. These are nodes which have Node-|Ds
but do not participate in routing or storage. For instance, in the

figure above, Node 85 is a client. It can route to the rest of the
RELOAD network via Node 80, but no other node will route through it,
and Node 90 is still responsible for addresses in the range [81..90].

We refer to non-client nodes as peers.

Jenni ngs, et al. St andards Track [Page 9]

RFC 6940 RELOAD Base January 2014

Q her applications (for instance, SIP) can be defined on top of
RELOAD and can use these two basic RELOAD services to provide their
own services.

1.2. Architecture

RELOAD i s fundanentally an overlay network. The followi ng figure
shows the | ayered RELOAD architecture.

Appl i cation
R, + ------- +
| SIP | | XWPP
| Usage | | Usage |
Fommma - T ST +
------------------------------------ Messagi ng Servi ce Boundary
o e e e e e oo - + SR +
| Message | <--->| Storage
| Transport | AT +
. + A
N N |
| % %
| o e e e e oo oo +
| | Topol ogy |
| | Plug-in |
| R +
| AN
v v
o e e e e e oo - +

| Forwarding & |
| Link Managenent

e +
------------------------------------ Overlay Link Service Boundary
S G +
| TLS | | DTLS
| Overlay| | Overl ay|
| Li nk | | Link |
S . S S PR +

The maj or components of RELOAD are:

Usage Layer: Each application defines a RELOAD Usage, which is a set
of data Kinds and behavi ors which describe how to use the services
provi ded by RELOAD. These usages all talk to RELOAD through a
conmon Message Transport Servi ce.

Jenni ngs, et al. St andards Track [Page 10]

RFC 6940 RELOAD Base January 2014

Message Transport: Handles end-to-end reliability, nanages request
state for the usages, and forwards Store and Fetch operations to
the Storage conmponent. It delivers nmessage responses to the
conponent initiating the request.

Storage: The Storage conmponent is responsible for processing
nessages relating to the storage and retrieval of data. It talks
directly to the Topology Plug-in to nanage data replication and
mgration, and it talks to the Message Transport conmponent to send
and recei ve nessages.

Topol ogy Plug-in: The Topology Plug-in is responsible for
i mpl enenting the specific overlay algorithm being used. It uses
the Message Transport conponent to send and receive overl ay
managenent nessages, the Storage conponent to nmanage data
replication, and the Forwardi ng Layer to control hop-by-hop
nmessage forwarding. This conponent superficially parallels
conventional routing algorithns, but is nore tightly coupled to
the Forwarding Layer, because there is no single "Routing Table"
equi val ent used by all overlay algorithnms. The Topol ogy Plug-in
has two functions: constructing the |ocal forwarding instructions
and sel ecting the operational topology (i.e., creating |inks by
sendi ng overl ay managenent nessages).

Forwar di ng and Li nk Managenent Layer: Stores and inpl enents the
Routing Tabl e by providing packet forwardi ng services between

nodes. It also handl es establishing new |inks between nodes,
i ncluding setting up connections for overlay |inks across NATs
using | CE

Overlay Link Layer: Responsible for actually transporting traffic
directly between nodes. Transport Layer Security (TLS) [RFC5246]
and Dat agram Transport Layer Security (DTLS) [RFC6347] are the
currently defined "overlay link layer" protocols used by RELOAD
for hop-by-hop communication. Each such protocol includes the
appropriate provisions for per-hop fram ng and hop-by-hop ACKs
needed by unreliable underlying transports. New protocols can be
defined, as described in Sections 6.6.1 and 11.1. As this
docunent defines only TLS and DTLS, we use those termns throughout
the remai nder of the document with the understanding that sone
future specification nmay add new overlay link |ayers.

Jenni ngs, et al. St andards Track [Page 11]

RFC 6940 RELOAD Base January 2014

To further clarify the roles of the various |layers, the follow ng
figure parallels the architecture with each layer’s role from an
overl ay perspective and inplenmentation |layer in the Internet:

I nt er net | I'nternet Mdel
Model | Equi val ent | Rel oad
| in Overlay | Architecture
_____________ o e e e e e e e e e e e e F e —m— - =
| | - + ------- +
| Application | | SIP | | XwPP
| | | Usage | | Usage |
| | R, + ------- +
I I+ ------------------ + e +
| Transport [] Message | <--->|] Storage
| [] Transport | R +
| |+ ------------------ + A
| | A n |
| | | v v
Application | | | R +
| (Rout i ng) | | | Topol ogy |
| | | | Pl ug-in
| | | L +
| | | n
| | \Y; \Y;
| Net wor k | A R +
| | | Forwarding & |
| | | Link Managenent
| | oo o - +
| |
Transport | Li nk | e + - +
| | | TLS | | DTLS
| | - + oo --- +
............. o
Net wor k |
|
Li nk |

In addition to the above conponents, nodes may comunicate with a
central provisioning infrastructure (not shown) to get configuration
i nformati on, authentication credentials, and the initial set of nodes
to comunicate with to join the overlay.

Jenni ngs, et al. St andards Track [Page 12]

RFC 6940 RELOAD Base January 2014

1.2.1. Usage Layer

The top layer, called the Usage Layer, has application usages, such
as the SIP Registration Usage [SIP-RELOAD], that use the abstract
Message Transport Service provided by RELOAD. The goal of this |ayer
is to inplenment application-specific usages of the generic overlay
services provided by RELOAD. The Usage defines how a specific
application maps its data into sonething that can be stored in the
overlay, where to store the data, how to secure the data, and finally
how applications can retrieve and use the data.

The architecture di agram shows both a SIP Usage and an XMPP Usage. A
single application may require nmultiple usages; for exanple, a

voi cemai| feature in a softphone application that stores links to the
nmessages in the overlay would require a different usage than the type
of rendezvous service of XMPP or SIP. A usage may define multiple
Kinds of data that are stored in the overlay and may al so rely on
Kinds originally defined by other usages.

Because the security and storage policies for each Kind are dictated
by the usage defining the Kind, the usages may be coupled with the
St orage conponent to provide security policy enforcement and to

i mpl enent appropriate storage strategi es according to the needs of
the usage. The exact inplenentation of such an interface is outside
the scope of this specification

1.2.2. Message Transport

The Message Transport conponent provides a generic nessage routing
service for the overlay. The Message Transport |ayer is responsible
for end-to-end nmessage transactions. Each peer is identified by its
location in the overlay, as determined by its Node-ID. A conponent
that is a client of the Message Transport can performtwo basic
functi ons:

o0 Send a nessage to a given peer specified by Node-1D or to the peer
responsi ble for a particular Resource-|D.

0 Receive nmessages that other peers sent to a Node-1D or Resource-ID
for which the receiving peer is responsible.

Al'l usages rely on the Message Transport conponent to send and
recei ve nessages from peers. For instance, when a usage wants to
store data, it does so by sending Store requests. Note that the

St orage conponent and the Topol ogy Plug-in are thensel ves clients of
the Message Transport, because they need to send and recei ve nmessages
from ot her peers.

Jenni ngs, et al. St andards Track [Page 13]

RFC 6940 RELOAD Base January 2014

The Message Transport Service is responsible for end-to-end
reliability, which is acconplished by tiner-based retransni ssions.
Unli ke the Internet transport |ayer, however, this |layer does not
provi de congestion control. RELOAD is a request-response protocol
with no nore than two pairs of request-response messages used in
typical transactions between pairs of nodes; therefore, there are no
opportunities to observe and react to end-to-end congestion. As with
all Internet applications, inplenmenters are strongly discouraged from
witing applications that react to loss by imediately retrying the
transacti on.

The Message Transport Service is simlar to those described as
provi di ng "key-based routing" (KBR) [w ki KBR], although as RELOAD
supports different overlay al gorithns (including non-DHT overl ay
al gorithms) that cal cul ate keys (storage indices, not encryption
keys) in different ways, the actual interface needs to accept
Resource Names rather than actual keys.

The Forwardi ng and Li nk Managenent | ayers are responsible for

mai ntai ning the overlay in the face of changes in the avail abl e nodes
and underlying network supporting the overlay (the Internet). They
al so handl e congestion control between overlay nei ghbors, and
exchange routing updates and data replicas in addition to forwarding
end-t o-end nmessages.

Real -wor| d experience has shown that a fixed timeout for the end-to-
end retransm ssion tinmer is sufficient for practical overlay
networks. This tinmer is adjustable via the overlay configuration.

As the overlay configuration can be rapidly updated, this value could
be dynamically adjusted at coarse tine scales, although algorithms
for determ ning how to acconplish this are beyond the scope of this
specification. |In many cases, however, other neans of inproving

net wor k performance, such as having the Topol ogy Plug-in renmove | ossy
links fromuse in overlay routing or reducing the overall hop count
of end-to-end paths, will be nore effective than sinply increasing
the retransm ssion timer.

1.2.3. Storage

One of the major functions of RELOAD is storage of data, that is,

all owi ng nodes to store data in the overlay and to retrieve data
stored by other nodes or by thenselves. The Storage conmponent is
responsi bl e for processing data storage and retrieval nessages. For

i nstance, the Storage conmponent might receive a Store request for a
gi ven resource fromthe Message Transport. It would then query the
appropriate usage before storing the data value(s) in its local data
store and sending a response to the Message Transport for delivery to
the requesting node. Typically, these nessages will cone from other

Jenni ngs, et al. St andards Track [Page 14]

RFC 6940 RELOAD Base January 2014

nodes, but depending on the overlay topol ogy, a node night be
responsi bl e for storing data for itself as well, especially if the
overlay is snall.

A peer’s Node-1D determ nes the set of resources that it will be
responsi ble for storing. However, the exact nmapping between these is
determ ned by the overlay algorithmin use. The Storage conponent
will only receive a Store request fromthe Message Transport if this
peer is responsible for that Resource-ID. The Storage component is
notified by the Topol ogy Plug-in when the Resource-1Ds for which it

i s responsi bl e change, and the Storage conponent is then responsible
for mgrating resources to other peers.

1.2.4. Topology Plug-in

RELOAD is explicitly designed to work with a variety of overlay
algorithms. In order to facilitate this, the overlay al gorithm

i npl enentation is provided by a Topology Plug-in so that each overl ay
can sel ect an appropriate overlay algorithmthat relies on the common
RELOAD core protocols and code.

The Topol ogy Plug-in is responsible for naintaining the overlay

al gorithm Routing Tabl e, which is consulted by the Forwardi ng and
Li nk Managenent Layer before routing a nessage. Wen connections are
nmade or broken, the Forwardi ng and Link Managenent Layer notifies the
Topol ogy Plug-in, which adjusts the Routing Table as appropriate.

The Topology Plug-in will also instruct the Forwarding and Link
Management Layer to form new connections as dictated by the

requi rements of the overlay algorithm Topol ogy. The Topol ogy Plug-in
i ssues periodic update requests through Message Transport to nmintain
and update its Routing Tabl e.

As peers enter and | eave, resources may be stored on different peers,
so the Topol ogy Plug-in also keeps track of which peers are
responsi bl e for which resources. As peers join and | eave, the

Topol ogy Plug-in instructs the Storage conponent to i ssue resource

m gration requests as appropriate, in order to ensure that other
peers have whatever resources they are now responsible for. The
Topol ogy Plug-in is also responsible for providing for redundant data
storage to protect against loss of information in the event of a peer
failure and to protect agai nst conmprom sed or subversive peers.

Jenni ngs, et al. St andards Track [Page 15]

RFC 6940 RELOAD Base January 2014

1.2.5. Forwarding and Li nk Managenent Layer

The Forwardi ng and Li nk Managenent Layer is responsible for getting a
nmessage to the next peer, as determi ned by the Topol ogy Pl ug-in.

This |layer establishes and nmaintains the network connections as
needed by the Topology Plug-in. This layer is also responsible for
setting up connections to other peers through NATs and firewalls
using ICE, and it can elect to forward traffic using relays for NAT
and firewall traversal

Congestion control is inplemented at this layer to protect the
Internet paths used to formthe Iink in the overlay. Additionally,
retransmssion is perfornmed to inprove the reliability of end-to-end
transactions. The relation of this layer to the Message Transport
Layer can be likened to the relation of the Iink-1evel congestion
control and retransmi ssion in nodern wireless networks * to Internet
transport protocols.

This layer provides a generic interface that allows the Topol ogy
Plug-in to control the overlay and resource operations and nessages.
Because each overlay algorithmis defined and functions differently,
we generically refer to the table of other peers that the overlay

al gorithm mai ntai ns and uses to route requests as a Routing Tabl e.
The Topol ogy Plug-in actually owns the Routing Table, and forwarding
deci sions are made by querying the Topol ogy Plug-in for the next hop

for a particular Node-1D or Resource-ID. If this node is the
destination of the nmessage, the nmessage is delivered to the Message
Transport.

This layer also utilizes a fram ng header to encapsul ate nessages as
they are forwarded al ong each hop. This header aids reliability
congestion control, flow control, etc. It has neaning only in the
context of that individual |ink

The Forwardi ng and Li nk Managenent Layer sits on top of the Overlay
Li nk Layer protocols that carry the actual traffic. This

speci fication defines how to use DTLS and TLS protocols to carry
RELOAD nessages.

1.3. Security

RELOAD s security nodel is based on each node having one or nore
public key certificates. 1In general, these certificates will be
assigned by a central server, which al so assigns Node-IDs, although
self-signed certificates can be used in closed networks. These
credentials can be | everaged to provide communicati ons security for
RELOAD nessages. RELOAD provi des conmuni cations security at three
| evel s:

Jenni ngs, et al. St andards Track [Page 16]

RFC 6940 RELOAD Base January 2014

Connection | evel: Connections between nodes are secured with TLS,
DTLS, or potentially sone to-be-defined future protocol

Message | evel : Each RELOAD nessage i s signed.
bj ect Level: Stored objects are signed by the creating node.

These three levels of security work together to allow nodes to verify
the origin and correctness of data they receive from other nodes,
even in the face of malicious activity by other nodes in the overl ay.
RELOAD al so provi des access control built on top of these

conmuni cations security features. Because the peer responsible for
storing a piece of data can validate the signature on the data being
stored, it can determnmi ne whether or not a given operation is
permtted.

RELOAD al so provi des an optional shared-secret-based adni ssion
control feature using shared secrets and TLS pre-shared keys (PSK) or
TLS Secure Renmpte Password (SRP). 1In order to forma TLS connection
to any node in the overlay, a new node needs to know the shared
overlay key, thus restricting access to authorized users only. This
feature is used together with certificate-based access control, not
as a replacenent for it. It is typically used when self-signed
certificates are being used but would generally not be used when the
certificates were all signed by an enroll nent server.

1.4. Structure of This Docunent
The remai nder of this docunent is structured as follows.
o Section 3 provides definitions of terms used in this docunent.

o Section 4 provides an overvi ew of the nechani sns used to establish
and mai ntain the overl ay.

0o Section 5 provides an overvi ew of the nechani sm RELOAD provi des to
support ot her applications.

o Section 6 defines the protocol nmessages that RELOAD uses to
establish and maintain the overl ay.

o Section 7 defines the protocol nessages that are used to store and
retrieve data using RELOAD.

0 Section 8 defines the Certificate Store Usages.

o0 Section 9 defines the TURN Server Usage needed to | ocate TURN
(Traversal Using Relays around NAT) servers for NAT traversal

Jenni ngs, et al. St andards Track [Page 17]

RFC 6940 RELOAD Base January 2014

o Section 10 defines a specific Topol ogy Plug-in using a Chord-based
al gorithm

0o Section 11 defines the nmechani sns that new RELOAD nodes use to
join the overlay for the first tinme.

0 Section 12 provides an extended exanpl e.
2. Requirenments Language

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [RFC2119].

3. Term nol ogy

Terns in this document are defined in-line when used and are al so
defi ned bel ow for reference. The definitions in this section use
term nol ogy and concepts that are not explained until later in the
speci fication.

Admitting Peer (AP): A peer in the overlay which hel ps the Joining
Node join the Overl ay.

Bootstrap Node: A network node used by Joining Nodes to help |ocate
the Admitting Peer

Client: A host that is able to store data in and retrieve data from
the overlay, but does not participate in routing or data storage
for the overl ay.

Configuration Docunment: An XM. docunent containing all the Overlay
Paraneters for one overlay instance.

Connection Table: Contains connection information for the set of
nodes to which a node is directly connected, which include nodes
that are not yet available for routing.

Destination List: A list of Node-IDs, Resource-IDs, and Opaque |Ds
through which a nessage is to be routed, in strict order. A
singl e Node-1D, Resource-1D, or Opaque IDis a trivial form of
Destination List. Wen nultiple Node-IDs are specified, a
Destination List is a |oose source route. The list is reduced hop
by hop, and does not include the source but does include the
desti nati on.

Jenni ngs, et al. St andards Track [Page 18]

RFC 6940 RELOAD Base January 2014

DHT: A distributed hash table. A DHT is an abstract storage service
realized by storing the contents of the hash table across a set of
peers.

ID: A generic termfor any kind of identifiers in an Overlay. This
docunent specifies an ID as being an Application-1D, a Kind-1D, a
Node-1 D, a transaction ID, a conponent ID, a response ID, a
Resource-1D, or an Opaque |D.

Joi ning Node (JN): A node that is attenpting to becone a peer in a
particul ar Overl ay.

Kind: A Kind defines a particular type of data that can be stored in
the overlay. Applications define new Kinds to store the data they
use. Each Kind is identified with a unique integer called a
Ki nd- | D.

Kind-1D: A unique 32-bit value identifying a Kind. Kind-1Ds are
either private or allocated by | ANA (see Section 14.6).

Maxi mum Request Lifetinme: The maximumtime a request will wait for a
response. This value is equal to the value of the overlay
reliability value (defined in Section 11.1) nultiplied by the
nunber of transm ssions (defined in Section 6.2.1), and so
defaults to 15 seconds.

Node: The term "node" refers to a host that may be either a peer or
a client. Because RELOAD uses the sanme protocol for both clients
and peers, much of the text applies equally to both. Therefore,
we use "node" when the text applies to both clients and peers, and
we use the nore specific term(i.e., "client" or "peer") when the
text applies only to clients or only to peers.

Node-1D: A value of fixed but configurable | ength that uniquely
identifies a node. Node-IDs of all Os and all 1s are reserved. A
value of 0 is not used in the wire protocol, but can be used to
indicate an invalid node in inplenentations and APls. The Node-ID
of all 1s is used on the wire protocol as a wi |l dcard.

Overlay Algorithm An overlay algorithmdefines the rules for
det erm ni ng which peers in an overlay store a particul ar piece of
data and for determ ning a topol ogy of interconnections anongst
peers in order to find a piece of data.

Overlay Instance: A specific overlay algorithmand the collection of
peers that are collaborating to provide read and wite access to
it. Any nunber of overlay instances can be running in an IP
network at a tine, and each operates in isolation of the others.

Jenni ngs, et al. St andards Track [Page 19]

RFC 6940 RELOAD Base January 2014

Overlay Paraneters: A set of values that are shared anbng all nodes
in an overlay. The overlay paraneters are distributed in an XM
docunent called the Configuration Docunent.

Peer: A host that is participating in the overlay. Peers are
responsi bl e for holding sone portion of the data that has been
stored in the overlay, and they are responsible for routing
nessages on behal f of other hosts as needed by the Overl ay
Al gorithm

Peer Adm ssion: The act of admitting a node (the Joining Node) into
an Overlay. After the adm ssion process is over, the Joining Node
is a fully functional peer of the overlay. During the adnission
process, the Joining Node nay need to present credentials to prove
that it has sufficient authority to join the overlay.

Resource: An object or group of objects stored in a P2P network.

Resource-1D: A value that identifies sone resources and which is
used as a key for storing and retrieving the resource. Oten this
is not human friendly/readable. One way to generate a Resource-I1D
is by applying a mapping function to sone other unique nane (e.qg.
user nane or service nane) for the resource. The Resource-IDis
used by the distributed database algorithmto determ ne the peer
or peers that are responsible for storing the data for the
overlay. |In structured P2P networks, Resource-1Ds are generally
fixed I ength and are forned by hashing the Resource Name. In
unstructured networks, Resource Nanes may be used directly as
Resource-1Ds and may be of variable |ength.

Resource Nanme: The nane by which a resource is identified. In
unstructured P2P networks, the Resource Nane is sonetinmes used
directly as a Resource-I1D. In structured P2P networks, the

Resource Name is typically mapped into a Resource-1D by using the
string as the input to hash function. Structured and unstructured
P2P networks are described in [RFC5694]. A SIP resource, for
exanple, is often identified by its AOR (address-of-record), which
is an exanpl e of a Resource Nane.

Responsi bl e Peer: The peer that is responsible for a specific
resource, as defined by the Topol ogy Plug-in algorithm

Routing Table: The set of directly connected peers which a node can
use to forward overlay nessages. In normal operation, these peers
will all be in the Connection Table, but not vice versa, because
some peers may not yet be available for routing. Peers nmay send

Jenni ngs, et al. St andards Track [Page 20]

RFC 6940 RELOAD Base January 2014

nessages directly to peers that are in their Connection Tables,
but may forward nmessages to peers that are not in their Connection
Tabl e only through peers that are in the Routing Table.

Successor Repl acenent Hol d-Down Time: The amount of tinme to wait
before starting replication when a new successor is found; it
defaults to 30 seconds.

Transaction ID: A randonmly chosen identifier selected by the
originator of a request that is used to correlate requests and
responses.

Usage: The definition of a set of data structures (data Kinds) that
an application wants to store in the overlay. A usage nmay al so
define a set of network protocols (Application IDs) that can be
tunnel ed over TLS or DITLS direct connections between nodes. For
exanpl e, the SIP Usage defines a SIP registration data Kind, which
contains information on howto reach a SIP endpoint, and two
Application I Ds corresponding to the SIP and SI PS protocol s.

User: A physical person identified by the certificates assigned to
t hem

User Nane: A nanme identifying a user of the overlay, typically used
as a Resource Nane or as a label on a resource that identifies the
user owni ng the resource.

4. Overlay Managenment Overvi ew

The nost basic function of RELOAD is as a generic overlay network.
Nodes need to be able to join the overlay, formconnections to other
nodes, and route nmessages through the overlay to nodes to which they
are not directly connected. This section provides an overview of the
mechani sns that performthese functions.

4.1. Security and ldentification

The overlay paraneters are specified in a Configuration Docunent.
Because the parameters include security-critical information, such as
the certificate signing trust anchors, the Configuration Docunent
needs to be retrieved securely. The initial Configuration Docunent
is either initially fetched over HTTPS or manual |y provisioned.
Subsequent Configurati on Docunent updates are received either as a
result of being refreshed periodically by the configuration server,
or, nore comonly, by being flood-filled through the overlay, which
allows for fast propagation once an update is pushed. |In the latter
case, updates are via digital signatures that trace back to the
initial Configuration Docunent.

Jenni ngs, et al. St andards Track [Page 21]

RFC 6940 RELOAD Base January 2014

Every node in the RELOAD overlay is identified by a Node-ID. The
Node-I1 D is used for three najor purposes:

0o To address the node itself.

0o To determine the node’s position in the overlay topology (if the
overlay is structured; overlays do not need to be structured).

0o To determine the set of resources for which the node is
responsi bl e.

Each node has a certificate [RFC5280] containing its Node-1Din a
subj ect Al t Name ext ension, which is unique within an overlay instance.

The certificate serves multiple purposes:

o It entitles the user to store data at specific locations in the
Overlay Instance. Each data Kind defines the specific rules for
determ ni ng which certificates can access each Resource-I D/ Kind-I1D
pair. For instance, sone Kinds might allow anyone to wite at a
given | ocation, whereas others mght restrict wites to the owner
of a single certificate.

o It entitles the user to operate a node that has a Node-ID found in
the certificate. Wen the node fornms a connection to another
peer, it uses this certificate so that a node connecting to it
knows it is connected to the correct node. (Technically, a TLS or
DTLS association with client authentication is formed.) |In
addition, the node can sign nessages, thus providing integrity and
aut hentication for nmessages which are sent fromthe node.

o It entitles the user to use the user name found in the
certificate.

If a user has nore than one device, typically they would get one
certificate for each device. This allows each device to act as a
separ at e peer.

RELOAD supports nultiple certificate i ssuance nodels. The first is
based on a central enroll ment process, which allocates a uni que name
and Node-ID and puts themin a certificate for the user. Al peers
in a particular Overlay Instance have the enroll nent server as a
trust anchor and so can verify any other peer’'s certificate.

The second nodel is useful in settings, when a group of users want to
set up an overlay network but are not concerned about attack by other
users in the network. For instance, users on a LAN m ght want to set
up a short-termad hoc network without going to the trouble of

Jenni ngs, et al. St andards Track [Page 22]

RFC 6940 RELOAD Base January 2014

setting up an enroll ment server. RELOAD supports the use of self-
generated, self-signed certificates. Wen self-signed certificates
are used, the node also generates its own Node-1D and user nane. The
Node-1D is conputed as a digest of the public key, to prevent Node-I|D
theft. Note that the relevant cryptographic property for the digest
is partial preinmage resistance. Collision resistance is not needed,
because an attacker who can create two nodes with the sane Node-1D
but a different public key obtains no advantage. This nodel is stil
subj ect to a number of known attacks (nbst notably, Sybil attacks
[Sybil]) and can be safely used only in closed networks where users
are nutually trusting. Another drawback of this approach is that the
user’'s data is then tied to their key, so if a key is changed, any
data stored under their Node-1D needs to be re-stored. This is not
an issue for centrally issued Node-IDs provided that the
Certification Authority (CA) reissues the same Node-1D when a new
certificate is generated.

The general principle here is that the security nechanisns (TLS or
DTLS at the data link layer and nmessage signatures at the nessage
transport layer) are always used, even if the certificates are self-
signed. This allows for a single set of code paths in the systens,
with the only difference being whether certificate verification is
used to chain to a single root of trust.

4.1.1. Shared-Key Security

RELOAD al so provides an adni ssion control system based on shared
keys. In this nodel, the peers all share a single key which is used
to authenticate the peer-to-peer connections via TLS PSK [RFC4279] or
TLS- SRP [RFC5054] .

4.2. dients

RELOAD defines a single protocol that is used both as the peer
protocol and as the client protocol for the overlay. Having a single
protocol sinplifies inplenmentation, particularly for devices that may
act in either role, and allows clients to inject nmessages directly
into the overl ay.

We use the term"peer" to identify a node in the overlay that routes
nmessages for nodes other than those to which it is directly
connected. Peers also have storage responsibilities. W use the
term"client" to refer to nodes that do not have routing or storage
responsibilities. Wen text applies to both peers and clients, we
will sinmply refer to such devices as "nodes".

Jenni ngs, et al. St andards Track [Page 23]

RFC 6940 RELOAD Base January 2014

RELOAD s client support allows nodes that are not participating in
the overlay as peers to utilize the same inplementation and to
benefit fromthe same security nechanisns as the peers. dients
possess and use certificates that authorize the user to store data at
certain locations in the overlay. The Node-ID in the certificate is
used to identify the particular client as a nenber of the overlay and
to authenticate its nessages.

In RELOAD, unlike some other designs, clients are not first-class
entities. Fromthe perspective of a peer, a client is a node that
has connected to the overlay, but that has not yet taken steps to
insert itself into the overlay topology. It mght never do so (if
it's aclient), or it mght eventually do so (if it’'s just a node
that is taking a long tine to join). The routing and storage rules
for RELOAD provide for correct behavior by peers regardl ess of

whet her ot her nodes attached to themare clients or peers. O

course, a client inplenentation needs to know that it intends to be a
client, but this localizes conplexity only to that node.

For nore discussion about the notivation for RELOAD s client support,
see Appendi x B

4.2.1. dient Routing
Clients may insert thenselves in the overlay in two ways:

o Establish a connection to the peer responsible for the client’s
Node-I1D in the overlay. Then, requests may be sent fronfto the
client using its Node-ID in the same manner as if it were a peer
because the responsible peer in the overlay will handle the fina
step of routing to the client. This may require a TURN [RFC5766]
relay in cases where NATs or firewalls prevent a client from
form ng a direct connection with its responsi ble peer. Note that
clients that choose this option need to process Update messages
fromthe peer (Section 6.4.2.3). These updates can indicate that
the peer is no longer responsible for the client’s Node-1D. The
client would then need to forma connection to the appropriate
peer. Failure to do so will result in the client no | onger
recei ving nessages.

o Establish a connection with an arbitrary peer in the overlay
(perhaps based on network proximty or an inability to establish a
direct connection with the responsible peer). 1In this case, the
client will rely on RELOAD' s Destination List feature
(Section 6.3.2.2) to ensure reachability. The client can initiate
requests, and any node in the overlay that knows the Destination
List to its current |location can reach it, but the client is not
directly reachable using only its Node-I1D. If the client is to

Jenni ngs, et al. St andards Track [Page 24]

RFC 6940 RELOAD Base January 2014

recei ve incomng requests from other nmenbers of the overlay, the
Destination List needed to reach the client needs to be | earnable
vi a ot her mechani sns, such as being stored in the overlay by a
usage. A client connected this way using a certificate with only
a single Node-ID can proceed to use the connection w thout
perform ng an Attach (Section 6.5.1). A client wi shing to connect
using this mechanismwith a certificate with nmultiple Node-IDs can
use a Ping (Section 6.5.3) to probe the Node-1D of the node to
which it is connected before performng the Attach

4.2.2. Mnimm Functionality Requirenents for Cients

A node may act as a client sinply because it does not have the
capacity or need to act as a peer in the overlay, or because it does
not even have an inplenentation of the Topol ogy Plug-in defined in
Section 6.4.1, needed to act as a peer in the overlay. |In order to
exchange RELOAD nessages with a peer, a client needs to neet a

m ni mum | evel of functionality. Such a client will:

o |Inplement RELOAD s connecti on- nanagenent operations that are used
to establish the connection with the peer

o Inplement RELOAD s data retrieval methods (with client
functionality).

0 Be able to calculate Resource-IDs used by the overl ay.

0 Possess security credentials needed by the overlay that it is
i mpl enent i ng.

A client speaks the same protocol as the peers, knows how to

cal cul ate Resource-I1Ds, and signs its requests in the same nmanner as
peers. VWile a client does not necessarily require a ful

i mpl enentati on of the overlay algorithm calculating the Resource-1D
requires an inplenmentation of an appropriate algorithmfor the

overl ay.

4.3. Routing

Thi s section discusses the capabilities of RELOAD s routing |ayer and
the protocol features used to inplenent the capabilities, and
provides a brief overview of how they are used. Appendix A discusses
sone alternative designs and the trade-offs that woul d be necessary
to support them

Jenni ngs, et al. St andards Track [Page 25]

RFC 6940 RELOAD Base January 2014

RELOAD s routing provides the follow ng capabilities:

Resour ce- based Routi ng: RELOAD supports routing nessages based
solely on the name of the resource. Such nmessages are delivered
to a node that is responsible for that resource. Both structured
and unstructured overlays are supported, so the route nay not be
determnistic for all Topol ogy Pl ug-ins.

Node- based Routi ng: RELOAD supports routing nmessages to a specific
node in the overl ay.

Cients: RELOAD supports requests fromand to clients that do not
participate in overlay routing. The clients are |located via
ei ther of the nechanisns described above.

NAT Traversal : RELOAD supports establishing and using connections
bet ween nodes separated by one or nore NATs, including |ocating
peers behind NATs for those overlays allowi ng/requiring it.

Low St ate: RELOAD s routing algorithms do not require significant
state (i.e., state linear or greater in the nunber of outstanding
nmessages that have passed through it) to be stored on internediate
peers.

Routability in Unstabl e Topol ogi es: Overl ay topol ogy changes
constantly in an overlay of noderate size due to the failure of
i ndi vidual nodes and links in the system RELOAD s routing allows
peers to reroute nmessages when a failure is detected, and replies
can be returned to the requesting node as |ong as the peers that
originally forwarded the successful request do not fail before the
response i s returned.

RELOAD s routing utilizes three basic mechani sns:

Destination Lists: VWile, in principle, it is possible to just
inject a nmessage into the overlay with a single Node-1D as the
destinati on, RELOAD provides a source-routing capability in the
formof "Destination Lists". A Destination List provides a |ist
of the nodes through which a nmessage flows in order (i.e., it is
| oose source routed). The mininmal Destination List contains just
a single val ue.

Via Lists: In order to all ow responses to follow the sane path as
requests, each nessage also contains a "Via List", which is
appended to by each node a nmessage traverses. This Via List can
then be inverted and used as a Destination List for the response.

Jenni ngs, et al. St andards Track [Page 26]

RFC 6940 RELOAD Base January 2014

Rout eQuery: The RouteQuery nethod allows a node to query a peer for
the next hop it will use to route a nessage. This method is
useful for diagnostics and for iterative routing (see
Section 6.4.2.4).

The basic routing nmechanismthat RELOAD uses is symetric recursive.
W will first describe symmetric recursive routing and then di scuss
its advantages in terms of the requirenments di scussed above.

Synmetric recursive routing requires that a request nessage follow a
path t hrough the overlay to the destination: each peer forwards the
nessage closer to its destination. The return path of the response
goes through the same nodes as the request (though it nmay al so go
through sonme new i nternedi ate nodes due to topol ogy changes). Note
that a failure on the reverse path caused by a topol ogy change after
the request was sent will be handl ed by the end-to-end retransm ssion
of the response as described in Section 6.2.1. For exanmple, the
following figure shows a nessage following a route fromAto Z
through B and X

A B X Z
---------- >
Dest =Z
---------- >
Vi a=A
Dest =Z
---------- >
Vi a=A, B
Dest =Z
Cmm - - -
Dest =X, B, A
Cmm e e - =
Dest =B, A
P,
Dest =A

Note that this figure does not indicate whether Ais a client or
peer. A forwards its request to B, and the response is returned to A
in the same manner regardless of A's role in the overl ay.

This figure shows use of full Via Lists by internedi ate peers B and
X. However, if B and/or X are willing to store state, then they my
elect to truncate the lists and save the truncated information
internally using the transaction ID as a key to allowit to be
retrieved |ater. Later, when the response nessage arrives, the

Jenni ngs, et al. St andards Track [Page 27]

RFC 6940 RELOAD Base January 2014

transaction ID woul d be used to recover the truncated information and
return the response nessage along the path from whi ch the request
arrived. This option requires a greater anmount of state to be stored
on intermedi ate peers, but saves a small amount of bandw dth and
reduces the need for nodifying the nmessage en route. Selection of
this node of operation is a choice for the individual peer; the
techni ques are interoperable even on a single nessage. The figure
bel ow shows B using full Via Lists, but X truncating themto X1 and
saving the state internally.

A B X Z
---------- >
Dest =Z
---------- >
Vi a=A
Dest =Z
---------- >
Vi a=X1
Dest =Z
Cmm e e m - =
Dest =X, X1
P,
Dest =B, A
Cmm - - -
Dest =A

As before, when B receives the nmessage, B creates a Via List
consisting of [A]. However, instead of sending [A B], X creates an
opaque I D X1 which maps internally to [A B] (perhaps by being an
encryption of [A, B]) and then forwards to Z with only X1 as the Via
List. When the response arrives at X, it maps X1 back to [A B],
then inverts it to produce the new Destination List [B, A], and
finally routes it to B

RELOAD al so supports a basic iterative "routing" nmode, in which the
i nternedi ate peers nmerely return a response indicating the next hop
but do not actually forward the message to that next hop thensel ves.
Iterative routing is inplenented using the RouteQuery nethod (see
Section 6.4.2.4), which requests this behavior. Note that iterative
routing is selected only by the initiating node.

Jenni ngs, et al. St andards Track [Page 28]

RFC 6940 RELOAD Base January 2014

4.4. Connectivity Managenent

In order to provide efficient routing, a peer needs to naintain a set
of direct connections to other peers in the Overlay Instance. Due to
the presence of NATs, these connections often cannot be fornmed

directly. Instead, we use the Attach request to establish a
connection. Attach uses Interactive Connectivity Establishnent (ICE)
[RFC5245] to establish the connection. It is assumed that the reader

is famliar with | CE

Say that peer A wishes to forma direct connection to peer B, either
to join the overlay or to add nore connections in its Routing Table.
It gathers | CE candi dates and packages themup in an Attach request,
which it sends to B through usual overlay routing procedures. B does
its own candi date gathering and sends back a response with its

candi dates. A and B then do | CE connectivity checks on the candi date
pairs. The result is a connection between A and B. At this point, A
and B MAY send nessages directly between thensel ves w t hout going
through other overlay peers. |In other words, A and B are in each

ot her’s Connection Tables. They MAY then execute an Update process,
resulting in additions to each other’s Routing Tables, and may then
become able to route nessages through each other to other overlay
nodes.

There are two cases where Attach is not used. The first is when a
peer is joining the overlay and is not connected to any peers. In
order to support this case, a small nunber of bootstrap nodes
typically need to be publicly accessible so that new peers can
directly connect to them Section 11 contains nore detail on this.
The second case is when a client connects to a peer at an arbitrary
| P address, rather than to its responsible peer, as described in the
second bullet point of Section 4.2. 1.

In general, a peer needs to maintain connections to all of the peers
near it in the Overlay Instance and to enough other peers to have
efficient routing (the details on what "enough" and "near" nean
depend on the specific overlay). |f a peer cannot forma connection
to sone other peer, this is not necessarily a disaster; overlays can
route correctly even without fully connected |inks. However, a peer
needs to try to maintain the specified Routing Tabl e defined by the
Topol ogy Plug-in algorithmand needs to form new connections if it
detects that it has fewer direct connections than specified by the
algorithm This also inplies that peers, in accordance with the
Topol ogy Plug-in algorithm need to periodically verify that the
connected peers are still alive and, if not, need to try to re-form
the connections or formalternate ones. See Section 10.7.4.3 for an
exanpl e on how a specific overlay algorithminplenents these
constraints.

Jenni ngs, et al. St andards Track [Page 29]

RFC 6940 RELOAD Base January 2014

4.

4.

4.

5. Overlay Al gorithm Support

The Topol ogy Plug-in allows RELOAD to support a variety of overlay
algorithms. This specification defines a DHT based on Chord, which
is mandatory to inplenent, but the base RELOAD protocol is designed
to support a variety of overlay algorithns. The infornmation needed
to inplenent this DHT is fully contained in this specification, but
it is easier to understand if you are famliar wi th Chord-based
[Chord] DHTs. A nice tutorial can be found at [w ki Chord].

5.1. Support for Pluggable Overlay Al gorithmns

RELOAD defines three nethods for overlay nmaintenance: Join, Update,
and Leave. However, the contents of these nessages, when they are
sent, and their precise semantics are specified by the actual overlay
algorithm which is specified by configuration for all nodes in the
overlay and thus is known to nodes before they attenpt to join the
overlay. RELOAD nerely provides a framework of commonly needed

net hods that provide uniformty of notation (and ease of debuggi ng)
for a variety of overlay algorithns.

5.2. Joining, Leaving, and M ntenance Overvi ew

When a new peer wishes to join the Overlay Instance, it will need a
Node-ID that it is allowed to use and a set of credentials which

mat ch that Node-1D. Wen an enrollnment server is used, the Node-ID
used is the one found in the certificate received fromthe enroll nent
server. The details of the joining procedure are defined by the
overlay algorithm but the general steps for joining an Overl ay

I nst ance are:

o Form connections to sone other peers.
0 Acquire the data values this peer is responsible for storing.

o Informthe other peers which were previously responsible for that
data that this peer has taken over responsibility.

The first thing the peer needs to do is to forma connection to sone
boot strap node. Because this is the first connection the peer nakes,
these nodes will need public |IP addresses so that they can be
connected to directly. Once a peer has connected to one or nore
bootstrap nodes, it can form connections in the usual way, by routing
Attach nmessages through the overlay to other nodes. After a peer has
connected to the overlay for the first tine, it can cache the set of
past adj acencies which have public | P addresses and can attenpt to
use themas future bootstrap nodes. Note that this requires sone

Jenni ngs, et al. St andards Track [Page 30]

RFC 6940 RELOAD Base January 2014

noti on of which addresses are likely to be public as discussed in
Section 9.

After a peer has connected to a bootstrap node, it then needs to take
up its appropriate place in the overlay. This requires two najor
operations:

o Formconnections to other peers in the overlay to populate its
Routi ng Tabl e.

0 Cet a copy of the data it is now responsible for storing, and
assune responsibility for that data.

The second operation is perforned by contacting the Admtting Peer
(AP), the node which is currently responsible for the rel evant
section of the overl ay.

The details of this operation depend nostly on the overlay al gorithm
i nvol ved, but a typical case would be:

1. JN sends a Join request to AP announcing its intention to join.
2. AP sends a Join response.

3. AP does a sequence of Stores to JNto give it the data it wll
need.

4. AP does Updates to JN and to other peers to tell them about its
own Routing Table. At this point, both JN and AP consider JN
responsi bl e for sone section of the Overlay Instance.

5. JN nakes its own connections to the appropriate peers in the
Overl ay | nstance.

After this process conpletes, JNis a full menber of the Overlay
I nstance and can process Store/ Fetch requests.

Note that the first node is a special case. Wen ordinary nodes
cannot form connections to the bootstrap nodes, then they are not
part of the overlay. However, the first node in the overlay can

obvi ously not connect to other nodes. |In order to support this case,
potential first nodes (which can also initially serve as bootstrap
nodes) need to sonmehow be instructed that they are the entire
overlay, rather than part of an existing overlay (e.g., by conparing
their I P address to the bootstrap | P addresses in the configuration
file).

Note that clients do not performeither of these operations.

Jenni ngs, et al. St andards Track [Page 31]

RFC 6940 RELOAD Base January 2014

4.6. First-Tine Setup

Previ ous sections addressed how RELOAD works after a node has
connected. This section provides an overvi ew of how users get
connected to the overlay for the first time. RELOAD is designed so
that users can start with the nane of the overlay they wish to join
and perhaps an account nane and password, and can |everage these into
havi ng a worki ng peer with mniml user intervention. This helps
avoid the problens that have been experienced with conventional SIP
clients in which users need to manually configure a |arge nunmber of
settings.

4.6.1. Initial Configuration

In the first phase of the setup process, the user starts with the
nane of the overlay and uses it to download an initial set of overlay
configuration parameters. The node does a DNS SRV [RFC2782] | ookup
on the overlay nane to get the address of a configuration server. It
can then connect to this server with HTTPS [RFC2818] to downl oad a
Confi guration Docunent which contains the basic overlay configuration
paranmeters as well as a set of bootstrap nodes which can be used to
join the overlay. The details of the relationshi ps between nanes in
the HTTPS certificates and the overlay names are described in

Section 11. 2.

If a node already has the valid Configuration Document that it
recei ved by an out-of-band nmethod, this step can be skipped. Note
that this out-of-band nmethod needs to provide authentication and
integrity, because the Configuration Docunent contains the trust
anchors used by the overl ay.

4.6.2. Enroll nent

If the overlay is using centralized enrollnent, then a user needs to
acquire a certificate before joining the overlay. The certificate
attests both to the user’s nane within the overlay and to the
Node- |1 Ds which they are pernmitted to operate. In this case, the
Configuration Docunment will contain the address of an enroll nent
server which can be used to obtain such a certificate and will also
contain the trust anchor, so this docunent nust be retrieved securely
(see Section 11.2). The enrollment server nmay (and probably will)
require sone sort of account nane for the user and a password before
issuing the certificate. The enrollnent server’'s ability to ensure
attackers cannot get a |l arge nunmber of certificates for the overlay
is one of the cornerstones of RELOAD s security.

Jenni ngs, et al. St andards Track [Page 32]

RFC 6940 RELOAD Base January 2014

4.6.3. Diagnostics

Si gni ficant advice around managi ng a RELOAD overl ay and extensions
for diagnostics are described in [P2P-DI AGNOSTI CS] .

5. Application Support Overview
RELOAD is not intended to be used al one, but rather as a substrate
for other applications. These applications can use RELOAD for a

vari ety of purposes:

o To store data in the overlay and to retrieve data stored by ot her
nodes.

0 As a discovery mechanismfor services such as TURN

o0 To formdirect connections which can be used to transmt
application-level messages wi thout using the overlay.

This section provides an overview of these services.
5.1. Data Storage

RELOAD provi des operations to Store and Fetch data. Each location in
the Overlay Instance is referenced by a Resource-1D. However, each

| ocati on may contain data el ements corresponding to nultiple Kinds
(e.g., certificate and SIP registration). Sinmilarly, there may be
multiple elements of a given Kind, as shown bel ow

| |
| |
I R S SR +
	Kind 1		Kind 2				
	+ s +						
		Value				Value	
	+--------	A +					
	+-------- s +						
		value				value	
	4=		A +				
		A +					
	+-------- +						
		Value					
] +							
+------------ +							
oo +

Jenni ngs, et al. St andards Track [Page 33]

RFC 6940 RELOAD Base January 2014

Each Kind is identified by a Kind-1D, which is a code point either
assigned by | ANA or allocated out of a private range. As part of the
Kind definition, protocol designers may define constraints (such as
l[imts on size) on the values which nmay be stored. For many Kinds,
the set may be restricted to a single value, while sone sets may be
allowed to contain multiple identical itens, and others may have only
unique itens. Note that a Kind nmay be enpl oyed by multiple usages,
and new usages are encouraged to use previously defined Kinds where
possi ble. W define the follow ng data nodels in this documnent,

al t hough ot her usages can define their own structures:

single value: There can be at nobst one itemin the set, and any
val ue overwites the previous item

array: Many val ues can be stored and addressed by a numneric index.

di ctionary: The values stored are indexed by a key. Oten, this key
is one of the values fromthe certificate of the peer sending the
Store request.

In order to protect stored data fromtanpering by other nodes, each
stored value is individually digitally signed by the node which
created it. Wwen a value is retrieved, the digital signature can be
verified to detect tanpering. |If the certificate used to verify the
stored val ue signature expires, the value can no |longer be retrieved
(although it may not be inmedi ately garbage collected by the storing
node), and the creating node will need to store the value again if it
desires that the stored value continue to be avail abl e.

5.1.1. Storage Perm ssions

A maj or issue in peer-to-peer storage networks is nminimzing the
burden of becoming a peer and, in particular, mnimzing the anpunt
of data which any peer needs to store for other nodes. RELOAD
addresses this issue by allow ng any given node to store data only at
a small nunber of locations in the overlay, with those |ocations
bei ng determ ned by the node’s certificate. Wen a peer uses a Store
request to place data at a |l ocation authorized by its certificate, it
signs that data with the private key that corresponds to its
certificate. Then the peer responsible for storing the data is able
to verify that the peer issuing the request is authorized to make
that request. Each data Kind defines the exact rules for determ ning
what certificate is appropriate

The nost natural rule is that a certificate authorizes a user to

store data keyed with their user nane X. Thus, only a user with a
certificate for "alice@xanmple.org" could wite to that |location in

Jenni ngs, et al. St andards Track [Page 34]

RFC 6940 RELOAD Base January 2014

the overlay (see Section 11.3). However, other usages can define any
rul es they choose, including publicly witable val ues.

The digital signature over the data serves two purposes. First, it
all ows the peer responsible for storing the data to verify that this
Store is authorized. Second, it provides integrity for the data.
The signature is saved along with the data value (or values) so that
any reader can verify the integrity of the data. O course, the
responsi bl e peer can "lose" the value, but it cannot undetectably
nmodify it.

The size requirenents of the data being stored in the overlay are
variable. For instance, a SIP AOR and voicemail differ widely in the
storage size. RELOAD leaves it to the usage and overl ay
configuration to limt size inbalances of various Kinds.

5.1.2. Replication
Replication in P2P overl ays can be used to provide:

persistence: if the responsible peer crashes and/or if the storing
peer | eaves the overlay

security: to guard agai nst DoS attacks by the responsible peer or
routing attacks to that responsible peer

| oad bal ancing: to balance the | oad of queries for popul ar resources

A variety of schemes are used in P2P overlays to achi eve sone of
these goals. Common techni ques include replicating on nei ghbors of
the responsi ble peer, randomy locating replicas around the overl ay,
and replicating along the path to the responsi bl e peer

The core RELOAD specification does not specify a particul ar
replication strategy. Instead, the first level of replication
strategies is determ ned by the overlay al gorithm which can base the
replication strategy on its particular topology. For exanple, Chord
pl aces replicas on successor peers, which will take over
responsibility if the responsible peer fails [Chord].

If additional replication is needed, for exanple, if data persistence
is particularly inmportant for a particular usage, then that usage may
specify additional replication, such as inplenenting random
replications by inserting a different well-known constant into the
Resource Name used to store each replicated copy of the resource

Such replication strategies can be added i ndependently of the
underlying algorithm and their usage can be determ ned based on the
needs of the particul ar usage.

Jenni ngs, et al. St andards Track [Page 35]

RFC 6940 RELOAD Base January 2014

5.2. Usages

By itself, the distributed storage |ayer provides only the
infrastructure on which applications are built. In order to do
anyt hi ng useful, a usage needs to be defined. Each usage needs to
speci fy several things:

0 Register Kind-ID code points for any Kinds that the usage defines
(Section 14.6).

o Define the data structure for each of the Kinds (the val ue nmenber
in Section 7.2). |If the data structure contains character
strings, conversion rules between characters and the binary
storage need to be specifi ed.

o Define access control rules for each of the Kinds (Section 7.3).

o Define howthe Resource Nane is used to formthe Resource-1D where
each Kind is stored

0 Describe how values will be nerged when a network partition is
bei ng heal ed.

The Kinds defined by a usage may al so be applied to other usages.
However, a need for different paraneters, such as a different access
control nodel, would inply the need to create a new Kind.

5.3. Service Discovery

RELOAD does not currently define a generic service discovery
algorithmas part of the base protocol, although a sinplistic TURN
specific discovery nechanismis provided. A variety of service

di scovery algorithms can be inplenmented as extensions to the base
protocol, such as the service discovery algorithm ReD R

[opendht - si gcormmD5] and [REDI R- RELOAD .

5.4. Application Connectivity

There is no requirenent that a RELOAD Usage needs to use RELOAD s
primtives for establishing its own comunication if it already
possesses its own neans of establishing connections. For exanple,
one coul d desi gn a RELOAD-based resource di scovery protocol which
used HTTP to retrieve the actual data

For nore common situations, however, it is the overlay itself --
rather than an external authority such as DNS -- which is used to
establish a connection. RELOAD provides connectivity to applications
using the AppAttach nethod. For exanple, if a P2PSIP node wi shes to

Jenni ngs, et al. St andards Track [Page 36]

RFC 6940 RELOAD Base January 2014

establish a SIP dialog with another P2PSIP node, it will use
AppAttach to establish a direct connection with the other node. This
new connection is separate fromthe peer protocol connection. It is
a dedi cated DTLS or TLS flow used only for the SIP dial og.

6. Overlay Managenent Protoco

This section defines the basic protocols used to create, nmmintain
and use the RELOAD overlay network. W start by defining the basic
concept of how nessage destinations are interpreted when routing
messages. We then describe the symmetric recursive routing nodel
which is RELOAD s default routing algorithm Finally, we define the
nessage structure and the nessages used to join and naintain the
overl ay.

6.1. Message Recei pt and Forwar di ng

When a node receives a nessage, it first exam nes the overlay,

versi on, and other header fields to determ ne whether the nessage is
one it can process. |If any of these are incorrect, as defined in
Section 6.3.2, it is an error and the nessage MJST be di scarded. The
peer SHOULD generate an appropriate error, but |ocal policy can
override this and cause the nessage to be silently dropped.

Once the peer has determ ned that the nessage is correctly formatted
(note that this does not include signature-checking on internediate
nodes as the nessage may be fragmented), it exanmines the first entry
on the Destination List. There are three possible cases here:

o The first entry on the Destination List is an ID for which the
peer is responsible. A peer is always responsible for the
wi | dcard Node-1D. Handling of this case is described in
Section 6.1.1.

o The first entry on the Destination List is an ID for which another
peer is responsible. Handling of this case is described in
Section 6.1.2.

o The first entry on the Destination List is an opaque ID that is
bei ng used for Destination List conpression. Handling of this
case is described in Section 6.1.3. Note that opaque |IDs can be
di stingui shed from Node-1Ds and Resource-1Ds on the wire as
described in Section 6.3.2.2.

These cases are handl ed as di scussed bel ow.

Jenni ngs, et al. St andards Track [Page 37]

RFC 6940 RELOAD Base January 2014

6.1.1. Responsible ID

If the first entry on the Destination List is an ID for which the
peer is responsible, there are several (mutually exclusive) subcases
to consider.

o If the entry is a Resource-ID, then it MJST be the only entry on
the Destination List. |If there are other entries, the nessage
MUST be silently dropped. QOherw se, the nessage is destined for
this node, so the node MJST verify the signature as described in
Section 7.1 and MJST pass it to the upper |layers. "Upper |ayers”
is used here to nmean the conponents above the "Overlay Link
Service Boundary" line in the figure in Section 1.2.

o If the entry is a Node-1D which equals this node’s Node-I1D, then
the message is destined for this node. If it is the only entry on
the Destination List, the nessage is destined for this node and so
the node passes it to the upper layers. Oherw se, the node
renoves the entry fromthe Destination List and repeats the
routing process with the next entry on the Destination List. |If
the nmessage is a response and |ist conpressi on was used, then the
node first nmodifies the Destination List to reinsert the saved
state, e.g., by unpacking any opaque | Ds.

o If the entry is the wildcard Node-ID (all "1"s), the nessage is
destined for this node, and the node passes the nessage to the
upper layers. A message with a wildcard Node-ID as its first
entry is never forwarded; it is consumed |ocally.

o If the entry is a Node-1D which is not equal to this node, then
the node MJST drop the nmessage silently unless the Node-1D
corresponds to a node which is directly connected to this node
(i.e., aclient). In the latter case, the node MJST attenpt to
forward the message to the destination node as described in the
next section (though this may fail for connectivity reasons,
because the TTL has expired, or because of some other error.)

Note that this process inplies that in order to address a nessage to
"the peer that controls region X', a sender sends to Resource-1D X,
not Node-ID X

6.1.2. Cher ID

If the first entry on the Destination List is neither an opaque |ID
nor an ID the peer is responsible for, then the peer MJST forward the
nmessage towards that entry. This neans that it MJST sel ect one of
the peers to which it is connected and which is nmost likely to be
responsi bl e (according to the Topology Plug-in) for the first entry

Jenni ngs, et al. St andards Track [Page 38]

RFC 6940 RELOAD Base January 2014

on the Destination List. For the CHORD RELOAD topol ogy, the routing
to the nost likely responsible node is explained in Section 10.3. |If
the first entry on the Destination List is in the peer’s Connection
Tabl e, the peer MJST forward the message to that peer directly.

O herwi se, the peer consults the Routing Table to forward the
nessage.

Any internedi ate peer which forwards a RELOAD request MJST ensure
that if it receives a response to that nessage, the response can be
rout ed back through the set of nodes through which the request
passed. The peer selects one of these approaches:

o The peer can add an entry to the Via List in the forwarding header
that will enable it to determine the correct node. This is done
by appending to the Via List the Node-1D of the node from which
the request was received.

o The peer can keep per-transaction state which will allowit to
determ ne the correct node.

As an example of the first strategy, consider an exanple with nodes
A B, C D and E If node D receives a nmessage fromnode Cwith Via
List [A, B], then Dwuld forward to the next node E with Via List

[A, B, C. Now, if Ewants to respond to the nessage, it reverses
the Via List to produce the Destination List, resulting in

[D, C, B, Al. Wen Dforwards the response to C, the Destination
List will contain [C, B, A].

As an example of the second strategy, if node D receives a nessage
fromnode Cwth transaction ID X (as assigned by A and Via List
[A, B], it could store [X, C] inits state database and forward the
nessage with the Via List unchanged. When D receives the response,
it consults its state database for transaction ID X, determni nes that
the request canme fromC, and forwards the response to C.

Internedi ate peers which nodify the Via List are not required to
sinmply add entries. The only requirenent is that the peer MJST be
able to reconstruct the correct Destination List on the return route.
RELOAD provi des explicit support for this functionality in the form
of opaque |Ds, which can replace any number of Via List entries.

For instance, in the above exanple, Node D might send E a Via List

containing only the opaque IDI. E would then use the Destination
List [D, I] to send its return nessage. Wen D processes this
Destination List, it would detect that | is an opaque ID, recover the

Via List [A, B, C, and reverse that to produce the correct
Destination List [C, B, Al before sending it to C. This feature is
called "list conpression". Possibilities for an opaque ID include a

Jenni ngs, et al. St andards Track [Page 39]

RFC 6940 RELOAD Base January 2014

conpressed and/ or encrypted version of the original Via List and an
index into a state database containing the original Via List, but the
details are a local matter.

No matter what nechanismfor storing Via List state is used, if an
i nternedi ate peer exits the overlay, then on the return trip the
nessage cannot be forwarded and will be dropped. The ordinary

ti meout and retransni ssion nmechani snms provide stability over this
type of failure

Note that if an internedi ate peer retains per-transaction state
instead of nodifying the Via List, it needs sonme nechanismfor timng
out that state; otherwise, its state database will grow without

bound. \Whatever algorithmis used, unless a FORWARD CRI Tl CAL
forwardi ng option (Section 6.3.2.3) or an overlay configuration
option explicitly indicates this state is not needed, the state MJST
be maintained for at |east the value of the overlay-reliability-timer
configuration paranmeter and MAY be kept |onger. Future extensions,
such as [P2PSI P- RELAY], may defi ne nechani sns for determ ni ng when
this state does not need to be retained.

There is no requirenent to ensure that a request issued after the
recei pt of a response follows the sane path as the response. As a
consequence, there is no requirement to use either of the nmechanisnms
descri bed above (Via List or state retention) when processing a
response message.

A node receiving a request from another node MJST ensure that any
response to that request exits that node with a Destination List
equal to the concatenation of the Node-1D of the node from which the
request was received with the Via List in the original request. The
i nternedi ate node nornally | earns the Node-1D that the other node is
using via an Attach, but a node using a certificate with a single
Node- 1 D MAY elect not to send an Attach (see Section 4.2.1, bullet
2). If anode with a certificate with multiple Node-IDs attenpts to
route a nessage other than a Ping or Attach through a node without
perform ng an Attach, the receiving node MIST reject the request with
an Error_Forbi dden error. The node MJST i npl enent support for
returni ng responses to a Ping or Attach request made by a Joining
Node Attaching to its responsible peer

6.1.3. Opaque ID

If the first entry on the Destination List is an opaque ID (e.g., a
conpressed Via List), the peer MJST replace the entry with the
original Via List that it replaced and then re-exam ne the
Destination List to determ ne which of the three cases in Section 6.1
now appl i es.

Jenni ngs, et al. St andards Track [Page 40]

RFC 6940 RELOAD Base January 2014

6.2. Symmetric Recursive Routing

This section defines RELOAD s Symmetric Recursive Routing algorithm
which is the default al gorithmused by nodes to route nmessages
through the overlay. Al inplenentations MJST inplenent this routing
algorithm An overlay MAY be configured to use alternative routing
algorithns, and alternative routing algorithns MAY be sel ected on a
per-nmessage basis. That is, a node in an overlay which supports
Symmetric Recursive Routing and sone other routing algorithmcalled
XXX might use Symmetric Recursive Routing some of the tine and XXX at
ot her times.

6.2.1. Request Oigination

In order to originate a nessage to a given Node-1D or Resource-1D, a
node MUST construct an appropriate Destination List. The sinplest
such Destination List is a single entry containing the Node-ID or
Resource-1D. The resulting nessage MUST be forwarded to its
destination via the nornal overlay routing nmechanisns. The node MAY
al so construct a nore conplicated Destination List for source
routing.

Once the nessage is constructed, the node sends the nessage to an
adj acent peer. |If the first entry on the Destination List is
directly connected, then the nessage MJST be routed down that
connection. Oherw se, the Topol ogy Plug-in MJST be consulted to
deterni ne the appropriate next hop

Paral |l el requests for a resource are a comopn solution to inprove
reliability in the face of churn or subversive peers. Paralle
searches for usage-specified replicas are managed by the usage | ayer,
for instance, by having the usage store data at nultiple
Resource-1Ds, with the requesti ng node sendi ng requests to each of
those Resource-1Ds. However, a single request MAY al so be routed
through nultiple adjacent peers, even when they are known to be
suboptimal, to inprove reliability [vulnerabilities-acsac04]. Such
paral | el searches MAY be specified by the Topol ogy Plug-in, in which
case it would return nmultiple next hops and the request woul d be
routed to all of them

Because nessages can be lost in transit through the overlay, RELQCAD

i ncorporates an end-to-end reliability nmechanism \When an
originating node transmits a request, it MJST set a tiner to the
current overlay-reliability-tiner. |If a response has not been

recei ved when the tinmer fires, the request MJST be retransmitted with
the sane transaction identifier. The request MAY be retransmtted up
to 4 times, for a total of 5 nessages. After the tiner for the fifth
transm ssion fires, the nessage MJUST be considered to have failed.

Jenni ngs, et al. St andards Track [Page 41]

RFC 6940 RELOAD Base January 2014

Al t hough the originating node will be doing both end-to-end and hop-
by-hop retransnmi ssions, the end-by-end retransm ssion procedure is
not followed by internedi ate nodes. They foll ow the hop-by-hop
reliability procedure described in Section 6.6.3.

The above algorithmcan result in nmultiple requests being delivered
to a node. Receiving nodes MJST generate semantically equival ent
responses to retransm ssions of the same request (this can be
determ ned by the transaction ID) if the request is received within
the maxi mum request lifetine (15 seconds). For sone requests (e.g.
Fetch), this can be acconmplished nerely by processing the request
again. For other requests (e.g., Store), it may be necessary to
maintain state for the duration of the request lifetine.

6.2.2. Response Origination

VWhen a peer sends a response to a request using this routing
algorithm it MJST construct the Destination List by reversing the
order of the entries on the Via List. This has the result that the
response traverses the same peers as the request traversed, except in
reverse order (symetric routing) and possibly with extra nodes

(1 oose routing).

6.3. Message Structure

RELOAD i s a nessage-oriented request/response protocol. The nessages
are encoded using binary fields. Al integers are represented in
network byte order. The general phil osophy behind the design was to
use Type, Length, Value (TLV) fields to allow for extensibility.
However, for the parts of a structure that were required in al
nessages, we just define these in a fixed position, as adding a type
and length for themis unnecessary and woul d only increase bandw dth
and introduce new potential interoperability issues.

Each nessage has three parts, which are concatenated, as shown bel ow

S +
| For war di ng Header |
T +
| Message Contents |
o e e e e e e e +
| Security Bl ock |
e +

Jenni ngs, et al. St andards Track [Page 42]

RFC 6940 RELOAD Base January 2014

The contents of these parts are as foll ows:

Forwar di ng Header: Each nmessage has a generic header which is used
to forward the message between peers and to its final destination.
This header is the only information that an intermedi ate peer
(i.e., one that is not the target of a nmessage) needs to exam ne
Section 6.3.2 describes the format of this part.

Message Contents: The nessage being delivered between the peers.
Fromthe perspective of the forwarding |ayer, the contents are
opaque; however, they are interpreted by the higher |ayers.
Section 6.3.3 describes the format of this part.

Security Block: A security block containing certificates and a
digital signature over the "Message Contents" section. Note that
this signature can be conputed wi thout parsing the nmessage
contents. All nessages MJST be signed by their originator.
Section 6.3.4 describes the format of this part.

6.3.1. Presentation Language

The structures defined in this docunent are defined using a Clike

syntax based on the presentation | anguage used to define TLS

[RFC5246]. Advantages of this style include:

o It is famliar enough that nost readers can grasp it quickly.

o The ability to define nested structures allows a separation
bet ween hi gh-level and | ow1|evel nessage structures.

o It has a straightforward wire encoding that all ows quick
i mpl ement ation, but the structures can be conprehended without
knowi ng t he encodi ng.
o It is possible to mechanically conpile encoders and decoders.
Several idiosyncrasies of this |anguage are worth noting:

o Al lengths are denoted in bytes, not objects.

o Variable-length values are denoted |ike arrays, with angle
brackets.

o "select" is used to indicate variant structures.

For instance, "uintl1l6 array<O0..2"8-2>;" represents up to 254 bytes,
whi ch corresponds to up to 127 values of two bytes (16 bits) each

Jenni ngs, et al. St andards Track [Page 43]

RFC 6940 RELOAD Base January 2014

A repetitive structure nmenber shares a comon notation with a nmenber
containing a variable-length block of data. The latter always starts
with "opaque", whereas the former does not. For instance, the

foll owi ng denotes a variabl e bl ock of data:

opaque dat a<0..2732-1>;

whereas the follow ng denotes a list of 0, 1, or nore instances of
the Name el ement:

Name nanmes<0..2”"32-1>;
6.3.1.1. Common Definitions

Thi s section provides an introduction to the presentation | anguage
used t hroughout RELQOAD.

An enum represents an enunerated type. The values associated with
each possibility are represented in parentheses, and the naxi mum
value is represented as a nanel ess val ue, for purposes of describing
the width of the containing integral type. For instance, Bool ean
represents a true or false

enum { false(0), true(l), (255) } Bool ean

A boolean value is either a 1 or a 0. The max val ue of 255 indicates
that this is represented as a single byte on the wre.

The Nodeld, shown bel ow, represents a single Node-ID
typedef opaque Nodel d[Nodel dLengt h] ;

A Nodeld is a fixed-length structure represented as a series of
bytes, with the npbst significant byte first. The length is set on a
per-overlay basis within the range of 16-20 bytes (128 to 160 bits).
(See Section 11.1 for how NodeldLength is set.) Note that the use of
"typedef" here is an extension to the TLS | anguage, but its neaning
shoul d be relatively obvious. Also note that the [size] syntax
defines a fixed-1ength el ement that does not include the |ength of
the element in the on-the-wire encodi ng.

A Resourceld, shown bel ow, represents a single Resource-ID.
typedef opaque Resour cel d<0. . 2"8- 1>
Li ke a Nodeld, a Resourceld is an opaque string of bytes, but unlike

Nodel ds, Resourcelds are variable length, up to 254 bytes (2040 bits)
inlength. On the wire, each Resourceld is preceded by a single

Jenni ngs, et al. St andards Track [Page 44]

RFC 6940 RELOAD Base January 2014

I ength byte (allowing lengths up to 255 bytes). Thus, the 3-byte
val ue "FOO'" woul d be encoded as: 03 46 4f 4f. Note the < range >
syntax defines a variable length elenment that includes the | ength of
the element in the on-the-wire encoding. The nunber of bytes to
encode the length on the wire is derived by range; i.e., it is the
m ni mum nunber of bytes which can encode the | argest range val ue.

A nmore conplicated exanple is | pAddressPort, which represents a
net wor k address and can be used to carry either an | Pv6 or |Pv4
addr ess:

enum { inval i dAddressType(0), ipv4_address(1l), ipv6_address(2),
(255) } AddressType;

struct {
ui nt 32 addr ;
uint16 port;
} | Pv4Addr Port;
struct {
ui nt 128 addr;
uint16 port;
} I Pv6Addr Port;
struct {
Addr essType type;
ui nt8 | engt h;

sel ect (type) {
case i pv4_address:
| Pv4Addr Port vdaddr port;

case i pv6_address:
| Pv6Addr Port v6addr _port;

/* This structure can be extended */
b
} 1 pAddressPort;

The first two fields in the structure are the sane no nmatter what
ki nd of address is being represented:

type: The type of address (IPv4 or |Pv6).

length: The Iength of the rest of the structure.

Jenni ngs, et al. St andards Track [Page 45]

RFC 6940 RELOAD Base January 2014

By having the type and the | ength appear at the beginning of the
structure regardl ess of the kind of address being represented, an

i mpl enent ati on whi ch does not understand new address type X can stil
parse the | pAddressPort field and then discard it if it is not
needed.

The rest of the | pAddressPort structure is either an | Pv4AddrPort or
an | Pv6AddrPort. Both of these sinply consist of an address
represented as an integer and a 16-bit port. As an exanple, here is
the wire representation of the IPv4 address "192.0.2.1" with port

"6084".
01 ; type = | Pv4
06 ; length =6
cO 00 02 01 ; address = 192.0.2.1
17 c4 ; port = 6084

Unl ess a given structure that uses a select explicitly allows for
unknown types in the select, any unknown type SHOULD be treated as a
parsing error, and the whol e nessage SHOULD be di scarded with no
response.

6.3.2. Forwardi ng Header

The forwardi ng header is defined as a Forwardi ngHeader structure, as
shown bel ow.

struct {
ui nt 32 rel o_token;
ui nt 32 overl ay;
uintl16 configuration_sequence;
ui nt 8 ver si on;
ui nt8 ttl;
ui nt 32 fragment;
ui nt 32 | engt h;
ui nt 64 transaction_id;
ui nt 32 nmax_response_| engt h;
ui nt 16 via_list_length;
ui nt 16 destination_list_length;
uint16 options_I| engt h;
Destination via_list[via_list_length];
Destination destination_|ist

[destination_ |ist |ength];
For war di ngOpt i on options[options_|ength];
} Forwar di ngHeader ;

Jenni ngs, et al. St andards Track [Page 46]

RFC 6940 RELOAD Base January 2014

The contents of the structure are:

rel o_token: The first four bytes identify this nmessage as a RELQCAD
message. This field MJST contain the val ue 0xd2454c4f (the string
"RELO" with the high bit of the first byte set).

overlay: The 32-bit checksuni hash of the overlay being used. This
MUST be formed by taking the lower 32 bits of the SHA-1 [RFC3174]
hash of the overlay name. The purpose of this field is to allow
nodes to participate in multiple overlays and to detect accidenta
m sconfiguration. This is not a security-critical function. The
overl ay name MJST consi st of a sequence of characters that would
be all owabl e as a DNS name. Specifically, as it is used in a DNS
| ookup, it will need to be conmpliant with the grammar for the
domai n as specified in Section 2.3.1 of [RFCL1035].

configuration_sequence: The sequence nunber of the configuration
file. See Section 6.3.2.1 for details.

version: The version of the RELOAD protocol being used tines 10.
RELOAD versi on nunmbers are fixed-point decimal nunbers between
fi xed-point integer between 0.1 and 25.4. This document describes
version 1.0, with a value of OxOa. (Note that versions used prior
to the publication of this RFC used version nunber 0.1.) Nodes
MUST rej ect nmessages with other versions.

ttl: An 8-bit field indicating the nunber of iterations, or hops, a
nmessage can experience before it is discarded. The TTL (tine-to-
live) value MIST be decrenented by one at every hop along the
route the nessage traverses just before transmssion. If a
recei ved nessage has a TTL of 0 and the nessage i s not destined
for the receiving node, then the nmessage MJUST NOT be propagated
further, and an Error_TTL_Exceeded error should be generated. The
initial value of the TTL SHOULD be 100 and MJUST NOT exceed 100
unl ess defined otherw se by the overlay configuration
| mpl enent ati ons which receive nessages with a TTL greater than the
current value of initial-ttl (or the default of 100) MJST discard
the nmessage and send an Error_ TTL_Exceeded error

fragment: This field is used to handle fragnentation. The high bit
(0x80000000) MUIST be set for historical reasons. |If the next bit
(0x40000000) is set to 1, it indicates that this is the last (or
only) fragment. The next six bits (0x20000000 through 0x01000000)
are reserved and SHOULD be set to zero. The renninder of the
field is used to indicate the fragnent offset; see Section 6.7 for
details.

Jenni ngs, et al. St andards Track [Page 47]

RFC 6940 RELOAD Base January 2014

l ength: The count in bytes of the size of the nessage, including the
header, after the eventual fragnmentation

transaction_id: A unique 64-bit nunber that identifies this
transaction and al so allows receivers to di sanbi guate transactions
which are otherwise identical. 1In order to provide a high
probability that transaction IDs are unique, they MJST be randomy
generated. Responses use the sanme transaction ID as the request
to which they correspond. Transaction IDs are al so used for
fragment reassenbly. See Section 6.7 for details.

max_response | ength: The naxi mum size in bytes of a response. This
is used by requesting nodes to avoid receiving (unexpected) very
| arge responses. |If this value is non-zero, responding peers MJST
check that any response woul d not exceed it and if so generate an
Error I nconpatible_ with_Overlay value. This value SHOULD be set
to zero for responses.

via_ list _length: The length of the Via List in bytes. Note that in
this field and the following two length fields, we depart fromthe
usual variable-length convention of having the length i mediately
precede the value, in order to nake it easier for hardware
decodi ng engines to quickly determine the length of the header

destination_ |list length: The length of the Destination List in
byt es.

options_length: The Iength of the header options in bytes.

via_ list: The via list contains the sequence of destinations through
whi ch the nessage has passed. The via |list starts out enpty and
grows as the nmessage traverses each peer. |In stateless cases, the
previous hop that the nmessage is fromis appended to the Via List
as specified in Section 6.1.2.

destination list: The destination_|list contains a sequence of
destinations through which the nmessage should pass. The
Destination List is constructed by the nessage originator. The
first element on the Destination List is where the nmessage goes
next. GCenerally, the list shrinks as the message traverses each
listed peer, though if list conpression is used, this may not be
true.

options: Contains a series of ForwardingOption entries. See
Section 6.3.2.3.

Jenni ngs, et al. St andards Track [Page 48]

RFC 6940 RELOAD Base January 2014

6.3.2.1. Processing Configuration Sequence Nunbers

In order to be part of the overlay, a node MJST have a copy of the
overlay Configuration Docunment. In order to allow for configuration
docunent changes, each version of the Configuration Docunent MUST
contain a sequence nunber which MJST be nonotonically increasing nod
65535. Because the sequence nunber may, in principle, wap, greater
than or less than are interpreted by nodulo arithnmetic as in TCP

VWhen a destination node receives a request, it MJST check that the
configuration_sequence field is equal to its own configuration
sequence nunber. |f they do not match, the node MJST generate an
error, either Error_Config Too Od or Error_Config Too New. In
addition, if the configuration file in the request is too old, the
node MJUST generate a ConfigUpdate nessage to update the requesting
node. This allows new Configuration Docunents to propagate quickly
throughout the system The one exception to this rule is that if the
configuration_sequence field is equal to 65535 and the nessage type
is ConfigUpdate, then the nessage MJUST be accepted regardl ess of the
recei ving node's configurati on sequence nunber. Since 65535 is a
speci al val ue, peers sending a new configuration when the
configuration sequence is currently 65534 MJST set the configuration
sequence nunber to O when they send a new configuration

Jenni ngs, et al. St andards Track [Page 49]

RFC 6940 RELOAD Base January 2014

6.3.2.2. Destination and Via Lists

The Destination List and Via List are sequences of Destination
val ues:

enum { invalidDestinationType(0), node(1l), resource(2),
opaque_id_type(3), /* 128-255 not allowed */ (255) }
Desti nati onType;

sel ect (destination_type) {
case node:
Nodel d node_i d;

case resource
Resourcel d resource_id;

case opaque_i d_type:
opaque opaque_i d<0. . 2"8- 1>;

/* This structure may be extended with new types */
} DestinationDat a;

struct {
Desti nati onType type;
uint8 | engt h;
Desti nati onDat a destinati on_data

} Destination;

struct {
uintl16 opaque_id; /* Top bit MJST be 1 */
} Destination;

If the destination structure is a 16-bit integer, then the first bit
MJUST be set to 1, and it MJST be treated as if it were a ful
structure with a Destinati onType of opaque_id_type and an opaque_id
that was 2 bytes long with the value of the 16-bit integer. If the
destination structure starts with Destinati onType, then the first bit
MUST be set to O, and the destination structure nust use a TLV
structure with the follow ng contents:

type

The type of the DestinationData Payload Data Unit (PDU). It nay
be one of "node", "resource", or "opaque_id_ type"
[engt h

The I ength of the destination_data.

Jenni ngs, et al. St andards Track [Page 50]

RFC 6940 RELOAD Base January 2014

destinati on_data
The destination value itself, which is an encoded Desti nati onData
structure that depends on the value of "type"

Note that the destination structure encodes a Type, Length, Val ue.
The Length field specifies the I ength of the DestinationData val ues,
which allows the addition of new DestinationTypes. It also allows an
i mpl enent ati on whi ch does not understand a given DestinationType to
skip over it.

A DestinationData can be one of three types:

node
A Node- | D.

opaque
A compressed |ist of Node-IDs and an eventual Resource-ID.
Because this val ue has been conpressed by one of the peers, it is
nmeani ngful only to that peer and cannot be decoded by other peers.
Thus, it is represented as an opaque string.

resource
The Resource-1D of the resource which is desired. This type MJST
appear only in the final location of a Destination List and MJST
NOT appear in a Via List. It is neaningless to try to route
through a resource.

One possi bl e encoding of the 16-bit integer version as an opaque
identifier is to encode an index into a Connection Table. To avoid
m srouting responses in the event a response is delayed and the
Connection Table entry has changed, the identifier SHOULD be split
bet ween an i ndex and a generation counter for that index. Wen a
Node first joins the overlay, the generation counters SHOULD be
initialized to random val ues. An inplenentati on MAY use 12 bits for
the Connection Table index and 3 bits for the generation counter.
(Note that this does not suggest a 4096-entry Connection Table for
every peer, only the ability to encode for a | arger Connection
Table.) Wen a Connection Table slot is used for a new connection
the generation counter is incremented (with wapping). Connection
Table slots are used on a rotating basis to maxim ze the tine

i nterval between uses of the sane slot for different connections.
When routing a message to an entry in the Destination List encoding a
Connection Table entry, the peer MUST confirmthat the generation
counter matches the current generation counter of that index before
forwarding the message. |If it does not match, the nmessage MJST be
silently dropped.

Jenni ngs, et al. St andards Track [Page 51]

RFC 6940 RELOAD Base January 2014

6.3.2.3. Forwarding Option

The Forwardi ng header can be extended with forwardi ng header options,
which are a series of Forwardi ngOpti on structures:

enum { invalidForwardi ngOpti onType(0), (255) }
For war di ngOpt i onType;

struct {
For war di ngOpt i onType type;
uint8 fl ags;
uintl16 | engt h;

sel ect (type) {
/* This type may be extended */
3

} Forwardi ngOpti on;

Each Forwardi ngOption consists of the follow ng val ues:

type
The type of the option. This structure allows for unknown options

types.

flags
Three flags are defined: FORWARD CRI TI CAL(0x01),
DESTI NATI ON_CRI Tl CAL(0x02), and RESPONSE COPY(0x04). These fl ags
MUST NOT be set in a response. |If the FORWARD CRITICAL flag is
set, any peer that would forward the nmessage but does not
understand this option MIST reject the request with an
Error_Unsupported Forwardi ng_Option error response. |f the
DESTI NATION CRITICAL flag is set, any node that generates a
response to the nmessage but does not understand the forwarding
option MJST reject the request with an
Error _Unsupported_Forwardi ng_Option error response. |f the
RESPONSE_COPY flag is set, any node generating a response MJST
copy the option fromthe request to the response except that the
RESPONSE_COPY, FORWARD_CRI Tl CAL, and DESTI NATI ON_CRI Tl CAL fl ags
MUST be cl eared.

 ength
The I ength of the rest of the structure. Note that a O | ength may
be reasonable if the nere presence of the option is neaningful and
no value is required.

option
The option val ue.

Jenni ngs, et al. St andards Track [Page 52]

RFC 6940 RELOAD Base January 2014

6.3.3. Message Contents Fornmat

The second major part of a RELOAD nmessage is the contents part, which
i s defined by MessageContents:

enum { inval i dMessageExt ensi onType(0),
(2716-1) } MessageExt ensi onType;

struct {
MessageExt ensi onType type;
Bool ean critical
opaque ext ensi on_cont ent s<0. . 2"32- 1>;

} MessageExt ensi on;

struct {
uint16 nmessage_code;
opaque message_body<0. . 2732- 1>;
MessageExt ensi on ext ensi ons<0. . 2"32- 1>;

} MessageCont ents;

The contents of this structure are as foll ows:

nessage_code
This indicates the nessage that is being sent. The code space is
broken up as foll ows:

0x0 Invalid Message Code. This code will never be assigned.

0x1 .. Ox7FFF Requests and responses. These code points are
al ways paired, with requests being an odd val ue and the
correspondi ng response being the request code plus 1. Thus,
"probe_request" (the Probe request) has the value 1 and
"probe_answer" (the Probe response) has the value 2

0x8000 .. OxFFFE Reserved
OxFFFF Error
The nessage codes are defined in Section 14. 8.

nmessage_body
The nessage body itself, represented as a variable-length string
of bytes. The bytes thensel ves are dependent on the code val ue.
See the sections describing the various RELOAD net hods (Join

Update, Attach, Store, Fetch, etc.) for the definitions of the
payl oad contents.

Jenni ngs, et al. St andards Track [Page 53]

RFC 6940 RELOAD Base January 2014

ext ensi ons
Extensions to the nessage. Currently no extensions are defined,
but new extensions can be defined by the process described in
Section 14. 14.

Al'l extensions have the followi ng form

type
The extension type.

critical
Whet her this extension needs to be understood in order to process
the nessage. |If critical = True and the recipient does not
understand the nessage, it MJST generate an
Error _Unknown_Extension error. |If critical = False, the recipient

MAY choose to process the nessage even if it does not understand
t he extension.

ext ensi on_contents
The contents of the extension (which are extension dependent).

The subsections 6.4.2, 6.5, and 7 describe structures that are

i nserted inside the nessage_body nenber, depending on the val ue of
the nessage_code val ue. For exanple, a nessage code val ue of
join_req nmeans that the structure naned JoinReq is inserted inside
nessage body. This docunment does not contain a mapping between
nessage_code val ues and structure nanes, as the conversion between
the two i s obvious.

Simlarly, this docunent uses the name of the structure wi thout the
"Req" or "Ans" suffix to nean the execution of a transaction

consi sting of the matching request and answer. For exanple, when the
text says "performan Attach", it nust be understood as performng a
transacti on conposed of an AttachReq and an AttachAns.

6.3.3.1. Response Codes and Response Errors

A node processing a request MJST return its status in the
nmessage_code field. |If the request was a success, then the nessage
code MJST be set to the response code that matches the request (i.e.,
the next code up). The response payload is then as defined in the
request/response descriptions.

If the request has failed, then the message code MJUST be set to

oxffff (error) and the payl oad MJST be an error_response nessage, as
shown bel ow.

Jenni ngs, et al. St andards Track [Page 54]

RFC 6940 RELOAD Base January 2014

When the nmessage code is OxFFFF, the payl oad MUST be an
Err or Response:

public struct {

uint 16 error_code;

opaque error _info<0..2"16-1>;
} ErrorResponse;

The contents of this structure are as foll ows:

error_code
A nuneric error code indicating the error that occurred.

error_info
An optional arbitrary byte string. Unless otherw se specified,
this will be a UTF-8 text string that provides further informtion
about what went wong. Developers are encouraged to include
enough di agnostic information to be useful in error_info. The
specific text to be used and any rel evant | anguage or encodi ng
thereof is left to the inplenmentation

The followi ng error code values are defined. The numeric values for
these are defined in Section 14.9.

Error _For bi dden
The requesting node does not have permi ssion to nmake this request.

Error_Not Found
The resource or node cannot be found or does not exist.

Error _Request _Ti neout
A response to the request has not been received in a suitable
amount of tine. The requesting node MAY resend the request at a
later tine.

Error_Data Too O d
A store cannot be conpl eted because the storage_tine precedes the
exi sting val ue.

Error_Data_Too_Large
A store cannot be conpl eted because the requested object exceeds
the size limts for that Kind.

Error_GCeneration_Counter_ Too_ Low

A store cannot be conpl eted because the generation counter
precedes the existing val ue.

Jenni ngs, et al. St andards Track [Page 55]

RFC 6940 RELOAD Base January 2014

Error I nconpatible with Overlay
A peer receiving the request is using a different overlay, overlay
algorithm or hash algorithm or sonme other paraneter that is
i nconsistent with the overlay configuration

Error _Unsupported Forwardi ng_Option
A node received the request with a forwarding options flagged as
critical, but the node does not support this option. See
Section 6.3.2.3.

Error _TTL_ Exceeded
A peer received the request in which the TTL was decrenented to
zero. See Section 6.3.2.

Error _Message_Too_Large
A peer received a request that was too large. See Section 6.6.

Error _Response_Too_Large
A node woul d have generated a response that is too |large per the
max_response |l ength field.

Error_Config_Too_Od
A destination node received a request with a configuration
sequence that is too old. See Section 6.3.2.1.

Error_Config_Too_New
A destination node received a request with a configuration
sequence that is too new. See Section 6.3.2.1.

Error _Unknown_Ki nd
A destination peer received a request with an unknown Ki nd-I D
See Section 7.4.1.2.

Error_I n_Progress
An Attach to this peer is already in progress. See
Section 6.5.1. 2.

Er r or _Unknown_Ext ensi on
A destination node received a request with an unknown extension

Error_I nvali d_Message
Sonet hi ng about this nessage is invalid, but it does not fit the
other error codes. Wen this nessage is sent, inplenentations
SHOULD provi de sonme meani ngful description in error_info to aid in
debuggi ng.

Jenni ngs, et al. St andards Track [Page 56]

RFC 6940 RELOAD Base January 2014

Error _Exp_A
For the purposes of experinentation. It is not nmeant for vendor-
specific use of any sort and MJUST NOT be used for operationa
depl oynent s.

Error _Exp_B
For the purposes of experinentation. It is not nmeant for vendor-
specific use of any sort and MJUST NOT be used for operationa
depl oynent s.

6.3.4. Security Block

The third part of a RELOAD nessage is the security block. The
security block is represented by a SecurityBl ock structure

struct ({
CertificateType type; /1 From RFC 6091
opaque certificate<0..2"16-1>;

} CenericCertificate;

struct {
CenericCertificate certificates<0..2"16-1>;
Si gnature si gnat ur e;

} SecurityBl ock
The contents of this structure are:

certificates
A bucket of certificates.

sighature
A signature.

The certificates bucket SHOULD contain all the certificates necessary
to verify every signature in both the nmessage and the interna

nessage objects, except for those certificates in a root-cert el enent
of the current configuration file. This is the only location in the
nessage which contains certificates, thus allowi ng only a single copy
of each certificate to be sent. 1In systens that have an alternative
certificate distribution nechanism sone certificates MAY be onitted.
However, unless an alternative nechanismfor i medi ately generating
certificates, such as shared secret security (Section 13.4) is used,

i mpl enenters MUST include all referenced certificates.

NOTE TO | MPLEMENTERS: This requirenent inplies that a peer storing
data is obligated to retain certificates for the data that it holds.

Jenni ngs, et al. St andards Track [Page 57]

RFC 6940 RELOAD Base January 2014

Each certificate is represented by a GenericCertificate structure
whi ch has the foll owi ng contents:

type
The type of the certificate, as defined in [RFC6091]. Only the
use of X. 509 certificates is defined in this docunent.

certificate
The encoded version of the certificate. For X 509 certificates,
it is the D stinguished Encoding Rules (DER) form

The signature is conputed over the payload and parts of the
forwardi ng header. |n case of a Store, the payload MJST contain an
addi ti onal signature conputed as described in Section 7.1. Al
signatures MUST be formatted using the Signature elenment. This
element is also used in other contexts where signatures are needed.
The input structure to the signature conmputati on MAY vary dependi ng
on the data el enent bei ng signed.

enum { invalidSignerldentityType(0),
cert _hash(1l), cert_hash_node_id(2),
none(3)
(255) } SignerldentityType;

struct {
sel ect (identity type) {

case cert _hash
HashAl gorithm hash_al g; /1 From TLS
opaque certificate _hash<0..2"8-1>;

case cert_hash_node_i d:

HashAl gorithm hash_al g; /1 From TLS

opaque certificate_node_ id hash<0..2"8-1>;
case none:

[* enmpty */

[* This structure may be extended with new types if necessary*/

I
} SignerldentityVal ue;

struct {
Si gnerldentityType identity type;
ui nt 16 | engt h;
Si gnerldentityVal ue identity[Signerldentity.length];

} Signerldentity;

Jenni ngs, et al. St andards Track [Page 58]

RFC 6940 RELOAD Base January 2014

struct {
Si gnat ur eAndHashAl gori t hm al gorithm /1 From TLS
Signerldentity identity;
opaque si gnat ur e_val ue<0. . 2"16- 1>;

} Signature;
The Signature construct contains the follow ng val ues:

al gorithm
The signature algorithmin use. The algorithmdefinitions are
found in the I ANA TLS Si gnat ureAl gorithm and HashAl gorithm
registries. Al inplenentations MJST support RSASSA- PKCS1-vl 5
[RFC3447] signatures with SHA-256 hashes [RFC6234].

identity
The identity, as defined in the two paragraphs follow ng this
list, used to formthe signature

si gnat ure_val ue
The val ue of the signature.

Note that storage operations allow for special values of algorithm
and identity. See the Store Request definition (Section 7.4.1.1)
and the Fetch Response definition (Section 7.4.2.2).

There are two pernitted identity formats, one for a certificate with
only one Node-ID and one for a certificate with nmultiple Node-IDs.
In the first case, the cert_hash type MJST be used. The hash_alg
field is used to indicate the algorithmused to produce the hash.
The certificate_hash contains the hash of the certificate object
(i.e., the DER-encoded certificate).

In the second case, the cert_hash _node_id type MUST be used. The
hash_alg is as in cert_hash, but the cert_hash_node_id is conputed
over the Nodeld used to sign concatenated with the certificate; i.e.
H(Nodel d || certificate). The Nodeld is represented w thout any
framing or length fields, as sinple raw bytes. This is safe because
Nodel ds are a fixed length for a given overl ay.

For signatures over nessages, the input to the signature is conputed
over:

overlay || transaction_id || MessageContents || Signerldentity

where overlay and transaction_id conme fromthe forwardi ng header and
| | indicates concatenation.

Jenni ngs, et al. St andards Track [Page 59]

RFC 6940 RELOAD Base January 2014

6.

6.

4.

4.

The input to signatures over data values is different and is
described in Section 7. 1.

Al RELCAD nessages MJST be signed. Internediate nodes do not verify
signatures. Upon receipt (and fragnent reassenbly, if needed), the
destinati on node MUST verify the signature and the authori zi ng
certificate. |If the signature fails, the inplenmentati on SHOULD
sinply drop the nmessage and MJUST NOT process it. This check provides
a mnimal |evel of assurance that the sending node is a valid part of
the overlay, and it provides cryptographi c authentication of the
sendi ng node. In addition, responses MJST be checked as foll ows by
the requesting node:

1. The response to a nessage sent to a Node-1D MJST have been sent
by that Node-I1D unless the response has been sent to the wildcard
Node- | D

2. The response to a nessage sent to a Resource-1D MJST have been
sent by a Node-1D which is at |east as close to the target
Resource-1D as any node in the requesting node’s Nei ghbor Tabl e.

The second condition serves as a primtive check for responses from
wi I dly wong nodes but is not a conplete check. Note that in periods
of churn, it is possible for the requesting node to obtain a closer
nei ghbor while the request is outstanding. This will cause the
response to be rejected and the request to be retransmitted.

In addition, some methods (especially Store) have additiona
aut hentication requirenents, which are described in the sections
covering those nethods.

Overl ay Topol ogy

As di scussed in previous sections, RELOAD defines a default overlay
t opol ogy (CHORD- RELOAD) but allows for other topol ogies through the
use of Topol ogy Plug-ins. This section describes the requirenents
for new Topol ogy Plug-ins and the nethods that RELOAD provi des for
over | ay topol ogy nai ntenance.

1. Topology Plug-in Requirenents

When specifying a new overlay algorithm at |least the follow ng MJST
be descri bed:

o Joining procedures, including the contents of the Join nmessage.

Jenni ngs, et al. St andards Track [Page 60]

RFC 6940 RELOAD Base January 2014

o Stabilization procedures, including the contents of the Update
nessage, the frequency of topol ogy probes and keepalives, and the
mechani sm used to detect when peers have di sconnect ed.

o Exit procedures, including the contents of the Leave nessage.

o The length of the Resource-IDs and for DHTs the hash algorithmto
conpute the hash of an identifier

o The procedures that peers use to route messages.
o The replication strategy used to ensure data redundancy.

Al'l overlay algorithms MJST specify mai ntenance procedures that send
Updates to clients and peers that have established connections to the
peer responsible for a particular 1D when the responsibility for that
I D changes. Because tracking this information is difficult, overlay
al gorithnms MAY sinply specify that an Update is sent to all nenbers
of the Connection Tabl e whenever the range of I1Ds for which the peer

i s responsi bl e changes.

6.4.2. Methods and Types for Use by Topol ogy Pl ug-ins

This section describes the nethods that Topol ogy Plug-ins use to
join, leave, and maintain the overl ay.

6.4.2.1. Join

A new peer (which already has credential s) uses the Joi nReq nessage
to join the overlay. The JoinReq is sent to the responsible peer
dependi ng on the routing nechani sm described in the Topol ogy Plug-in
Thi s nmessage notifies the responsible peer that the new peer is
taki ng over some of the overlay and that it needs to synchronize its

state.
struct {
Nodel d j oi ni ng_peer _id;
opaque overl ay_specific_dat a<0..2"16- 1>;
} Joi nReq;

The m ni mal Joi nReq contains only the Node-ID which the sendi ng peer
wi shes to assunme. Overlay algorithns MAY specify other data to
appear in this request. Receivers of the JoinReq MJST verify that
the joining peer_id field matches the Node-1D used to sign the
nmessage and, if not, the message MJST be rejected with an
Error_Forbi dden error.

Jenni ngs, et al. St andards Track [Page 61]

RFC 6940 RELOAD Base January 2014

Because joins nmay be executed only between nodes which are directly
adj acent, receiving peers MJST verify that any Joi nReq they receive
arrives froma transport channel that is bound to the Node-1D to be
assuned by the Joining Node. Inplenentations MJUST use DTLS
anti-replay nechani sns, thus preventing replay attacks.

If the request succeeds, the respondi ng peer responds with a Joi nAns
nessage, as defined bel ow

struct ({
opaque over | ay_speci fi c_dat a<0..2"16- 1>;
} Joi nAns;

If the request succeeds, the respondi ng peer MJIST foll ow up by
executing the right sequence of Stores and Updates to transfer the
appropriate section of the overlay space to the Joining Node. In
addition, overlay algorithms MAY define data to appear in the
response payl oad that provides additional information.

Joi ni ng Nodes MUST verify that the signature on the Joi nAns nessage
mat ches the expected target (i.e., the adjacency over which they are
joining). If not, they MJST discard the nessage.

In general, nodes which cannot form connections SHOULD report an
error to the user. However, inplenentations MJST provide sone
mechani sm wher eby nodes can determ ne that they are potentially the
first node and can take responsibility for the overlay. (The idea is
to avoi d having ordinary nodes try to becone responsible for the
entire overlay during a partition.) This specification does not
mandat e any particul ar nechanism but a configuration flag or setting
seens appropriate

6.4.2.2. Leave
The LeaveReq nessage is used to indicate that a node is exiting the

overlay. A node SHOULD send this nessage to each peer with which it
is directly connected prior to exiting the overl ay.

struct {

Nodel d | eavi ng_peer _i d;

opaque over | ay_speci fi c_dat a<0..2"16- 1>;
} LeaveReq;

LeaveReq contains only the Node-1D of the |eaving peer. Overlay

al gorithms MAY specify other data to appear in this request.

Recei vers of the LeaveReq MJST verify that the | eaving peer_id field
mat ches the Node-1D used to sign the message and, if not, the nessage
MUST be rejected with an Error_Forbi dden error

Jenni ngs, et al. St andards Track [Page 62]

RFC 6940 RELOAD Base January 2014

Because | eaves may be executed only between nodes which are directly
adj acent, receiving peers MJST verify that any LeaveReq they receive
arrives froma transport channel that is bound to the Node-1D to be
assuned by the leaving peer. This also prevents replay attacks,
provi ded that DTLS anti-replay is used.

Upon receiving a Leave request, a peer MJST update its own Routing
Tabl e and send the appropriate Store/ Update sequences to re-stabilize
the overl ay.

LeaveAns is an enpty nessage
6.4.2.3. Update

Update is the primary overl ay-specific naintenance nmessage. It is
used by the sender to notify the recipient of the sender’s view of
the current state of the overlay (that is, its routing state), and it
is up to the recipient to take whatever actions are appropriate to
deal with the state change. |n general, peers send Update nessages
to all their adjacencies whenever they detect a topology shift.

VWhen a peer receives an Attach request with the send_update flag set
to True (Section 6.4.2.4.1), it MJIST send an Update nessage back to
the sender of the Attach request after conpletion of the
correspondi ng | CE check and TLS connection. Note that the sender of
such an Attach request may not have joined the overlay yet.

VWhen a peer detects through an Update that it is no | onger
responsi ble for any data value it is storing, it MJST attenpt to
Store a copy to the correct node unless it knows the newy
responsi bl e node al ready has a copy of the data. This prevents data
| oss during large-scale topology shifts, such as the nerging of
partitioned overl ays.

The contents of the UpdateReq nessage are conpletely overl ay
specific. The UpdateAns response is expected to be either success or
an error.

6.4.2.4. RouteQuery

The Rout eQuery request allows the sender to ask a peer where they
woul d route a nmessage directed to a given destination. 1In other
words, a RouteQuery for a destination X requests the Node-I1D for the
node that the receiving peer would next route to in order to get to
X. A RouteQuery can also request that the receiving peer initiate an
Update request to transfer the receiving peer’s Routing Table.

Jenni ngs, et al. St andards Track [Page 63]

RFC 6940 RELOAD Base January 2014

One inportant use of the RouteQuery request is to support iterative
routing. The sender selects one of the peers in its Routing

Tabl e and sends it a RouteQuery nessage with the destination field
set to the Node-ID or Resource-IDto which it wishes to route. The
recei ving peer responds with information about the peers to which the
request woul d be routed. The sending peer MAY then use the Attach
nethod to attach to that peer(s) and repeat the RouteQuery.
Eventual |y, the sender gets a response froma peer that is closest to
the identifier in the destination field as determ ned by the Topol ogy
Plug-in. At that point, the sender can send nmessages directly to
that peer.

6.4.2.4.1. Request Definition

A Rout eQueryReq nessage indicates the peer or resource that the
requesting node is interested in. It also contains a "send_update"
option that allows the requesting node to request a full copy of the
ot her peer’s Routing Table.

struct {
Bool ean send_updat e;
Destination destination
opaque over | ay_speci fi c_dat a<0..2"16- 1>;

} Rout eQuer yReq;
The contents of the RouteQueryReq nessage are as follows:

send_updat e
A single byte. This may be set to True to indicate that the
requester wi shes the responder to initiate an Update request
i mediately. Qherwi se, this value MJIST be set to Fal se.

desti nati on
The destination which the requester is interested in. This may be
any valid destination object, including a Node-1D, opaque ID, or
Resource- I D.
Note: If inplenentations are using opaque |IDs for privacy
pur poses, answering RouteQueryReqs for opaque IDs will allow the

requester to translate an opaque ID. |Inplenmentations MAY wish to
consider limting the use of RouteQuery for opaque IDs in such
cases.

overlay_ specific_data
Q her data as appropriate for the overl ay.

Jenni ngs, et al. St andards Track [Page 64]

RFC 6940 RELOAD Base January 2014

6.4.2.4.2. Response Definition

A response to a successful RouteQueryReq request is a RouteQueryAns
message. This nessage is conpletely overlay specific.

6.4.2.5. Probe

Probe provides prinmtive "exploration" services: it allows a node to
det ermi ne whi ch resources another node is responsible for. A probe
can be addressed to a specific Node-1D or to the peer controlling a
given location (by using a Resource-1D). 1In either case, the target
node responds with a sinple response containing some status

i nformation.

6.4.2.5.1. Request Definition

The ProbeReq nmessage contains a list (potentially enpty) of the
pi eces of status information that the requester would |ike the
responder to provide.

enum { invalidProbel nformati onType(0), responsible_set(1),
num resources(2), uptime(3), (255) }
Pr obel nf or mati onType;

struct {
Probel nf or mat i onType request ed_i nf 0<0. . 2"8- 1>;
} ProbeReq;

The currently defined val ues for Probel nformati onType are:

responsi bl e_set
I ndi cates that the peer should Respond with the fraction of the
overlay for which the responding peer is responsible.

num_ r esour ces
I ndi cates that the peer should Respond with the nunber of
resources currently being stored by the peer. Note that nmultiple
val ues under the sanme Resource-|D are counted only once.

uptime

I ndi cates that the peer should Respond with how | ong the peer has
been up, in seconds.

Jenni ngs, et al. St andards Track [Page 65]

RFC 6940 RELOAD Base January 2014

6.4.2.5.2. Response Definition

A successful ProbeAns response contains the information el ements
requested by the peer

struct {
sel ect (type) {
case responsi bl e_set:
ui nt 32 responsi bl e_ppb;

case num resources:
ui nt 32 num r esour ces;

case upti ne:

ui nt 32 upti me;
[* This type may be extended */
}
} Probel nformati onDat a;
struct {
Pr obel nf or mati onType type;
uint8 | engt h;
Pr obel nf or mat i onDat a val ue;

} Probel nformation;

struct {
Pr obel nf or mat i on probe_i nfo0<0..2"16- 1>;
} ProbeAns;

A ProbeAns nessage contains a sequence of Probelnformation
structures. Each has a "length" indicating the length of the
followi ng value field. This structure allows for unknown option
types.

Each of the current possible Probe information types is a 32-bit

unsi gned integer. For type "responsible ppb", it is the fraction of
the overlay for which the peer is responsible, in parts per billion
For type "numresources", it is the nunmber of resources the peer is
storing. For the type "uptime", it is the nunber of seconds the peer

has been up.
The respondi ng peer SHOULD include any val ues that the requesting

node requested and that it recognizes. They SHOULD be returned in
the requested order. Any other values MJST NOT be returned.

Jenni ngs, et al. St andards Track [Page 66]

RFC 6940 RELOAD Base January 2014

6.5. Forwardi ng and Link Managenent Layer

Each node nai ntains connections to a set of other nodes defined by
the Topology Plug-in. This section defines the methods RELOAD uses
to formand mai ntain connections between nodes in the overlay. Three
nmet hods are defined:

Attach
Used to form RELOAD connecti ons between nodes using | CE for NAT
traversal. Wen node A wants to connect to node B, it sends an

Attach nmessage to node B through the overlay. The Attach contains
A's | CE paraneters. B responds with its |ICE paraneters, and the
two nodes performICE to formconnection. Attach also allows two
nodes to connect via No-I1CE instead of full ICE.

AppAt t ach
Used to form application-layer connections between nodes.

Pi ng
A sinple request/response which is used to verify connectivity of
the target peer.

6.5.1. Attach

A node sends an Attach request when it wishes to establish a direct
Overlay Link connection to another node for the purpose of sending
RELOAD nessages. A client that can establish a connection directly
need not send an Attach, as described in the second bullet of
Section 4.2.1.

As described in Section 6.1, an Attach may be routed to either a
Node-1D or a Resource-ID. An Attach routed to a specific Node-ID
will fail if that node is not reached. An Attach routed to a
Resource-1D will establish a connection with the peer currently
responsi ble for that Resource-1D, which may be useful in establishing
a direct connection to the responsible peer for use with frequent or
| arge resource updates.

An Attach, in and of itself, does not result in updating the Routing
Tabl e of either node. That function is perfornmed by Updates. |If
node A has Attached to node B, but has not received any Updates from
B, it MAY route nmessages which are directly addressed to B through
that channel, but it MJUST NOT route nessages through B to other peers
via that channel. The process of Attaching is separate fromthe
process of becom ng a peer (using Join and Update), to prevent half-
open states where a node has started to form connections but is not
really ready to act as a peer. Thus, clients (unlike peers) can
sinply Attach wi thout sending Join or Update.

Jenni ngs, et al. St andards Track [Page 67]

RFC 6940 RELOAD Base January 2014

6.5.1.1. Request Definition

An Attach request nessage contains the requesting node | CE connection
paranmeters formatted into a binary structure.

enum { invalidOverl ayLi nkType(0), DTLS-UDP-SR(1),
DTLS- UDP- SR- NO- | CE(3), TLS-TCP-FH NO- |1 CE(4),
(255) } Overl ayLi nkType;

enum { invalidCandType(O0),
host (1), srflx(2), /* RESERVED(3), */ relay(4),
(255) } CandType;

struct {
opaque name<0. . 2716- 1>;
opaque val ue<0. . 2"16- 1>;

} I ceExtension;

struct {
| pAddr essPor t addr_port;
Overl ayLi nkType overlay_link;
opaque f oundat i on<0. . 255>;
ui nt 32 priority;
CandType type;
sel ect (type) {
case host:
; [* Empty */
case srflx:
case rel ay:
| pAddr essPor t rel _addr _port;
b
| ceExt ensi on ext ensi ons<0. . 2716- 1>;
} lceCandidate
struct {
opaque uf rag<o0. . 2"8- 1>;
opaque passwor d<0. . 2"8- 1>;
opaque rol e<0..278-1>;
| ceCandi dat e candi dat es<0. . 2°16- 1>;
Bool ean send_updat e;

} AttachRegAns;
The val ues contained in AttachRegAns are:

ufrag
The username fragnent (from | CE)

Jenni ngs, et al. St andards Track [Page 68]

RFC 6940 RELOAD Base January 2014

passwor d
The | CE password.

rol e
An active/ passivel/actpass attribute from RFC 4145 [RFC4145]. This
val ue MUST be "passive" for the offerer (the peer sending the
Attach request) and "active" for the answerer (the peer sending
the Attach response).

candi dat es
One or nore | CE candi date val ues, as descri bed bel ow.

send_updat e
Has the sane neaning as the send update field in RouteQueryReq.

Each I CE candidate is represented as an | ceCandi date structure, which
is adirect translation of the information fromthe ICE string
structures, with the exception of the conponent ID. Since there is
only one conponent, it is always 1, and thus left out of the
structure. The renmnining values are specified as follows:

addr _port
Corresponds to the | CE connection-address and port productions.

overlay_link
Corresponds to the ICE transport production. Overlay Link
protocols used with No-ICE MJST specify "No-ICE" in their
description. Future overlay |link values can be added by defi ning
new Overl ayLi nkType values in the | ANA registry as described in
Section 14.10. Future extensions to the encapsul ation or fram ng
that provide for backward conpatibility with the previously
speci fied encapsul ati on or frani ng val ues MJST use the sane
Overl ayLi nkType val ue that was previously defined.
Over| ayLi nkType protocols are defined in Section 6.6

A single AttachRegAns MJST NOT include both candi dates whose
Overl ayLi nkType protocols use |ICE (the default) and candi dates
that specify "No-1CE".

f oundat i on
Corresponds to the I CE foundati on production

priority
Corresponds to the ICE priority production

type
Corresponds to the I CE cand-type production

Jenni ngs, et al. St andards Track [Page 69]

RFC 6940 RELOAD Base January 2014

rel addr _port
Corresponds to the ICE rel-addr and rel -port productions. It is
present only for types "relay", "prfix", and "srflx".

ext ensi ons
| CE extensions. The nane and val ue fields correspond to binary
transl ations of the equivalent fields in the | CE extensions.

These val ues shoul d be generated using the procedures described in
Section 6.5.1. 3.

6.5.1.2. Response Definition

If a peer receives an Attach request, it MJST determine how to
process the request as foll ows:

o If the peer has not initiated an Attach request to the originating
peer of this Attach request, it MJST process this request and
SHOULD generate its own response with an AttachRegAns. It should
then begin | CE checks.

o |If the peer has already sent an Attach request to and received the
response fromthe originating peer of this Attach request and, as
a result, an I CE check and TLS connection are in progress, then it
SHOULD generate an Error_In_Progress error instead of an
At t achRegAns.

o |If the peer has already sent an Attach request to but not yet
recei ved the response fromthe originating peer of this Attach
request, it SHOULD apply the following tie-breaker heuristic to
determ ne how to handle this Attach request and the inconplete
Attach request it has sent out:

* |f the peer’s own Node-I1D is smaller when conpared as big-
endi an unsigned integers, it MJST cancel retransm ssion of its
own inconplete Attach request. |t MJST then process this
Attach request, generate an AttachRegAns response, and proceed
with the correspondi ng | CE check.

* |f the peer’s own Node-I1D is |arger when conpared as bi g-endi an
unsi gned integers, it MJST generate an Error_In_Progress error
to this Attach request, and then proceed to wait for and
conplete the Attach and the corresponding | CE check it has
ori gi nat ed.

o If the peer is overloaded or detects some other kind of error, it
MAY generate an error instead of an AttachRegAns.

Jenni ngs, et al. St andards Track [Page 70]

RFC 6940 RELOAD Base January 2014

When a peer receives an Attach response, it SHOULD parse the response
and begin its own | CE checks.

6.5.1.3. Using ICE with RELOAD

This section describes the profile of ICE that is used with RELQAD.
RELOAD i npl emrent ati ons MUST i nplenment full |CE

In I CE, as defined by [RFC5245], the Session Description Protoco
(SDP) is used to carry the ICE paraneters. |In RELOAD, this function
is performed by a binary encoding in the Attach method. This
encoding is nore restricted than the SDP encodi ng because the RELOAD
environnent is sinpler:

0 Only a single nedia streamis supported.

o In this case, the "stream refers not to RTP or other types of
medi a, but rather to a connection for RELOAD itself or other
application-layer protocols, such as SIP

o RELQAD allows only for a single offer/answer exchange. Unlike the
usage of ICE within SIP, there is never a need to send a
subsequent offer to update the default candidates to match the
ones selected by ICE

An agent follows the | CE specification as described in [RFC5245] with
the changes and additional procedures described in the subsections
bel ow.

6.5.1.4. Collecting STUN Servers

ICE relies on the node having one or nore Session Traversal Utilities
for NAT (STUN) servers to use. |In conventional ICE, it is assuned
that nodes are configured with one or nmore STUN servers through sone
out - of -band nechanism This is still possible in RELOAD, but RELOAD
al so |l earns STUN servers as it connects to other peers.

A peer on a well-provisioned wi de-area overlay will be configured
with one or nore bootstrap nodes. These nodes make an initial |ist
of STUN servers. However, as the peer forms connections wth

addi tional peers, it builds nore peers that it can use |like STUN
servers.

Because conplicated NAT topol ogi es are possible, a peer may need nore
than one STUN server. Specifically, a peer that is behind a single
NAT will typically observe only two I P addresses in its STUN checks:
its local address and its server reflexive address froma STUN server
outside its NAT. However, if nore NATs are involved, a peer my

Jenni ngs, et al. St andards Track [Page 71]

RFC 6940 RELOAD Base January 2014

| earn additional server reflexive addresses (which vary based on
where in the topology the STUN server is). To nmaxinize the chance of
achieving a direct connection, a peer SHOULD group other peers by the
peer-refl exi ve addresses it discovers through them |t SHOULD then
sel ect one peer fromeach group to use as a STUN server for future
connecti ons.

Only peers to which the peer currently has connections may be used.
If the connection to that host is lost, it MJST be renoved fromthe
list of STUN servers, and a new server fromthe same group MJUST be

sel ected unless there are no others servers in the group, in which

case sone other peer MAY be used.

6.5.1.5. Gathering Candi dates

When a node wi shes to establish a connection for the purposes of
RELOAD signaling or application signaling, it follows the process of
gat hering candi dates as described in Section 4 of | CE [RFC5245].
RELOAD utilizes a single conponent. Consequently, gathering for
these "streans" requires a single component. |In the case where a
node has not yet found a TURN server, the agent would not include a
rel ayed candi date.

The | CE specification assunes that an I CE agent is configured wth,
or sonmehow knows of, TURN and STUN servers. RELOAD provides a way
for an agent to learn these by querying the overlay, as described in
Sections 6.5.1.4 and 9.

The default candi date sel ection described in Section 4.1.4 of ICE is
i gnored; defaults are not signaled or utilized by RELOAD.

An alternative to using the full |ICE supported by the Attach request
is to use the No-ICE nechani sm by providing candi dates with "No-I|CE"
Overlay Link protocols. Configuration for the overlay indicates
whet her or not these Overlay Link protocols can be used. An overlay
MUST be either all ICE or all No-ICE

No-1CE will not work in all the scenarios where | CE woul d work, but
in sone cases, particularly those with no NATs or firewalls, it wll
wor k.

6.5.1.6. Prioritizing Candi dates

St andardi zati on of additional protocols for use with ICE is expected,
i ncl udi ng TCP [RFC6544] and protocols such as the Stream Contro
Transm ssion Protocol (SCTP) [RFC4960] and Dat agram Congesti on
Control Protocol (DCCP) [RFC4340]. UDP encapsul ations for SCTP and
DCCP woul d expand the Overlay Link protocols avail able for RELOAD.

Jenni ngs, et al. St andards Track [Page 72]

RFC 6940 RELOAD Base January 2014

When additional protocols are available, the following prioritization
i s RECOMVENDED

o Highest priority is assigned to protocols that offer well-
under st ood congestion and flow control w thout head-of-Iine
bl ocki ng, for exanple, SCTP without nessage ordering, DCCP, and
those protocol s encapsul ated usi ng UDP

o Second highest priority is assigned to protocols that offer well-
under st ood congestion and flow control, but that have head-of-1line
bl ocki ng, such as TCP

o Lowest priority is assigned to protocols encapsul ated over UDP
that do not inplenent well-established congestion contro
algorithms. The DILS/UDP with Sinple Reliability (SR) overlay
link protocol is an exanple of such a protocol

Head-of -1ine blocking is undesirable in an Overlay Link protocol
because the nessages carried on a RELOAD |ink are independent, rather
than streamoriented. Therefore, if nessage Non a link is |ost,

del ayi ng nessage N+1 on that same link until N is successfully
retransmtted does nothing other than increase the latency for the
transacti on of message N+1, as they are unrelated to each other
Therefore, while the high quality, performance, and availability of
nodern TCP i npl ementations nmakes themvery attractive, their
performance as Overlay Link protocols is not optinal

Note that none of the protocols defined in this docunent neets these
conditions, but it is expected that new Overlay Link protocols
defined in the future will fill this gap.

6.5.1.7. Encoding the Attach Message

Section 4.3 of |CE describes procedures for encoding the SDP for
conveyi ng RELOAD candi dates. |Instead of actually encoding an SDP
nessage, the candidate information (I P address and port and transport
protocol, priority, foundation, type, and related address) is carried
within the attributes of the Attach request or its response.
Simlarly, the username fragnent and password are carried in the
Attach message or its response. Section 6.5.1 describes the detail ed
attribute encoding for Attach. The Attach request and its response
do not contain any default candidates or the ice-lite attribute, as
these features of ICE are not used by RELQAD

Since the Attach request contains the candidate information and short
termcredentials, it is considered as an offer for a single nedia
streamthat happens to be encoded in a format different than SDP, but
is otherwi se considered a valid offer for the purposes of follow ng

Jenni ngs, et al. St andards Track [Page 73]

RFC 6940 RELOAD Base January 2014

the I CE specification. Simlarly, the Attach response is considered
a valid answer for the purposes of followi ng the | CE specification.

6.5.1.8. Verifying | CE Support

An agent MJST skip the verification procedures in Sections 5.1 and
6.1 of ICE. Since RELOAD requires full ICE fromall agents, this
check is not required.

6.5.1.9. Role Deternination

The roles of controlling and controll ed, as described in Section 5.2
of ICE, are still utilized with RELOAD. However, the offerer (the
entity sending the Attach request) will always be controlling, and
the answerer (the entity sending the Attach response) wll always be

controlled. The connectivity checks MJST still contain the |CE-
CONTROLLED and | CE- CONTROLLI NG attri butes, however, even though the
role reversal capability for which they are defined will never be

needed with RELOAD. This is to allow for a common codebase between
| CE for RELOAD and | CE for SDP

6.5.1.10. Full ICE

When the overlay uses |ICE, connectivity checks and nom nations are
used as in regular |ICE

6.5.1.10.1. Connectivity Checks
The processes of formng check lists in Section 5.7 of ICE
schedul i ng checks in Section 5.8, and checki ng connectivity checks in
Section 7 are used with RELOAD wi t hout change.

6.5.1.10.2. Concluding I CE

The procedures in Section 8 of ICE are followed to conclude ICE, with
the follow ng exceptions:

o The controlling agent MUST NOT attenpt to send an updated offer
once the state of its single nedia streamreaches Conpl et ed.

0 Once the state of |ICE reaches Conpleted, the agent can inmediately
free all unused candidates. This is because RELOAD does not have
the concept of forking, and thus the three-second delay in
Section 8.3 of |ICE does not apply.

Jenni ngs, et al. St andards Track [Page 74]

RFC 6940 RELOAD Base January 2014

6.5.1.10.3. Media Keepalives

STUN MJST be utilized for the keepalives described in Section 10 of
| CE.

6.5.1.11. No-ICE

No-I CE is selected when either side has provided "no | CE' Overl ay

Li nk candidates. STUN is not used for connectivity checks when doi ng
No- 1 CE; instead, the DTLS or TLS handshake (or simlar security |ayer
of future overlay link protocols) fornms the connectivity check. The

certificate exchanged during the TLS or DTLS handshake MJST match t he
node which sent the AttachRegAns, and if it does not, the connection

MUST be cl osed.

6.5.1.12. Subsequent Ofers and Answers

An agent MJST NOT send a subsequent offer or answer. Thus, the
procedures in Section 9 of | CE MUST be ignored.

6.5.1.13. Sending Media

The procedures of Section 11 of ICE apply to RELOAD as wel | .

However, in this case, the "nedia" takes the formof application-

| ayer protocols (e.g., RELOAD) over TLS or DTLS. Consequently, once
| CE processing conpletes, the agent will begin TLS or DTLS procedures
to establish a secure connection. The node that sent the Attach
request MJST be the TLS server. The other node MJST be the TLS
client. The server MJST request TLS client authentication. The
nodes MJST verify that the certificate presented in the handshake

mat ches the identity of the other peer as found in the Attach
nmessage. Once the TLS or DTLS signaling is conplete, the application
protocol is free to use the connection

The concept of a previous selected pair for a conponent does not
apply to RELOAD, since ICE restarts are not possible with RELOAD

6.5.1.14. Receiving Media
An agent MJST be prepared to receive packets for the application
protocol (TLS or DTLS carrying RELOAD) at any time. The jitter and
RTP considerations in Section 11 of ICE do not apply to RELQAD.
6.5.2. AppAttach
A node sends an AppAttach request when it wi shes to establish a

di rect connection to another node for the purposes of sending
application-layer nmessages. AppAttach is nearly identical to Attach

Jenni ngs, et al. St andards Track [Page 75]

RFC 6940 RELOAD Base January 2014

except for the purpose of the connection: it is used to transport
non- RELOAD "nedi a". A separate request is used to avoid inplenenter
confusi on between the two nmethods (this was found to be a rea
problemw th initial inplenentations). The AppAttach request and its
response contain an application attribute, which indicates what
protocol is to be run over the connection

6.5.2.1. Request Definition

An AppAttachReq nessage contains the requesting node’s | CE connection
paraneters formatted into a binary structure.

struct {
opaque uf rag<o0. . 2"8- 1>;
opaque passwor d<0. . 2"8- 1>;
uint16 applicati on;
opaque rol e<0..278-1>;
| ceCandi dat e candi dat es<0. . 2"16- 1>;

} AppAttachReq;

The val ues contained in AppAttachReq and AppAttachAns are:

ufrag
The usernane fragnent (from | CE)

passwor d
The | CE password.

application

A 16-bit Application-1D, as defined in the Section 14.5. This
nunber represents the | ANA-registered application that is going to
send data on this connection

rol e
An active/ passivel/actpass attribute from RFC 4145 [RFC4145].

candi dat es
One or nore | CE candi date val ues.

The application using the connection that is set up with this request
is responsible for providing traffic of sufficient frequency to keep
the NAT and Firewall binding alive. Applications will often send
traffic every 25 seconds to ensure this.

Jenni ngs, et al. St andards Track [Page 76]

RFC 6940 RELOAD Base January 2014

6.5.2.2. Response Definition

If a peer receives an AppAttach request, it SHOULD process the
request and generate its own response with a AppAttachAns. It should
then begin | CE checks. When a peer receives an AppAttach response,
it SHOULD parse the response and begin its own |ICE checks. If the

Application IDis not supported, the peer MIST reply with an
Error_Not Found error.

struct ({
opaque uf r ag<o0. . 2"8- 1>;
opaque passwor d<0. . 2"8- 1>;
uintl16 application;
opaque rol e<0..278-1>;
| ceCandi dat e candi dat es<0. . 2°16- 1>;

} AppAttachAns;

The neaning of the fields is the sane as in the AppAttachReq.
6.5.3. Ping

Ping is used to test connectivity along a path. A ping can be
addressed to a specific Node-1D, to the peer controlling a given
| ocation (by using a Resource-1D), or to the wildcard Node-ID.

6.5.3.1. Request Definition

The PingReq structure is used to make a Ping request.

struct {
opaque<0. . 2"16- 1> paddi ng;
} PingReq;

The Ping request is enpty of meaningful contents. However, it may

contain up to 65535 bytes of padding to facilitate the discovery of
overl ay maxi mum packet sizes.

6.5.3.2. Response Definition

A successful PingAns response contains the information el enents
requested by the peer.

struct {
ui nt 64 response_i d;
ui nt 64 time;

} PingAns;

Jenni ngs, et al. St andards Track [Page 77]

RFC 6940 RELOAD Base January 2014

A Pi ngAns nessage contains the follow ng el enents:

response_id
A randomy generated 64-bit response ID. This is used to
di stingui sh Ping responses.

time
The tinme when the Ping response was created, represented in the
same way as storage_tine, defined in Section 7.

6.5.4. ConfigUpdate

The ConfigUpdate nethod is used to push updated configuration data
across the overlay. Wenever a node detects that another node has
old configuration data, it MJST generate a ConfigUpdate request. The
Confi gUpdat e request all ows updating of two kinds of data: the
configuration data (Section 6.3.2.1) and the Kind information
(Section 7.4.1.1).

6.5.4.1. Request Definition

The ConfigUpdateReq structure is used to provi de updated
configuration information.

enum { invalidConfi gUpdateType(0), config(1), kind(2), (255) }
Conf i gUpdat eType;

typedef uint32 Ki ndl d;
typedef opaque Ki ndDescri pti on<0..2"16-1>;
struct {

Conf i gUpdat eType type;

ui nt 32 | engt h;

sel ect (type) {
case config:

opaque confi g _data<0..2"24- 1>;

case ki nd:
Ki ndDescri ption ki nds<0. . 2"24- 1>;

/* This structure may be extended with new types */

1
} Confi gUpdat eReq;

Jenni ngs, et al. St andards Track [Page 78]

RFC 6940 RELOAD Base January 2014

The ConfigUpdat eReq nmessage contains the foll owi ng el enments:

type
The type of the contents of the nessage. This structure allows
for unknown content types.

l ength
The length of the renminder of the message. This is included to
preserve backward conpatibility and is 32 bits instead of 24 to
facilitate easy conversion between network and host byte order

config data (type==config)
The contents of the Configuration Docunent.

ki nds (type==ki nd)
One or nore XM ki nd-bl ock productions (see Section 11.1). These
MJST be encoded with UTF-8 and assune a default namespace of
"urn:ietf:parans: xn :ns: p2p: confi g- base".

6.5.4.2. Response Definition

The ConfigUpdat eAns structure is used to respond to a ConfigUpdat eReq
request.

struct {
} Confi gUpdat eAns;

If the ConfigUpdateReq is of type "config", it MJST be processed only
if all the following are true:

o The sequence nunber in the docunent is greater than the current
configurati on sequence nunber

o The Configuration Docunent is correctly digitally signed (see
Section 11 for details on signatures).

Q herwi se, appropriate errors MJIST be generat ed.

If the ConfigUpdateReq is of type "kind", it MJST be processed only
if it is correctly digitally signed by an acceptabl e Kind signer
(i.e., one listed in the current configuration file). Details on the
ki nd-signer field in the configuration file are described in

Section 11.1. In addition, if the Kind update conflicts with an

exi sting known Kind (i.e., it is signed by a different signer), then
it should be rejected with an Error_Forbidden error. This should not
happen in correctly functioning overl ays.

Jenni ngs, et al. St andards Track [Page 79]

RFC 6940 RELOAD Base January 2014

If the update is acceptable, then the node MJST reconfigure itself to
match the new information. This may include addi ng perm ssions for
new Ki nds, deleting old Kinds, or even, in extrene circunstances,
exiting and re-entering the overlay, if, for instance, the DHT

al gori thm has changed.

If an inplenentati on m sses enough ConfigUpdates that include key
changes, it is possible that it will no | onger be able to verify new
valid ConfigUpdates. |In this case, the only avail able recovery
mechanismis to attenpt to retrieve a new Configuration Docunent,
typically by the mechani sms used for initial bootstrapping. It is up
to inplenenters whether or how to decide to enploy this sort of
recovery mechani sm

The response for ConfigUpdate is enpty.
6.6. Overlay Link Layer

RELOAD can use nultiple Overlay Link protocols to send its nessages.
Because ICE is used to establish connections (see Section 6.5.1.3),
RELOAD nodes are able to detect which Overlay Link protocols are

of fered by other nodes and establish connections between them Any
link protocol needs to be able to establish a secure, authenticated
connection and to provide data origin authentication and nessage
integrity for individual data el enments. RELOAD currently supports
three Overlay Link protocols:

o DTLS [RFC6347] over UDP with Sinmple Reliability (SR
(Overl ayLi nkType=DTLS- UDP- SR)

0 TLS [RFC5246] over TCP with Fram ng Header, No-ICE
(Overl ayLi nkType=TLS- TCP- FH- NO- | CE)

o DTLS [RFC6347] over UDP with SR No-ICE
(Overl ayLi nkType=DTLS- UDP- SR- NO- | CE)

Not e t hat al though UDP does not properly have "connections", both TLS
and DTLS have a handshake that establishes a sinilar, statefu
association. W refer to these as "connections" for the purposes of
this document.

If a peer receives a nessage that is larger than the val ue of max-
nessage-si ze defined in the overlay configuration, the peer SHOULD
send an Error_Message Too Large error and then close the TLS or DITLS
session fromwhich the nmessage was received. Note that this error
can be sent and the session closed before the peer receives the
conpl ete nessage. |If the forwarding header is larger than the max-

Jenni ngs, et al. St andards Track [Page 80]

RFC 6940 RELOAD Base January 2014

nessage- si ze, the receiver SHOULD cl ose the TLS or DTLS session
wi t hout sending an error.

The RELOAD nechanismrequires that failed |links be quickly renoved
fromthe Routing Table so end-to-end retransm ssion can handl e | ost
nmessages. Overlay Link protocols MJIST be designed with a nmechani sm
that quickly signals a likely failure, and inplenmentati ons SHOULD
quickly act to renove a failed Iink fromthe Routing Tabl e when
receiving this signal. The entry can be restored if it proves to
resume functioning, or it can be replaced at sone point in the future
if necessary. Section 10.7.2 contains nore details specific to the
CHORD- RELOAD Topol ogy Plug-in

The Frami ng Header (FH) is used to frame nessages and provide timng
when used on a reliable streambased transport protocol. Sinple
Reliability (SR) uses the FH to provide congestion control and

partial reliability when using unreliable nessage-oriented transport
protocols. W will first define each of these algorithns in Sections
6.6.2 and 6.6.3, and then define Overlay Link protocols that use them
in Sections 6.6.4, 6.6.5, and 6.6.6.

Note: We expect future Overlay Link protocols to define replacenents
for all conmponents of these protocols, including the Fram ng Header
The three protocols that we will discuss have been chosen for
sinmplicity of inplenentation and reasonabl e perfornance.

6.6.1. Future Overlay Link Protocols

It is possible to define new |ink-layer protocols and apply themto a
new overlay using the "overlay-link-protocol" configuration directive
(see Section 11.1.). However, any new protocols MJST neet the

foll owi ng requirenents:

Endpoi nt aut hentication: Wen a node forms an association with
anot her endpoint, it MJST be possible to cryptographically verify
that the endpoint has a given Node-ID

Traffic origin authentication and integrity: Wen a node receives
traffic fromanother endpoint, it MJUST be possible to
cryptographically verify that the traffic came froma given
association and that it has not been nodified in transit fromthe
ot her endpoint in the association. The overlay |link protocol MJST
al so provide replay prevention/detection

Traffic confidentiality: Wen a node sends traffic to another
endpoint, it MJST NOT be possible for a third party that is not
i nvol ved in the association to determ ne the contents of that
traffic.

Jenni ngs, et al. St andards Track [Page 81]

RFC 6940 RELOAD Base January 2014

Any new overlay protocol MJST be defined via Standards Action
[RFC5226]. See Section 14.11

6.6.1.1. HP

In a Host lIdentity Protocol Based Overlay Networking Environment (H P
BONE) [RFC6079], HI P [RFC5201] provides connection managenent (e.g.
NAT traversal and nobility) and security for the overlay network.

The P2PSI P Worki ng Group has expressed interest in supporting a H P-
based |ink protocol. Such support would require specifying such
details as:

0 Howto issue certificates which provide identities neaningful to
the H P base exchange. W anticipate that this would require a
mappi ng between Overl ay Routabl e Cryptographic Hash Identifiers
(ORCHI Ds) and Nodel ds.

o Howto carry the HP I1 and |2 nessages.
0 How to carry RELOAD nmessages over HIP.

[H P- RELOAD] documents work in progress on using RELOAD with the H P
BONE.

6.6.1.2. |CETCP

The | CE-TCP RFC [RFC6544] allows TCP to be supported as an Overl ay
Li nk protocol that can be added using | CE

6.6.1.3. Message-Oriented Transports

Modern nessage-oriented transports offer high perfornance and good
congestion control, and they avoid head-of-line blocking in case of

| ost data. These characteristics nake them preferabl e as underlying
transport protocols for RELOAD links. SCTP wi thout message ordering
and DCCP are two exanpl es of such protocols. However, currently they
are not well-supported by conmonly avail abl e NATs, and specifications
for I CE session establishnent are not avail abl e.

6.6.1.4. Tunnel ed Transports

As of the tinme of this witing, there is significant interest in the
| ETF comunity in tunneling other transports over UDP, which is
notivated by the situation that UDP is well-supported by nodern NAT
hardware and by the fact that perfornmance sinmlar to a native

i npl enentati on can be achieved. Currently, SCTP, DCCP, and a generic
tunnel i ng extension are being proposed for message-oriented
protocols. Once ICE traversal has been specified for these tunnel ed

Jenni ngs, et al. St andards Track [Page 82]

RFC 6940 RELOAD Base January 2014

protocols, they should be straightforward to support as overlay link
pr ot ocol s.

6.6.2. Fram ng Header

In order to support unreliable links and to allow for quick detection
of link failures when using reliable end-to-end transports, each
nessage is wapped in a very sinple franmi ng | ayer (FranedMessage),
which is used only for each hop. This |layer contains a sequence
nunber which can then be used for ACKs. The sane header is used for
both reliable and unreliable transports for sinplicity of

i mpl enent ati on.

The definition of FranedMessage is:

enum { data(128), ack(129), (255) } FramedMessageType;

struct {
FramedMessageType type;
sel ect (type) {
case data:
ui nt 32 sequence;
opaque message<0. . 2" 24- 1>;
case ack:
ui nt 32 ack_sequence;
ui nt 32 received;

}s

} FranedMessage;

The type field of the PDUis set to indicate whether the nessage is
data or an acknow edgenent.

If the message is of type "data", then the remainder of the PDUis as
fol | ows:

sequence
The sequence nunber. This increments by one for each franed
nmessage sent over this transport session

nmessage
The nessage that is being transnmitted.

Each connection has it own sequence nunber space. Initially, the

value is zero, and it increments by exactly one for each nessage sent
over that connection

Jenni ngs, et al. St andards Track [Page 83]

RFC 6940 RELOAD Base January 2014

When the receiver receives a nessage, it SHOULD i medi ately send an
ACK nessage. The receiver MJST keep track of the 32 npbst recent
sequence nunbers received on this association in order to generate
the appropriate ACK

If the PDU is of type "ack", the contents are as foll ows:

ack _sequence
The sequence number of the nessage bei ng acknow edged.

recei ved
A bitmask indicating if each of the previous 32 sequence nunbers
before this packet has been anpbng the 32 packets nobst recently
received on this connection. Wen a packet is received with a
sequence nunber N, the receiver |ooks at the sequence nunber of
the 32 previously received packets on this connection. W cal
the previously received packet nunmber M For each of the previous
32 packets, if the sequence nunber Mis less than N but greater
than N-32, the NMbit of the received bitmask is set to one;
otherwise, it is set to zero. Note that a bit being set to one
i ndi cates positively that a particular packet was received, but a
bit being set to zero nmeans only that it is unknown whet her or not
the packet has been received, because it m ght have been received
before the 32 nost recently received packets.

The received field bits in the ACK provide a high degree of
redundancy so that the sender can figure out which packets the
recei ver has received and can then estimte packet loss rates. |If
the sender also keeps track of the tinme at which recent sequence
nunbers have been sent, the RTT (round-trip tine) can be esti nmated.

Not e t hat because retransm ssions recei ve new sequence nunbers,

mul tiple ACKs may be received for the same message. This approach
provides nore information than traditional TCP sequence nunbers, but
care must be taken when applying al gorithns desi gned based on TCP s
streamoriented sequence nunber.

6.6.3. Sinple Reliability

VWhen RELOAD is carried over DILS or another unreliable |ink protocol
it needs to be used with a reliability and congestion contro
nmechani sm which is provided on a hop-by-hop basis. The basic
principle is that each nessage, regardl ess of whether or not it
carries a request or response, will get an ACK and be reliably
retransmtted. The receiver’'s job is very sinple, and is linted to
just sending ACKs. Al the conplexity is at the sender side. This
all ows the sending inplenentation to trade off performance versus

i mpl enentation conplexity wi thout affecting the wire protocol

Jenni ngs, et al. St andards Track [Page 84]

RFC 6940 RELOAD Base January 2014

Because the receiver’s role is |limted to providing packet

acknow edgenents, a wi de variety of congestion control algorithnms can
be i npl enented on the sender side while using the sane basic wire
protocol. The sender algorithmused MJST neet the requirements of

[RFC5405] .

6.6.3.1. Stop and Wait Sender Al gorithm

This section describes one possible inplenmentation of a sender
algorithmfor Sinple Reliability. It is adequate for overlays
runni ng on underlying networks with |l ow | atency and | oss (LANs) or
lowtraffic overlays on the Internet.

A node MJUST NOT have nore than one unacknow edged nmessage on the DTLS
connection at a tine. Note that because retransm ssions of the sane
nmessage are given new sequence nunbers, there may be multiple
unacknow edged sequence nunbers in use.

The RTO (Retransmi ssion TinmeQut) is based on an estinmate of the RTT.
The value for RTOis calculated separately for each DTLS session

| npl enentations can use a static value for RTO or a dynamic estinmate,
which will result in better performance. For inplenmentations that
use a static value, the default value for RTOis 500 ns. Nodes MAY
use smaller values of RTOif it is known that all nodes are within
the I ocal network. The default RTO MAY be set to a |arger val ue,
which is RECOWENDED if it is known in advance (such as on high-

| atency access links) that the RTT is |arger

| mpl ement ati ons that use a dynamic estimate to conpute the RTO MUST
use the algorithmdescribed in RFC 6298 [RFC6298], with the exception
that the value of RTO SHOULD NOT be rounded up to the nearest second,
but instead rounded up to the nearest mllisecond. The RTT of a
successful STUN transaction fromthe ICE stage is used as the initia
nmeasurenent for formula 2.2 of RFC 6298. The sender keeps track of
the time each nmessage was sent for all recently sent nessages. Any
time an ACK is received, the sender can conpute the RTT for that
nessage by | ooking at the tinme the ACK was received and the tinme when
the nessage was sent. This is used as a subsequent RTT neasurenent
for formula 2.3 of RFC 6298 to update the RTO estinmate. (Note that
because retransm ssi ons recei ve new sequence nunbers, all received
ACKs are used.)

An initiating node SHOULD retransmt a nessage if it has not received
an ACK after an interval of RTO (transit nodes do not retransmt at
this layer). The node MJST double the tine to wait after each
retransm ssion. For each retransm ssion, the sequence nunber MJST be
i ncrenent ed.

Jenni ngs, et al. St andards Track [Page 85]

RFC 6940 RELOAD Base January 2014

Ret ransm ssi ons continue until a response is received, until a tota
of 5 requests have been sent, until there has been a hard I CW error
[RFC1122], or until a TLS alert indicating the end of the connection
has been sent or received. The sender knows a response was received
when it receives an ACK with a sequence nunber that indicates it is a
response to one of the transm ssions of this nessage. For exanpl e,
assum ng an RTO of 500 ns, requests would be sent at tinmes 0 ns, 500
ms, 1500 ms, 3500 ns, and 7500 ms. If all retransmissions for a
nmessage fail, then the sendi ng node SHOULD cl ose the connection
routing the nmessage.

To determine when a link mght be failing without waiting for the
final tineout, observe when no ACKs have been received for an entire
RTO interval, and then wait for three retransm ssions to occur beyond
that point. |If no ACKs have been received by the time the third
retransm ssion occurs, it is RECOMVENDED that the |link be renmpved
fromthe Routing Table. The link MAY be restored to the Routing
Table if ACKs resune before the connection is closed, as described
above.

A sender MJST wait 10 nms between receipt of an ACK and transm ssion
of the next nessage.

6.6.4. DTLS/UDP with SR

This overlay link protocol consists of DTLS over UDP while
i mpl ementing the SR protocol. STUN connectivity checks and
keepal i ves are used. Any conpliant sender algorithmmy be used.

6.6.5. TLS/TCP with FH, No-ICE

This overlay link protocol consists of TLS over TCP with the fram ng
header. Because ICE is not used, STUN connectivity checks are not
used upon establishing the TCP connection, nor are they used for
keepal i ves.

Because the TCP |l ayer’'s application-level tineout is too slowto be
useful for overlay routing, the Overlay Link inplenmentation MJUST use
the franming header to measure the RTT of the connection and cal cul ate
an RTO as specified in Section 2 of [RFC6298]. The resulting RTOis
not used for retransm ssions, but rather as a timeout to indicate
when the |ink SHOULD be renoved fromthe Routing Table. It is
RECOVMMENDED t hat such a connection be retained for 30 seconds to
determine if the failure was transient before concluding the |ink has
failed permanently.

When sendi ng candi dates for TLS/ TCP with FH, No-I1CE, a passive
candi dat e MJUST be provi ded.

Jenni ngs, et al. St andards Track [Page 86]

RFC 6940 RELOAD Base January 2014

6.6.6. DITLS/UDP with SR No-ICE

This overlay link protocol consists of DILS over UDP while
i mpl enenting the Sinple Reliability protocol. Because ICE is not
used, no STUN connectivity checks or keepalives are used.

6.7. Fragnmentation and Reassenbly

In order to allow transm ssion over datagram protocols such as DTLS,
RELOAD nessages may be fragmented.

Any node al ong the path can fragnment the nmessage, but only the fina
destinati on reassenbles the fragments. Wien a node takes a packet
and fragments it, each fragnent has a full copy of the forwarding
header, but the data after the forwarding header is broken up into
appropriately sized chunks. The size of the payl oad chunks needs to
take into account space to allow the Via and Destination Lists to
grow. Each fragnent MJST contain a full copy of the Via List,
Destination List, and Forwardi ngQpti ons and MUST contain at |east 256
bytes of the nessage body. |If these elenents cannot fit within the
MIU of the underlying datagram protocol, RELOAD fragnentation is not
performed, and IP-layer fragnentation is allowed to occur. The
length field MIUST contain the size of the nmessage after
fragnentation. Wen a nessage MJST be fragnented, it SHOULD be split
into equal -sized fragnents that are no larger than the Path Mru
(PMTU) of the next overlay link mnus 32 bytes. This is to allow the
Via List to grow before further fragmentation is required.

Note that this fragmentation is not optimal for the end-to-end

path -- a nessage nmay be refragnented multiple tines as it traverses
the overlay, but it is assenbled only at the final destination. This
option has been chosen as it is far easier to inplenent than end-to-
end (e2e) PMIU di scovery across an ever-changing overlay and it
effectively addresses the reliability issues of relying on IP-I|ayer
fragmentation. However, Ping can be used to allow e2e PMIU di scovery
to be inplenented if desired.

Upon receipt of a fragmented nmessage by the intended peer, the peer
hol ds the fragments in a holding buffer until the entire nessage has
been received. The nessage is then reassenbled into a single nessage
and processed. In order to nmitigate denial-of-service (DoS) attacks,
receivers SHOULD tinme out inconplete fragnments after the maxi mum
request lifetinme (15 seconds). This tine was derived froml ooking at
the end-to-end retransmi ssion tine and saving fragments | ong enough
for the full end-to-end retransm ssions to take place. ldeally, the
recei ver woul d have enough buffer space to deal with as many
fragments as can arrive in the maxi mumrequest lifetine. However, if

Jenni ngs, et al. St andards Track [Page 87]

RFC 6940 RELOAD Base January 2014

the receiver runs out of buffer space to reassenble a nessage, it
MUST drop the nessage.

The fragment field of the forwarding header is used to encode
fragmentation information. The offset is the nunber of bytes between
the end of the forwardi ng header and the start of the data. The
first fragment therefore has an offset of 0. The last fragnent

i ndi cator MUST be appropriately set. |f the nessage is not
fragmented, it is sinply treated as if it is the only fragnent: the
last fragnment bit is set and the offset is O, resulting in a fragnent
val ue of 0xC0000000.

Not e: The reason for this definition of the fragnent field is that
originally, the high bit was defined in part of the specification as
"is fragmented", so there was some specification anbiguity about how
to encode nmessages with only one fragnent. This anbiguity was

resol ved in favor of always encoding as the "last" fragment with
offset 0, thus sinplifying the receiver code path, but resulting in
the high bit being redundant. Because nessages MJST be set with the
high bit set to 1, inplenentations SHOULD di scard any nessage with it
set to 0. |Inplenmentations (presumably |egacy ones) which choose to
accept such nessages MJST either ignore the remaining bits or ensure
that they are 0. They MJST NOT try to interpret as fragmented
nmessages with the high bit set |ow

7. Data Storage Protoco
RELOAD provi des a set of generic nechanisns for storing and
retrieving data in the Overlay Instance. These mechani snms can be
used for new applications sinply by defining new code points and a
smal | set of rules. No new protocol mechanisns are required

The basic unit of stored data is a single StoredData structure:

struct {
ui nt 32 | engt h;
ui nt 64 storage_ti ne;
ui nt 32 lifetinme;
St or edDat aVal ue val ue;
Si gnature si gnat ur e;

} StoredDat a;
The contents of this structure are as foll ows:
[engt h

The size of the StoredData structure, in bytes, excluding the size
of length itself.

Jenni ngs, et al. St andards Track [Page 88]

RFC 6940 RELOAD Base January 2014

storage_tine
The tinme when the data was stored, represented as the nunber of
mlliseconds el apsed since midnight Jan 1, 1970 UTC, not counting
| eap seconds. This will have the sane val ues for seconds as
standard UNI X or POSI X tinme. Mrre information can be found at
[UnixTine]. Any attenpt to store a data value with a storage tine
before that of a value already stored at this |ocation MJST
generate an Error_Data Too Od error. This prevents roll back
attacks. The node SHOULD make a best-effort attenpt to use a
correct clock to determ ne this nunmber. However, the protoco
does not require synchronized cl ocks: the receiving peer uses the
storage tinme in the previous store, not its own clock. C ock
val ues are used so that when cl ocks are generally synchronized,
data may be stored in a single transaction, rather than querying
for the value of a counter before the actual store.

If a node attenpting to store new data in response to a user
request (rather than as an overlay mmi ntenance operation such as
occurs when healing the overlay froma partition) is rejected with
an Error_Data Too O d error, the node MAY elect to performits
store using a storage_tine that increnents the value used with the
previous store (this may be obtained by doing a Fetch). This
situation may occur when the clocks of nodes storing to this

| ocation are not properly synchronized.

lifetine
The validity period for the data, in seconds, starting fromthe
time the peer receives the StoreReq.

val ue
The data value itself, as described in Section 7.2.

signature
A signature, as defined in Section 7. 1.

Each Resource-1D specifies a single location in the Overlay Instance.
However, each location may contain nultiple StoredData val ues,

di stingui shed by Kind-ID. The definition of a Kind describes both
the data val ues which may be stored and the data nodel of the data.
Sone data nodels allow nultiple values to be stored under the sane
Kind-1D. Section 7.2 describes the avail able data nodels. Thus, for
i nstance, a given Resource-1D mght contain a single-val ue el enent
stored under Kind-1D X and an array containing rmultiple values stored
under Kind-1D Y.

Jenni ngs, et al. St andards Track [Page 89]

RFC 6940 RELOAD Base January 2014

7.

1

Data Si gnature Computation

Each StoredData el enent is individually signed. However, the
signature al so nmust be self-contai ned and nmust cover the Kind-1D and
Resource-1D, even though they are not present in the StoredData
structure. The input to the signature algorithmis:

resource_id || kind || storage time || StoredDataVal ue |
Signerldentity

where || indicates concatenation and where these val ues are:

resource_id
The Resource-1D where this data is stored.

ki nd
The Kind-1D for this data.

storage_tine
The contents of the storage tine data val ue.

St or edDat aVal ue
The contents of the stored data value, as described in the
previ ous sections.

Signerldentity
The signer identity, as defined in Section 6.3.4.

Once the signature has been conputed, the signature is represented
using a signature el enent, as described in Section 6. 3. 4.

Note that there is no necessary relationship between the validity

wi ndow of a certificate and the expiry of the data it is

aut henticating. Wen signhatures are verified, the current time MJIST
be conpared to the certificate validity period. Stored data MAY be
set to expire after the signing certificate's validity period. Such
signatures are not considered valid after the signing certificate
expires. |Inplenentations may "garbage collect" such data at their
conveni ence, either by purging it automatically (perhaps by setting
the upper bound on data storage to the lifetinme of the signing
certificate) or by sinmply leaving it in place until it expires
naturally and relying on users of that data to notice the expired
signing certificate.

Jenni ngs, et al. St andards Track [Page 90]

RFC 6940 RELOAD Base January 2014

7.2. Data Mdels
The protocol currently defines the foll owi ng data nodel s:
o single value
o array
o dictionary

These are represented with the StoredDataVal ue structure. The actua
data nodel is known fromthe Kind being stored.

struct {

Bool ean exi sts;

opaque val ue<0. . 2"32- 1>;
} Dat aVal ue;
struct {

sel ect (DataModel) {
case singl e_val ue:
Dat aVal ue singl e_val ue_entry;

case array:
ArrayEntry array_entry;

case dictionary:
Di ctionaryEntry di ctionary_entry;

/* This structure may be extended */
b
} St oredDat aval ue;
The foll owi ng sections discuss the properties of each data nodel

7.2.1. Single Val ue

A single-value elenent is a sinple sequence of bytes. There may be
only one single-value elenent for each Resource-ID, Kind-I1D pair

A single value elenent is represented as a DataVal ue, which contains
the following two el enents:

exi sts
Thi s val ue indicates whether the value exists at all. If it is
set to False, it neans that no value is present. |If it is True

this nmeans that a value is present. This gives the protocol a
nmechani sm for indicating nonexi stence as opposed to enptiness.

Jenni ngs, et al. St andards Track [Page 91]

RFC 6940 RELOAD Base January 2014

val ue
The stored data.

7.2.2. Array

An array is a set of opaque val ues addressed by an integer index.
Arrays are zero based. Note that arrays can be sparse. For
instance, a Store of "X' at index 2 in an enpty array produces an
array with the values [NA, NA, "X']. Future attenpts to fetch
elenents at index O or 1 will return values with "exists" set to
Fal se.

An array elenent is represented as an ArrayEntry:

struct {
ui nt 32 i ndex;
Dat aVal ue val ue;

} ArrayEntry;
The contents of this structure are:

i ndex
The index of the data element in the array.

val ue
The stored data.

7.2.3. Dictionary

A dictionary is a set of opaque val ues indexed by an opaque key, with
one value for each key. A single dictionary entry is represented as
a DictionaryEntry:

typedef opaque Di cti onar yKey<0. . 2"16-1>;
struct {

Di cti onar yKey key;

Dat aVal ue val ue;

} DictionaryEntry;
The contents of this structure are:

key
The dictionary key for this val ue.

val ue
The stored data.

Jenni ngs, et al. St andards Track [Page 92]

RFC 6940 RELOAD Base January 2014

7.

7.

7.

7.

3. Access Control Policies

Every Kind which is storable in an overlay MJST be associated with an
access control policy. This policy defines whether a request froma
gi ven node to operate on a given value should succeed or fail. It is
anticipated that only a small nunmber of generic access contro
policies are required. To that end, this section describes a snall
set of such policies, and Section 14.4 establishes a registry for new
policies, if required. Each policy has a short string identifier
which is used to reference it in the Configuration Docunent.

In the following policies, the term"signer" refers to the signer of
the StoredVal ue object and, in the case of non-replica stores, to the
signer of the StoreReq nessage. That is, in a non-replica store,
both the signer of the StoredVal ue and the signer of the StoreReq
MJST conformto the policy. 1In the case of a replica store, the
signer of the StoredValue MJST conformto the policy, and the
StoreReq itself MJUST be checked as described in Section 7.4.1.1.

3.1. USER- MATCH

In the USER- MATCH policy, a given value MJST be witten (or
overwitten) if and only if the signer’'s certificate has a user nane
whi ch hashes (using the hash function for the overlay) to the
Resource-1D for the resource. Recall that the certificate my,
dependi ng on the overlay configuration, be self-signed.

3.2. NODE- MATCH

In the NODE- MATCH policy, a given value MJST be witten (or
overwitten) if and only if the signer’'s certificate has a specified
Node- | D whi ch hashes (using the hash function for the overlay) to the
Resource-1D for the resource and that Node-ID is the one indicated in
the Signerldentity value cert_hash.

3.3. USER- NODE- MATCH

The USER- NODE- MATCH policy nmay be used only with dictionary types.
In the USER- NODE- MATCH policy, a given value MJST be witten (or
overwitten) if and only if the signer’'s certificate has a user nane
whi ch hashes (using the hash function for the overlay) to the
Resource-1D for the resource. In addition, the dictionary key MJST
be equal to the Node-ID in the certificate, and that Node-1D MJST be
the one indicated in the Signerldentity value cert_hash.

Jenni ngs, et al. St andards Track [Page 93]

RFC 6940 RELOAD Base January 2014

7.3.4. NODE- MILTI PLE

In the NODE- MULTI PLE policy, a given value MJST be witten (or
overwitten) if and only if the signer’s certificate contains a
Node- 1 D such that H(Node-ID || i) is equal to the Resource-1D for
sone small integer value of i and that Node-ID is the one indicated
in the Signerldentity value cert _hash. Wen this policy is in use,
t he maxi mum val ue of i MJST be specified in the Kind definition

Note that because i is not carried on the wire, the verifier MJST
iterate through potential i values, up to the maxi mum value, to
determ ne whether a store is acceptable.

7.4. Data Storage Methods
RELOAD provi des several methods for storing and retrieving data:
o Store values in the overlay.
o Fetch values fromthe overl ay.
o Stat: Get metadata about values in the overl ay.
o Find the values stored at an individual peer
These nethods are described in the follow ng sections.

7.4.1. Store
The Store nethod is used to store data in the overlay. The format of
the Store request depends on the data nodel, which is deternined by
the Kind.

7.4.1.1. Request Definition
A StoreReq nessage is a sequence of StoreKindData val ues, each of
whi ch represents a sequence of stored values for a given Kind. The
sane Kind-1D MJST NOT be used twice in a given store request. Each
value is then processed in turn. These operations MJST be atonmic.

If any operation fails, the state MJUST be rolled back to what it was
bef ore the request was received.

Jenni ngs, et al. St andards Track [Page 94]

RFC 6940 RELOAD Base January 2014

The store request is defined by the StoreReq structure:

struct {
Ki ndl d ki nd;
ui nt 64 generation_counter;
St or edDat a val ues<0. . 2732-1>;
} StoreKindDat a
struct {
Resourcel d resource;
uint8 replica_nunber;
St or eKi ndDat a ki nd_dat a<0. . 2732- 1>;
} StoreReq

A single Store request stores data of a nunber of Kinds to a single
resource |location. The contents of the structure are:

resource
The resource at which to store.

replica_nunber
The nunber of this replica. When a storing peer saves replicas to
ot her peers, each peer is assigned a replica nunber, starting from
1, that is sent in the Store message. This field is set to 0 when
a node is storing its own data. This allows peers to distinguish
replica wites fromoriginal wites. Different topol ogies my
choose to allocate or interpret the replica nunber differently
(see Section 10.4).

ki nd_dat a
A series of elenents, one for each Kind of data to be stored.

The peer MUST check that it is responsible for the resource if the
replica nunber is zero; if it is not, the peer nust reject the
request. The peer MJST check that it expects to be a replica for the
resource and that the request sender is consistent with being the
responsi ble node (i.e., that the receiving peer does not know of a
better node) if the replica nunmber is nonzero; if the request sender
is not consistent, it should reject the request.

Each St oreKi ndData el enment represents the data to be stored for a
single Kind-1D. The contents of the el enent are:

ki nd
The Kind-1D. |Inplenentations MIST reject requests correspondi ng
to unknown Ki nds.

Jenni ngs, et al. St andards Track [Page 95]

RFC 6940 RELOAD Base January 2014

gener ati on_count er

The expected current state of the generation counter
(approxi mately the number of times that this object has been
witten; see below for details).

val ues

The value or values to be stored. This nay contain one or nore
stored_data val ues, depending on the data nodel associated with
each Kind.

The peer MJST performthe foll ow ng checks:

o

o

The Kind-1D is known and supported.

The signatures over each individual data elenent, if any, are
valid. |If this check fails, the request MJST be rejected with an
Error_Forbi dden error.

Each el enent is signed by a credential which is authorized to
wite this Kind at this Resource-ID. |If this check fails, the
request MJST be rejected with an Error_Forbi dden error

For original (non-replica) stores, the StoreReq is signed by a
credential which is authorized to wite this Kind at this
Resource-I1D. |If this check fails, the request MJST be rejected
with an Error_Forbi dden error.

For replica stores, the StoreReq is signed by a Node-1D which is a
pl ausi bl e node to either have originally stored the value or have
been in the replica set. What this neans is overlay specific, but
in the case of the Chord-based DHT defined in this specification
replica StoreReqs MJST conme from nodes which are either in the
known replica set for a given resource or which are closer than
some node in the replica set. |If this check fails, the request
MJST be rejected with an Error_Forbi dden error

For original (non-replica) stores, the peer MJST check that if the
generation counter is nonzero, it equals the current value of the
generation counter for this Kind. This feature allows the
generation counter to be used in a way sinmlar to the HITP ETag
feature.

For replica Stores, the peer MIST set the generation counter to
mat ch the generation counter in the nessage and MJST NOT check the
generation counter against the current value. Replica Stores MJST
NOT use a generation counter of O.

Jenni ngs, et al. St andards Track [Page 96]

RFC 6940 RELOAD Base January 2014

o The storage tine values are greater than that of any val ues which
woul d be replaced by this Store.

0 The size and nunber of the stored values are consistent with the
l[imts specified in the overlay configuration

o If the data is signed with identity type set to "none" and/or
Si gnat ur eAndHashAl gorithm val ues set to {0, 0} ("anonynobus" and
"none"), the StoreReq MJUST be rejected with an Error_forbi dden
error. Only synthesized data returned by the storage can use
these val ues (see Section 7.4.2.2)

If all these checks succeed, the peer MJST attenpt to store the data
val ues. For non-replica stores, if the store succeeds and the data
i s changed, then the peer MJST increase the generation counter by at
least 1. |If there are nultiple stored values in a single
StoreKindData, it is permssible for the peer to increase the
generation counter by only 1 for the entire Kind-1D or by 1 or nore
than 1 for each value. Accordingly, all stored data val ues MJST have
a generation counter of 1 or greater. 0 is used in the Store request
to indicate that the generation counter should be ignored for
processing this request. However, the responsible peer should

i ncrease the stored generation counter and should return the correct
generation counter in the response.

When a peer stores data previously stored by another node (e.g., for
replicas or topology shifts), it MJST adjust the lifetine val ue
downward to reflect the amount of tinme the value was stored at the
peer. The adjustment SHOULD be inplemented by an al gorithm
equivalent to the following: at the tine the peer initially receives
the StoreReq, it notes the local time T. Wen it then attenpts to do
a StoreReq to another node, it should decrenent the lifetinme val ue by
the difference between the current local time and T.

Unl ess ot herwi se specified by the usage, if a peer attenpts to store
data previously stored by another node (e.g., for replicas or

topol ogy shifts) and that store fails with either an
Error_GCeneration_Counter Too Low or an Error_Data Too O d error, the
peer MUST fetch the newer data fromthe peer generating the error and
use that to replace its own copy. This rule allows resynchronization
after partitions heal

When a network partition is being heal ed and unl ess ot herwi se
specified, the default nmerging rule is to act as if all the val ues
that need to be nerged were stored and as if the order they were
stored in corresponds to the stored tinme val ues associated with (and
carried in) their values. Because the stored tine values are those
associated with the peer which did the witing, clock skewis

Jenni ngs, et al. St andards Track [Page 97]

RFC 6940 RELOAD Base January 2014

generally not an issue. |If two nodes are on different partitions,
wite to the sanme |ocation, and have cl ock skew, this can create
nmerge conflicts. However, because RELOAD deliberately segregates
storage so that data fromdifferent users and peers is stored in
different locations, and a single peer will typically only be in a
single network partition, this case will generally not arise.

The properties of stores for each data nodel are as foll ows:

single-value: A store of a new single-value el enent creates the
element if it does not exist and overwites any existing val ue
with the new val ue.

array: A store of an array entry replaces (or inserts) the given
val ue at the location specified by the index. Because arrays are
sparse, a store past the end of the array extends it with
nonexi stent values (exists = False) as required. A store at index
oxffffffff places the new value at the end of the array,
regardl ess of the length of the array. The resulting StoredData
has the correct index value when it is subsequently fetched.

dictionary: A store of a dictionary entry replaces (or inserts) the
gi ven value at the location specified by the dictionary key.

Jenni ngs, et al. St andards Track [Page 98]

RFC 6940 RELOAD Base January 2014

The followi ng figure shows the rel ati onship between these structures
for an exanple store which stores the follow ng values at resource

"1234":

o The value "abc" is in the single-value |location for Kind X
o The value "foo" at index O is in the array for Kind Y.

0 The value "bar" at index 1 is in the array for Kind Y.

Store
resource=1234
replica nunber = 0
/ \
/ \
St or eKi ndDat a
ki nd=X (Si ngl e-Val ue)
generation_counter = 99

| /

lifetime = 86400

St or eKi ndDat a

ki nd=Y (Array)
generation_counter = 107
| /\

lifetime = 33200

St or edDat a /
storage_time = XXXXXXX /

lifetime = 86400 / \

signature = XXXX / \
| | |
| St or edDat a St or edDat a
| storage_time = storage_time =
I YYYYYYYY 272722777
|

signature = YYYY

| |
St or edDat aVal ue

|
val ue="abc" |

St or edDat aVal ue
i ndex=0
val ue="f oo"

Jenni ngs, et al. St andards Track

signature = ZZZZ
|
|
|

St or edDat aVal ue

i ndex=1

val ue="bar"

[Page 99]

RFC 6940 RELOAD Base January 2014

7.4.1.2. Response Definition

In response to a successful Store request, the peer MIST return a
St oreAns nessage containing a series of StoreKi ndResponse el enents,
whi ch contains the current value of the generation counter for each
Kind-1D, as well as a list of the peers where the data will be
replicated by the node processing the request.

struct {
Ki ndl d ki nd;
ui nt 64 generation_counter;
Nodel d replicas<0..2"16-1>;
} StoreKi ndResponse
struct {
St or eKi ndResponse ki nd_r esponses<0..2"16- 1>;
} StoreAns;

The contents of each StoreKi ndResponse are:

ki nd
The Kind-1D being represented.

gener ati on_count er
The current value of the generation counter for that Kind-ID

replicas
The list of other peers at which the data was/wi |l be replicated.
In overlays and applications where the responsible peer is
i ntended to store redundant copies, this allow the storing node
to independently verify that the replicas have in fact been
stored. It does this verification by using the Stat nethod (see
Section 7.4.3). Note that the storing node is not required to
performthis verification

The response itself is just StoreKi ndResponse val ues packed end to
end.

If any of the generation counters in the request precede the
correspondi ng stored generation counter, then the peer MJST fail the
entire request and respond with an Error_Generation_Counter_Too_Low
error. The error_info in the ErrorResponse MJST be a StoreAns
response containing the correct generation counter for each Kind and
the replica list, which will be enpty. For original (non-replica)
stores, a node which receives such an error SHOULD attenpt to fetch
the data and, if the storage_tinme value is newer, replace its own
data with that newer data. This rule inproves data consistency in
the case of partitions and nerges.

Jenni ngs, et al. St andards Track [Page 100]

RFC 6940 RELOAD Base January 2014

If the data being stored is too large for the allowed linmt by the
gi ven usage, then the peer MJST fail the request and generate an
Error_Data_Too_Large error

If any type of request tries to access a data Kind that the peer does
not know about, the peer MJUST fail the request and generate an
Error_Unknown_Kind error. The error_info in the Error_Response is:

Ki ndl d unknown_ki nds<0. . 2"8- 1>;

which lists all the Kinds that were unrecogni zed. A node which
receives this error MIST generate a Confi gUpdate nessage which
contains the appropriate Kind definition (assum ng which, in fact, a
Ki nd which was defined in the configurati on docunment was used).

7.4.1.3. Renoving Val ues

RELOAD does not have an explicit Renove operation. Rather, val ues
are Renmoved by storing "nonexistent" values in their place. Each

Dat aVal ue contains a bool ean value called "exists" which indicates
whet her a value is present at that location. |In order to effectively
renmove a val ue, the owner stores a new DataValue with "exists" set to
Fal se:

exi sts = Fal se
value = {} (0 length)

The owner SHOULD use a lifetinme for the nonexistent value that is at
| east as long as the remainder of the lifetine of the value it is
replacing. Qherwise, it is possible for the original value to be
accidentally or maliciously re-stored after the storing node has
expired it. Note that a wi ndow of vulnerability for replay attack
still exists after the original lifetinme has expired (as with any
store). This attack can be mtigated by doing a nonexistent store
with a very long lifetine.

Storing nodes MJST treat these nonexistent values the same way they
treat any other stored value, including overwiting the existing

val ue, replicating them and aging them out as necessary when the
lifetime expires. Wen a stored nonexistent value' s lifetine
expires, it is sinply renoved fromthe storing node, as happens when
any other stored val ue expires.

Note that in the case of arrays and dictionaries, expiration my

create an inplicit, unsigned "nonexistent" value to represent a gap
in the data structure, as nmight happen when any value is aged out.

Jenni ngs, et al. St andards Track [Page 101]

RFC 6940 RELOAD Base January 2014

However, this value isn't persistent, nor is it replicated. It is
sinply synthesized by the storing node.

7.4.2. Fetch

The Fetch request retrieves one or nore data el enents stored at a

gi ven Resource-1D. A single Fetch request can retrieve nmultiple
di fferent Kinds.

7.4.2.1. Request Definition

Fetch requests are defined by the FetchReq structure:

struct {
int32 first;
i nt 32 | ast;
} ArrayRange;

struct {
Ki ndl d ki nd;
ui nt 64 generati on;
uint16 | engt h;

sel ect (DataModel) {
case single value: ; [* Enmpty */

case array:
ArrayRange i ndi ces<0..2"16-1>

case dictionary:
Di cti onar yKey keys<0..2"16- 1>;

[* This structure may be extended */

} nodel _specifier;
} StoredDat aSpecifier

struct {

Resourcel d resource;

St or edDat aSpeci fi er speci fiers<0..2"16-1>;
} Fet chReq;

The contents of the Fetch requests are as foll ows:

resource
The Resource-ID to fetch from

Jenni ngs, et al. St andards Track [Page 102]

RFC 6940 RELOAD Base January 2014

specifiers
A sequence of StoredDataSpecifier values, each specifying sone of
the data values to retrieve.

Each St oredDat aSpecifier specifies a single Kind of data to retrieve
and, if appropriate, the subset of values that are to be retrieved.
The contents of the StoredDataSpecifier structure are as follows:

ki nd
The Kind-1D of the data being fetched. |nplenentations SHOULD
rej ect requests correspondi ng to unknown Ki nds unl ess specifically
configured ot herw se.

Dat aMbde
The data nodel of the data. This is not transmitted on the wre,
but comes fromthe definition of the Kind.

generation
The | ast generation counter that the requesting node saw. This
may be used to avoid unnecessary fetches, or it may be set to
zero.

 ength
The I ength of the rest of the structure, thus allow ng
extensibility.

nodel _specifier
A reference to the data val ue being requested within the data
nodel specified for the Kind. For instance, if the data nodel is
"array", it mght specify sone subset of the val ues.

The nodel specifier is as follows:
o |If the data nodel is single value, the specifier is enpty.

o If the data nodel is array, the specifier contains a list of
ArrayRange el enents, each of which contains two integers. The
first integer is the beginning of the range, and the second is the
end of the range. O is used to indicate the first el enment, and
Oxffffffff is used to indicate the final element. The first
i nteger MJUST be less than or equal to the second. Wile nmultiple
ranges MAY be specified, they MJUST NOT overl ap

o |If the data nodel is dictionary, then the specifier contains a
list of the dictionary keys being requested. |If no keys are
specified, then this is a wildcard fetch and all key-val ue pairs
are returned.

Jenni ngs, et al. St andards Track [Page 103]

RFC 6940 RELOAD Base January 2014

The generation counter is used to indicate the requester’s expected

state of the storing peer. |f the generation counter in the request
mat ches the stored counter, then the storing peer returns a response
with no StoredData val ues.

7.4.2.2. Response Definition

The response to a successful Fetch request is a FetchAns nessage
contai ning the data requested by the requester.

struct {
Ki ndl d ki nd;
ui nt 64 generati on;
St or edDat a val ues<0. . 2732- 1>;
} Fet chKi ndResponse;
struct {
Fet chKi ndResponse ki nd_r esponses<0..2"32- 1>;
} FetchAns;

The FetchAns structure contains a series of FetchKi ndResponse
structures. There MUST be one Fet chKi ndResponse el ement for each
Kind-1D in the request.

The contents of the FetchKi ndResponse structure are as foll ows:

ki nd
The Kind that this structure is for.

generation
The generation counter for this Kind.

val ues
The rel evant values. |If the generation counter in the request
mat ches the generation counter in the stored data, then no
StoredData values are returned. Oherwise, all relevant data
val ues MJUST be returned. A nonexistent value (i.e., one which the
node has no know edge of) is represented by a synthetic value with
"exists" set to False and has an enpty signature. Specifically,
the identity type is set to "none", the SignatureAndHashAl gorithm
val ues are set to {0, 0} ("anonynmpbus" and "none", respectively),
and the signature value is of zero length. This renoves the need
for the responding node to do signatures for val ues which do not
exi st. These signhatures are unnecessary, as the entire response
is signed by that node. Note that entries which have been renpved
by the procedure given in Section 7.4.1.3 and which have not yet
expired al so have exists = Fal se, but have valid signatures from
the node which did the store.

Jenni ngs, et al. St andards Track [Page 104]

RFC 6940 RELOAD Base January 2014

Upon recei pt of a FetchAns nessage, nodes MJST verify the signatures
on all the received values. Any values with invalid signatures
(including expired certificates) MJIST be discarded. Note that this
implies that inplenentations which wish to store data for |ong

peri ods of tinme must have certificates with appropriate expiration
dates or nust re-store periodically. Inplenentations MAY return the
subset of values with valid signatures, but in that case, they SHOULD
sonmehow signal to the application that a partial response was
received.

There is one subtle point about signature conputation on arrays. |If
the storing node uses the append feature (where the

i ndex=0xffffffff), then the index in the StoredData that is returned
will not match that used by the storing node, which would break the
signature. In order to avoid this issue, the index value in the
array is set to zero before the signature is computed. This inplies
that malicious storing nodes can reorder array entries w thout being
det ect ed.

7.4.3. Stat

The Stat request is used to get netadata (length, generation counter,
digest, etc.) for a stored elenent without retrieving the el enent
itself. The nane is fromthe UNI X stat(2) systemcall, which
perfornms a sinmlar function for files in a file system It also

all ows the requesting node to get a list of matching el ements without
requesting the entire el ement.

7.4.3.1. Request Definition

The Stat request is identical to the Fetch request. It sinply
specifies the el enents to get netadata about.
struct {
Resourcel d resour ce,
St or edDat aSpeci fi er speci fiers<0..2"16-1>;
} St at Req;

Jenni ngs, et al. St andards Track [Page 105]

RFC 6940 RELOAD Base January 2014

7.4.3.2. Response Definition

The Stat response contains the same sort of entries that a Fetch
response woul d contain. However, instead of containing the el enent
data, it contains mnetadata.

struct {
Bool ean exi sts;
ui nt 32 val ue_| engt h;
HashAl gorithm hash_al gorithm
opaque hash_val ue<0. . 255>;
} Met aDat a;
struct {
ui nt 32 i ndex;
Met aDat a val ue;
} ArrayEntryMet a;
struct {
Di cti onar yKey key;
Met aDat a val ue;

} DictionaryEntryMeta;
struct {
sel ect (DataModel) {
case single_val ue:
Met aDat a singl e_val ue_entry;

case array:
ArrayEntryMet a array_entry;

case dictionary:
Di ctionaryEntryMeta di ctionary_entry;

[* This structure may be extended */

1
} Met aDat aVal ue;

struct {
ui nt 32 val ue_I engt h;
ui nt 64 storage_ti e;
ui nt 32 lifetime;
Met aDat aVal ue nmet adat a;

} StoredMet abat a;

Jenni ngs, et al. St andards Track [Page 106]

RFC 6940 RELOAD Base January 2014

struct {

Ki ndl d ki nd;

ui nt 64 generati on;

St or edMet abDat a val ues<0. .2"32-1>;
} St at Ki ndResponse;

struct {
St at Ki ndResponse ki nd_r esponses<0. . 2"32- 1>;
} Stat Ans;

The structures used in StatAns parallel those used in FetchAns: a
response consists of nultiple StatKi ndResponse val ues, one for each
Kind that was in the request. The contents of the StatKi ndResponse
are the sane as those in the FetchKi ndResponse, except that the

val ues list contains StoredMetaData entries instead of StoredData
entries.

The contents of the StoredMetaData structure are the sanme as the
corresponding fields in StoredData, except that there is no signature
field and the value is a MetaDataVal ue rather than a StoredDat aval ue.

A MetaDataValue is a variant structure, |ike a StoredDat aVal ue,
except for the types of each arm which replace DataValue with
Met aDat a.

The only new structure is MetaData, which has the follow ng contents:

exi sts
Sane as in DataVal ue.

val ue_ | ength
The length of the stored val ue.

hash_al gorithm
The hash al gorithmused to performthe digest of the val ue.

hash_val ue
A di gest using hash_algorithmon the value field of the DataVal ue,
including its 4 | eading | ength bytes.

7.4.4. Find

The Find request can be used to explore the Overlay Instance. A Find
request for a Resource-ID Rand a Kind-ID T retrieves the
Resource-1D, if any, of the resource of Kind T known to the target
peer which is closest to R This nethod can be used to wal k the
Overlay Instance by iteratively fetching R n+l=nearest(1 + R n).

Jenni ngs, et al. St andards Track [Page 107]

RFC 6940 RELOAD Base January 2014

7.4.4.1. Request Definition

The FindReq nmessage contains a Resource-I1D and a series of Kind-IDs
identifying the resource the peer is interested in.

struct {

Resourcel d resource;

Ki ndl d ki nds<0. . 278-1>;
} FindReq;

The request contains a list of Kind-1Ds which the Find is for, as
i ndi cated bel ow

resource
The desired Resource-|D.

ki nds
The desired Kind-1Ds. Each value MJST appear only once.
Q herwi se, the request MJST be rejected with an error

7.4.4.2. Response Definition
A response to a successful Find request is a FindAns nessage

contai ning the cl osest Resource-ID on the peer for each Kind
specified in the request.

struct {
Ki ndl d ki nd;
Resourcel d cl osest;

} Fi ndKi ndDat a;

struct {
Fi ndKi ndDat a resul ts<0..2"16-1>;
} FindAns;

If the processing peer is not responsible for the specified
Resource-1D, it SHOULD return an Error_Not Found error code.

For each Kind-1D in the request, the response MJST contain a

Fi ndKi ndDat a i ndi cating the cl osest Resource-1D for that Kind-ID
unless the Kind is not allowed to be used with Find, in which case a
Fi ndKi ndData for that Kind-1D MJST NOT be included in the response.

If a Kind-IDis not known, then the correspondi ng Resource-1D MJST be
0. Note that different Kind-1Ds nmay have different closest
Resour ce- | Ds.

Jenni ngs, et al. St andards Track [Page 108]

RFC 6940 RELOAD Base January 2014

The response is sinply a series of FindKindData el enents, one per
Ki nd, concatenated end to end. The contents of each el enent are:

ki nd
The Kind-1D.
cl osest
The cl osest Resource-ID to the specified Resource-ID. It is O if

no Resource-ID is known.

Note that the response does not contain the contents of the data
stored at these Resource-I1Ds. |If the requester wants this, it nust
retrieve it using Fetch.

7.4.5. Defining New Ki nds

There are two ways to define a new Kind. The first is by witing a
docunent and registering the Kind-IDwith IANA. This is the
preferred nethod for Kinds which may be w dely used and reused. The
second nmethod is to sinply define the Kind and its paranmeters in the
Configuration Docunment using the section of Kind-1D space set aside
for private use. This method MAY be used to define ad hoc Kinds in
new overl ays.

However a Kind is defined, the definition MJST include:

o The neaning of the data to be stored (in sone textual form.

o The Kind-ID.

o The data nodel (single value, array, dictionary, etc.).

o The access control nodel.

In addition, when Kinds are registered with ANA, each Kind is
assigned a short string name which is used to refer to it in
Configuration Docunents.

Wi |l e each Kind needs to define what data nodel is used for its data,
this does not nmean that it nust define new data nodels. \Were
practical, Kinds should use the existing data nmodels. The intention

is that the basic data nodel set be sufficient for nost applications/
usages.

Jenni ngs, et al. St andards Track [Page 109]

RFC 6940 RELOAD Base January 2014

8. Certificate Store Usage

The Certificate Store Usage allows a node to store its certificate in
the overl ay.

A user/node MJST store its certificate at Resource-1Ds derived from
two Resource Nanes:

o The user nane in the certificate.
o0 The Node-ID in the certificate.
Note that in the second case, the certificate for a peer is not
stored at its Node-1D but rather at a hash of its Node-1D. The
intention here (as is comon throughout RELOAD) is to avoid naking a
peer responsible for its own data.
New certificates are stored at the end of the list. This structure
allows users to store an old and a new certificate that both have the
sane Node-1D, which allows for migration of certificates when they
are renewed.
Thi s usage defines the follow ng Kinds:
Name: CERTI FI CATE_BY_NODE
Data Model: The data nodel for CERTIFI CATE_BY_NODE data is array.
Access Control: NODE- MATCH
Name: CERTI FI CATE_BY_USER
Data Model: The data nodel for CERTIFI CATE_BY_USER data is array.
Access Control: USER- MATCH

9. TURN Server Usage
The TURN Server Usage allows a RELOAD peer to advertise that it is
prepared to be a TURN server, as defined in [RFC5766]. When a node
starts up, it joins the overlay network and fornms several connections
in the process. |If the ICE stage in any of these connections returns
a reflexive address that is not the sane as the peer’s perceived
address, then the peer is behind a NAT and SHOULD NOT be a candi date

for a TURN server. Additionally, if the peer’s IP address is in the
private address space range as defined by [RFC1918], then it is also

Jenni ngs, et al. St andards Track [Page 110]

RFC 6940 RELOAD Base January 2014

SHOULD NOT be a candidate for a TURN server. Qherw se, the peer
SHOULD assune that it is a potential TURN server and follow the
procedures bel ow.

If the node is a candidate for a TURN server, it will insert sone
pointers in the overlay so that other peers can find it. The overlay
configuration file specifies a turn-density paraneter that indicates
how many times each TURN server SHOULD record itself in the overlay.
Typically, this should be set to the reciprocal of the estimate of
what percentage of peers will act as TURN servers. |[If the turn-
density is not set to zero, for each value, called d, between 1 and
turn-density, the peer forns a Resource Nane by concatenating its
Node-1D and the value d. This Resource Nanme is hashed to forma
Resource-1D. The address of the peer is stored at that Resource-ID
usi ng type TURN SERVI CE and the TurnServer object:

struct {
ui nt8 iteration;
| pAddr essPor t server _address;

} TurnServer;
The contents of this structure are as foll ows:

iteration
The d val ue.

server _address
The address at which the TURN server can be contact ed.

Note: Correct functioning of this algorithm depends on having turn-
density be a reasonable estinate of the reciprocal of the
proportion of nodes in the overlay that can act as TURN servers.
If the turn-density value in the configuration file is too | ow,
the process of finding TURN servers beconmes nore expensive, as
mul ti pl e candi date Resource-1Ds must be probed to find a TURN
server.

Peers that provide this service need to support the TURN extensions
to STUN for nedia relay, as defined in [RFC5766] .

Thi s usage defines the following Kind to indicate that a peer is
willing to act as a TURN server:

Nanme: TURN SERVI CE

Data Model: The TURN SERVI CE Kind stores a single value for each
Resource- | D.

Jenni ngs, et al. St andards Track [Page 111]

RFC 6940 RELOAD Base January 2014

10.

Access Control: NODE-MILTIPLE, with a nmaxi mumiteration of counter
20.

Peers MAY find other servers by selecting a random Resource-1D and
then doing a Find request for the appropriate Kind-1D with that
Resource-1D. The Find request gets routed to a random peer based on
the Resource-ID. If that peer knows of any servers, they will be
returned. The returned response may be enpty if the peer does not
know of any servers, in which case the process gets repeated with
some ot her random Resource-ID. As long as the ratio of servers
relative to peers is not too low, this approach will result in
finding a server relatively quickly.

Note to inplenenters: The certificates used by TurnServer entries
need to be retained, as described in Section 6.3.4.

Chord Al gorithm

This algorithmis assigned the name CHORD- RELOAD to indicate that it
is an adaptation of the basic Chord-based DHT al gorithm

This algorithmdiffers fromthe Chord algorithmthat was originally
presented in [Chord]. It has been updated based on nore recent
research results and inpl enentati on experiences, and to adapt it to
the RELQAD protocol. Here is a short list of differences:

o The original Chord algorithmspecified that a single predecessor
and a successor list be stored. The CHORD RELOAD al gorithm
attenpts to have nore than one predecessor and successor. The
predecessor sets help other neighbors learn their successor |ist.

0o The original Chord specification and analysis called for iterative
routing. RELOAD specifies recursive routing. In addition to the
performance inplications, the cost of NAT traversal dictates
recursive routing.

o Finger Table entries are indexed in the opposite order. Oigina
Chord specifies finger[0] as the i nmedi ate successor of the peer
CHORD- RELOAD specifies finger[0] as the peer 180 degrees around
the ring fromthe peer. This change was made to sinplify
di scussion and i npl enentati on of variabl e-si zed Fi nger Tabl es.
However, with either approach, no nore than Q(log N) entries
shoul d typically be stored in a Finger Table.

0 The stabilize() and fix_fingers() algorithms in the original Chord
algorithmare merged into a single periodic process.
Stabilization is inplenented slightly differently because of the
| ar ger nei ghborhood, and fix _fingers is not as aggressive to

Jenni ngs, et al. St andards Track [Page 112]

RFC 6940 RELOAD Base January 2014

reduce | oad, nor does it search for optimal natches of the Finger
Tabl e entri es.

0o RELQAD allows for a 128-bit hash instead of a 160-bit hash, as
RELOAD i s not designed to be used in networks with close to or
nore than 27128 nodes or objects (and it is hard to see how one
woul d assenbl e such a network).

0 RELQAD uses random zed finger entries, as described in
Section 10.7.4. 2.

0 The CHORD- RELOAD al gorithmallows the use of either reactive or
periodi c recovery. The original Chord paper used periodic
recovery. Reactive recovery provides better performance in snal
overlays, but is believed to be unstable in |arge overlays
(greater than 1000) with high levels of churn
[handl i ng- churn-useni x04]. The overlay configuration file
specifies a "chord-reactive" elenent that indicates whether
reactive recovery should be used.

10.1. Overview

The al gorithm descri bed here, CHORD- RELOAD, is a nodified version of
the Chord algorithm In Chord (and in the algorithm described here),
nodes are arranged in a ring, with node n being adjacent to nodes n-1
and n+l and with all arithmetic bei ng done nodul o 2*"{k}, where k is
the length of the Node-ID in bits, so that node 2*{k} - 1 is directly
bef ore node O.

Each peer keeps track of a Finger Table and a Nei ghbor Table. The
Nei ghbor Table contains at |east the three peers before and after
this peer in the DHT ring. There nmay not be three entries in al
cases, such as small rings or while the ring topology is changi ng.
The first entry in the Finger Table contains the peer hal fway around
the ring fromthis peer, the second entry contains the peer that is
1/4th of the way around, the third entry contains the peer that is
1/8th of the way around, and so on. Fundanentally, the Chord DHT can
be thought of as a doubly linked Iist formed by knowi ng the
successors and predecessor peers in the Nei ghbor Table, sorted by the
Node-I1D. As long as the successor peers are correct, the DHT will
return the correct result. The pointers to the prior peers are kept
to enable the insertion of new peers into the list structure.

Keeping nmultiple predecessor and successor pointers nakes it possible
to maintain the integrity of the data structure even when consecutive
peers sinultaneously fail. The Finger Table fornms a skip |ist

[w ki Skiplist] so that entries in the linked |list can be found in

A log(N)) tine instead of the typical Q(N) time that a linked Iist
woul d provide, where N represents the nunber of nodes in the DHT.

Jenni ngs, et al. St andards Track [Page 113]

RFC 6940 RELOAD Base January 2014

The Nei ghbor Tabl e and Finger Table entries contain |ogical Node-IDs
as val ues, but the actual mapping of an IP | evel addressing
information to reach that Node-1D is kept in the Connection Tabl e.

A peer, X, is responsible for a particular Resource-ID, k, if kis
| ess than or equal to x and k is greater than p, where p is the
Node- |1 D of the previous peer in the Neighbor Table. Care nust be
taken when conputing to note that all math is nodul o 27128.

10.2. Hash Function

For this Chord-based Topol ogy Plug-in, the size of the Resource-IDis
128 bits. The hash of a Resource-1D MJST be conputed using SHA-1

[RFC3174], and then the SHA-1 result MJST be truncated to the nost
significant 128 bits.

10.3. Routing

The Routing Table is conceptually the union of the Neighbor Table and
the Finger Table.

If a peer is not responsible for a Resource-ID k, but is directly
connected to a node with Node-ID k, then it MJST route the nessage to
that node. Qherwise, it MJIST route the request to the peer in the
Routing Table that has the largest Node-ID that is in the interva

bet ween the peer and k. If no such node is found, the peer finds the
smal | est Node-ID that is greater than k and MJST route the nmessage to
that node.

10. 4. Redundancy

When a peer receives a Store request for Resource-ID k and it is
responsi ble for Resource-ID k, it MJST store the data and return a
success response. It MJST then send a Store request to its successor
in the Neighbor Table and to that peer’s successor, increnenting the
replica nunber for each successor. Note that these Store requests
are addressed to those specific peers, even though the Resource-ID
they are being asked to store is outside the range that they are
responsi ble for. The peers receiving these SHOULD check that they
cane from an appropriate predecessor in their Neighbor Table and that
they are in a range that this predecessor is responsible for. Then
they MUST store the data. They do not thenselves performfurther
Stores, because they can determ ne that they are not responsible for
the Resource-1D.

Note that this Topol ogy Plug-in does not use the replica nunber for

pur poses ot her than knowi ng the difference between a replica and a
non-replica

Jenni ngs, et al. St andards Track [Page 114]

RFC 6940 RELOAD Base January 2014

10.

Managi ng replicas as the overlay changes is described in
Section 10.7. 3.

The sequential replicas used in this overlay al gorithm protect

agai nst peer failure but not against malicious peers. Additiona
replication fromthe Usage is required to protect resources from such
attacks, as discussed in Section 13.5.4.

5. Joining

The join process for a Joining Node (JN) with Node-1D n is as
fol | ows:

1. JN MJST connect to its chosen bootstrap node, as specified in
Section 11. 4.

2. JN SHOULD send an Attach request to the Admtting Peer (AP) for
Resource-1D n+l. The "send update" flag can be used to acquire
the Routing Table of AP.

3. JN SHOULD send Attach requests to initiate connections to each of
the peers in the Neighbor Table as well as to the desired peers
in the Finger Table. Note that this does not populate their
Routing Tables, but only their Connection Tables, so JNw Il not
get nessages that it is expected to route to other nodes.

4. JN MJST enter into its Routing Table all the peers that it has
successful ly contact ed.

5. JN MUST send a Join to AP. The AP MJST send the response to the
Joi n.

6. AP MJST do a series of Store requests to JNto store the data
that JNw Il be responsible for.

7. AP MUST send JN an Update explicitly labeling JN as its
predecessor. At this point, JNis part of the ring and is
responsi bl e for a section of the overlay. AP MAY now forget any
data which is assigned to JN and not AP. AP SHOULD NOT f orget
any data where AP is the replica set for the data.

8. The AP MJST send an Update to all of its neighbors (including JN)
with the new val ues of its neighbor set (including JN)

9. JN MUST send Updates to all of the peers in its Neighbor Table.

Jenni ngs, et al. St andards Track [Page 115]

RFC 6940 RELOAD Base January 2014

10.

If JN sends an Attach to AP with send _update, it inmrediately knows
nost of its expected neighbors from AP s Routing Tabl e update and MAY
directly connect to them This is the RECOMENDED procedure.

If for some reason JN does not get AP's Routing Table, it MAY stil
popul ate its Nei ghbor Table increnentally. 1t SHOULD send a Ping
directed at Resource-1D n+l (directly after its own Resource-ID).
This allows JN to discover its own successor. Call that node p0O. JN
then SHOULD send a Ping to pO+1 to discover its successor (pl). This
process MAY be repeated to di scover as many successors as desired.
The values for the two peers before p will be found at a | ater stage,
when n receives an Update. An alternate procedure is to send
Attaches to those nodes rather than Pings, which formthe connections
i medi ately, but may be slower if the nodes need to collect |ICE
candi dat es.

In order to set up its i’th Finger Table entry, JN MJST send an
Attach to peer n+27(128-i). This will be routed to a peer in
approximately the right location around the ring. (Note that the
first entry in the Finger Table has i=1 and not i=0 in this
formul ation.)

The Joi ni ng Node MJUST NOT send any Update nessage placing itself in
the overlay until it has successfully conpleted an Attach with each
peer that should be in its Neighbor Table.

6. Routing Attaches

VWhen a peer needs to Attach to a new peer in its Neighbor Table, it
MUST source-route the Attach request through the peer fromwhich it

| earned the new peer’s Node-ID. Source-routing these requests all ows
the overlay to recover frominstability.

Al'l other Attach requests, such as those for new Finger
Tabl e entries, are routed conventionally through the overl ay.

Jenni ngs, et al. St andards Track [Page 116]

RFC 6940 RELOAD Base January 2014

10. 7. Updates
An Update for this DHT is defined as:
enum { inval i dChordUpdat eType(0),

peer _ready(1l), neighbors(2), full(3), (255) }
Chor dUpdat eType;

struct {
ui nt 32 upti me;
Chor dUpdat eType type;
sel ect (type){
case peer_ready: [* Enmpty */

case nei ghbors:

Nodel d predecessor s<0..2"16- 1>;

Nodel d successor s<0. . 2716- 1>;
case full:

Nodel d predecessor s<0..2"16- 1>;

Nodel d successor s<0..2"16-1>;

Nodel d fingers<0..2"16-1>;

b
} ChordUpdat e;

The "uptine" field contains the time this peer has been up in
seconds.

The "type" field contains the type of the update, which depends on
the reason the update was sent.

peer _ready
This peer is ready to receive nessages. This message is used to
i ndicate that a node which has Attached is a peer and can be
routed through. It is also used as a connectivity check to non-
nei ghbor peers.

nei ghbors
This version is sent to nmenbers of the Chord Nei ghbor Tabl e.

ful

This version is sent to peers which request an Update with a
Rout eQuer yReq.

Jenni ngs, et al. St andards Track [Page 117]

RFC 6940 RELOAD Base January 2014

If the nessage is of type "neighbors", then the contents of the
nessage will be:

predecessors
The predecessor set of the Updating peer.

successors
The successor set of the Updating peer.

If the message is of type "full", then the contents of the nessage
wll be:

predecessors
The predecessor set of the Updating peer.

successors
The successor set of the Updating peer.

fingers
The Finger Table of the Updating peer, in nunerically ascending
order.

A peer MJST maintain an association (via Attach) to every nenber of
its neighbor set. A peer MJST attenpt to naintain at |east three
predecessors and three successors, even though this will not be
possible if the ring is very small. It is RECOMVENDED that Q(l og(N))
predecessors and successors be naintained in the nei ghbor set. There
are many ways to estimate N, some of which are discussed in

[DHT- RELOAD] .

10. 7. 1. Handling Nei ghbor Failures

Every tinme a connection to a peer in the Neighbor Table is lost (as
det erm ned by connectivity pings or the failure of some request), the
peer MJST renmove the entry fromits Neighbor Table and replace it
with the best match it has fromthe other peers in its Routing Table.
If using reactive recovery, the peer MJIST send an i nmedi ate Update to
all nodes in its Neighbor Table. The update will contain all the
Node- 1 Ds of the current entries of the table (after the failed one
has been rempoved). Note that when replacing a successor, the peer
SHOULD del ay the creation of new replicas for the successor

repl acenent hol d-down tinme (30 seconds) after renoving the fail ed
entry fromits Neighbor Table in order to allow a triggered update to
informit of a better match for its Nei ghbor Tabl e.

If the neighbor failure affects the peer’s range of responsible |Ds,
then the Update MJST be sent to all nodes in its Connection Table.

Jenni ngs, et al. St andards Track [Page 118]

RFC 6940 RELOAD Base January 2014

A peer MNAY attenpt to reestablish connectivity with a |ost nei ghbor
either by waiting additional tine to see if connectivity returns or
by actively routing a new Attach to the |Iost peer. Details for these
procedures are beyond the scope of this docunent. |In the case of an
attenpt to reestablish connectivity with a | ost nei ghbor, the peer
MUST be renoved fromthe Nei ghbor Table. Such a peer is returned to
the Nei ghbor Tabl e once connectivity is reestablished.

If connectivity is lost to all successor peers in the Neighbor Table,
then this peer SHOULD behave as if it is joining the network and MUST
use Pings to find a peer and send it a Join. |If connectivity is |ost
to all the peers in the Finger Table, this peer SHOULD assune that it
has been di sconnected fromthe rest of the network, and it SHOULD
periodically try to join the DHT.

10.7.2. Handling Finger Table Entry Failure

If a Finger Table entry is found to have failed (as determ ned by
connectivity pings or the failure of sonme request), all references to
the failed peer MIST be renoved fromthe Finger Table and repl aced
with the closest preceding peer fromthe Finger Table or Nei ghbor

Tabl e.

If using reactive recovery, the peer MUST initiate a search for a new
Fi nger Table entry, as described bel ow

10.7.3. Receiving Updates

VWhen a peer x receives an Update request, it exam nes the Node-IDs in
the UpdateReq and at its Nei ghbor Table and decides if this UpdateReq
woul d change its Neighbor Table. This is done by taking the set of
peers currently in the Nei ghbor Table and conparing themto the peers
in the Update request. There are two mmj or cases:

o The UpdateReq contains peers that match x’ s Nei ghbor Table, so no
change is needed to the neighbor set.

0 The UpdateReq contains peers that x does not know about that
shoul d be in x’s Neighbor Table; i.e., they are closer than
entries in the Nei ghbor Table.

In the first case, no change is needed.
In the second case, x MJST attenpt to Attach to the new peers, and if
it is successful, it MJST adjust its neighbor set accordingly. Note

that x can maintain the now inferior peers as neighbors, but it MJST
remenber the cl oser ones.

Jenni ngs, et al. St andards Track [Page 119]

RFC 6940 RELOAD Base January 2014

10.

10.

After any Pings and Attaches are done, if the Nei ghbor Tabl e changes
and the peer is using reactive recovery, the peer MJST send an Update
request to each menber of its Connection Table. These Update
requests are what end up filling in the predecessor/successor tables
of peers that this peer is a neighbor to. A peer MJST NOT enter
itself in its successor or predecessor table and instead should | eave
the entries enpty.

If peer x is responsible for a Resource-ID R and x discovers that the
replica set for R (the next two nodes in its successor set) has
changed, it MJST send a Store for any data associated with R to any
new node in the replica set. It SHOULD NOT del ete data from peers
whi ch have left the replica set.

When peer x detects that it is no longer in the replica set for a
resource R (i.e., there are three predecessors between x and R), it
SHOULD del ete all data associated with Rfromits |ocal store.

When a peer discovers that its range of responsible | Ds has changed,
it MUST send an Update to all entries in its Connection Table.

7.4. Stabilization
There are four conponents to stabilization:

1. Exchange Updates with all peers in its Nei ghbor Table to exchange
state.

2. Search for better peers to place in its Finger Table.

3. Search to determine if the current Finger Table size is
sufficiently |arge.

4. Search to determine if the overlay has partitioned and needs to
recover.

7.4.1. Updating the Neighbor Table

A peer MJST periodically send an Update request to every peer inits
Nei ghbor Table. The purpose of this is to keep the predecessor and
successor lists up to date and to detect failed peers. The default
time is about every ten minutes, but the configuration server SHOULD
set this in the Configuration Docurment using the "chord-update-
interval" el enent (denom nated in seconds). A peer SHOULD randomy
of fset these Update requests so they do not occur all at once.

Jenni ngs, et al. St andards Track [Page 120]

RFC 6940 RELOAD Base January 2014

10.7.4.2. Refreshing the Finger Table

A peer MJST periodically search for new peers to replace invalid
entries in the Finger Table. For peer x, the i’th Finger Table entry
isvalidif it is in the range [x+2"(128-i),

X+27(128-(i-1))-1]. Invalid entries occur in the Finger

Tabl e when a previous Finger Table entry has failed or when no peer
has been found in that range.

Two possi bl e methods for searching for new peers for the Finger
Tabl e entries are presented:

Alternative 1: A peer selects one entry in the Finger Table from
anong the invalid entries. It pings for a new peer for that Finger
Table entry. The sel ection SHOULD be exponentially weighted to
attenpt to replace earlier (lower i) entries in the Finger Table. A
simple way to inmplenent this selection is to search through the
Finger Table entries fromi=1, and each time an invalid entry is
encountered, send a Ping to replace that entry with probability 0.5.

Alternative 2: A peer monitors the Update nessages received fromits
connections to observe when an Update indicates a peer that would be
used to replace an invalid Finger Table entry, i, and flags that
entry in the Finger Table. Every "chord-ping-interval" seconds, the
peer selects from anong those fl agged candi dates using an
exponentially wei ghted probability, as above.

VWhen searching for a better entry, the peer SHOULD send the Ping to a
Node- 1D sel ected randomy fromthat range. Random selection is
preferred over a search for strictly spaced entries to mnimze the
ef fect of churn on overlay routing [mnimzing-churn-sigcom06]. An
i mpl enentati on or subsequent specification MAY choose a nethod for

sel ecting Finger Table entries other than choosing randomy wthin
the range. Any such alternate nmethods SHOULD be enpl oyed only on

Fi nger Table stabilization and not for the selection of initia

Finger Table entries unless the alternative nethod is faster and

i nposes | ess overhead on the overl ay.

A peer SHOULD NOT send Ping requests |ooking for new finger table
entries nore often than the configuration el emrent "chord-ping-
interval", which defaults to 3600 seconds (one per hour).

A peer MAY choose to keep connections to nmultiple peers that can act
for a given Finger Table entry.

Jenni ngs, et al. St andards Track [Page 121]

RFC 6940 RELOAD Base January 2014

10.7.4.3. Adjusting Finger Table Size

If the Finger Table has fewer than 16 entries, the node SHOULD
attenpt to discover nore fingers to grow the size of the table to 16.
The val ue 16 was chosen to ensure high odds of a node maintaining
connectivity to the overlay even with strange network partitions.

For many overlays, 16 Finger Table entries will be enough, but as an
overlay grows very large, nmore than 16 entries may be required in the
Finger Table for efficient routing. An inplementation SHOULD be
capabl e of increasing the nunber of entries in the Finger Table to
128 entries.

Al though 1 og(N) entries are all that are required for optinma
performance, careful inplenentation of stabilization will result in
no additional traffic being generated when maintaining a Finger
Table | arger than log(N) entries. Inplenenters are encouraged to
nmake use of RouteQuery and al gorithnms for determ ning where new
Finger Table entries nay be found. Conplete details of possible

i mpl enentati ons are outside the scope of this specification

A sinmpl e approach to sizing the Finger Table is to ensure that the
Finger Table is | arge enough to contain at |east the final successor
in the peer’s Neighbor Table.

10.7.4.4. Detecting Partitioning

To detect that a partitioning has occurred and to heal the overlay, a
peer P MJUST periodically repeat the discovery process used in the
initial join for the overlay to | ocate an appropriate bootstrap node,
B. P SHOULD then send a Ping for its own Node-I1D routed through B

If a response is received frompeer S, which is not P s successor
then the overlay is partitioned and P SHOULD send an Attach to S
routed through B, followed by an Update sent to S. (Note that S

may not be in P s Neighbor Table once the overlay is healed, but the
connection will allow S to discover appropriate neighbor entries for
itself via its own stabilization.)

Future specifications may describe alternative nechani sns for
determ ni ng when to repeat the di scovery process.

Jenni ngs, et al. St andards Track [Page 122]

RFC 6940 RELOAD Base January 2014

10.8. Route Query f.in 3

For CHORD- RELOAD, the RouteQueryReq contains no additiona

i nformati on. The Rout eQueryAns contains the single Node-ID of
the next peer to which the responding peer woul d have routed the
request nessage in recursive routing:

struct {
Nodel d next peer;
} Chor dRout eQuer yAns;

The contents of this structure are as foll ows:

next _peer
The peer to which the respondi ng peer would route the nmessage in
order to deliver it to the destination listed in the request.

If the requester has set the send update flag, the responder SHOULD
initiate an Update i medi ately after sending the RouteQueryAns.

10.9. Leaving

To support extensions, such as [DHT-RELOAD], peers SHOULD send a
Leave request to all nenbers of their Nei ghbor Tabl e before exiting
the Overlay Instance. The overlay specific data field MJUST contain
t he ChordLeaveData structure, defined bel ow

enum { invalidChordLeaveType(0),
fromsucc(l), frompred(2), (255) }
Chor dLeaveType;

struct {
Chor dLeaveType type;

sel ect (type) {
case from succ:
Nodel d successor s<0. . 2"16- 1>;

case from pred
Nodel d predecessor s<0. . 2"16- 1>;
i

} ChordLeaveDat a

Jenni ngs, et al. St andards Track [Page 123]

RFC 6940 RELOAD Base January 2014

11.

11.

The "type" field indicates whether the Leave request was sent by a
predecessor or a successor of the recipient:

from succ
The Leave request was sent by a successor.

frompred
The Leave request was sent by a predecessor.

If the type of the request is "fromsucc", the contents will be:

successors
The sender’s successor |ist.

If the type of the request is "frompred", the contents will be:

pr edecessors
The sender’s predecessor |ist.

Any peer which receives a Leave for a peer n in its nei ghbor set MJST
follow procedures as if it had detected a peer failure as described
in Section 10.7. 1.

Enrol | nrent and Bootstrap

The section defines the fornmat of the configuration data as well the
process to join a new overl ay.

1. Overlay Configuration

Thi s specification defines a new content type
"appl i cation/p2p-overlay+xm " for a MME entity that contains overl ay
i nformati on. An exanpl e docunment is shown bel ow

<?xm version="1. 0" encodi ng="UTF-8""?>
<overlay xm ns="urn:ietf:parans: xnl:ns: p2p: confi g- base"
xm ns: ext="urn:ietf:parans: xn : ns: p2p: confi g-ext 1"
xm ns: chord="urn:ietf:parans: xm : ns: p2p: confi g-chord">
<confi guration instance-nanme="overl ay. exanpl e. org" sequence="22"
expiration="2002-10- 10T07: 00: 00Z" ext: ext-exanpl e="stuff" >
<t opol ogy- pl ugi n> CHORD- RELOAD </t opol ogy- pl ugi n>
<node-i d- | engt h>16</ node-i d- | engt h>
<root-cert>
M | DIDCCA02gAW BAgl BADANBgk qhki GOw0BAQUFADBWMQs wOQYDVQQGEWI VUZ ET
MBEGA1UECBMKQ@FsaWzZvcnbp YTERMASBGALUEBXM W2Ful Epvc2UxDj AMBgNVBAOT
BXNpc A OMskwIwYDVQQLEYBTaXBpdCBUZXNOI ENl cnRpZm j YXRI | EF1dGhvemni O
eTAeFWOWME ASMTgxM | x NTJaFwOx Mz ASMTUxM | x NTJaMHAXx Cz AJBgNVBAYTAI VT
MRMAVEQYDVQQ EwpDYWkpZmBy b hVREWDWY DVQQHEWN TYW g Sz ZTEOMAWGAL UE

Jenni ngs, et al. St andards Track [Page 124]

RFC 6940 RELOAD Base January 2014

ChiMFc 2l waXQxKTANBgNVBAsSTI FNpcd 0l FRI c3Qg@Vydd maVWhd GUg QXV0a Xy
aXR5M Gf MAOGCSqGSI b3 DQEBAQUAAAGNADCBI QKBgQDDI h6Dk ¢ UDL Dy K9BEUxkud
+nJ4xr CVGKf gj Hr6XaSuHi Et nf ELHMOW ez kBNz ZpJu30yz sxwf Kol KugdNUr D4
N3vi G cweN35LgP/ KnbN34cavXHr 4Z1 qxH+QdKB3hQTpQa38A7YXdaoz6goVeft 5
M 74z03GNKP/ 9BoKOGI5Q DAQABo4HNM HKIVBOGA1 Ud Dg QNBBRr Rhc U6pR2J YBU
bhNU2gH VBSht j CBngYDVROj Bl GSM GPgBRr RhcU6pR2J YBUbhNU2gH VBSht gqFO
pH we DEL MAk GA1UEBhMCVVIMK Ez ARBgNVBAg TCkNhbG mb3JuaVEEXETAPBgNVBAC T
CFNhbi BKb3N MUWDAYDVQQKEWz aXBpd DEpMCc GA1UECX MyU2| waXQgVGVz dCBD
ZXJ0aWZpY2F0ZSBBd XRob3J pd HMCAQAWDAYDVRO TBAUWAWEB/ z ANBgkghki GOwOB
AQUFAAOBg QCVW RV vV 1ZGTRXxbH8/ Eqgkd SCz SoUPr s +r QqROxdQac9wNY/ nl ZbkR30
gAez G5 Sf kil v +DOg5RxQg/ +Y61 03LRepc7KeVDpapl MFGnpf Ksi bETM pwzayNQ
QUf 4cKBi F+65Ue7hZuDJa2EMs8qWit wEhGDYcl pFU9Yozy S1Chv Ug==

</root-cert>

<root-cert> YnFkl GNl cnQX </root-cert>

<enr ol | ment - server >https:// exanpl e. org</ enrol | nent - server >

<enrol | nent - server>https://exanpl e. net </ enrol | nent-server>

<sel f-signed-permtted

di gest ="shal" >f al se</ sel f-si gned-perm tted>

<boot st rap- node address="192.0.0.1" port="6084" />

<boot st rap- node address="192.0.2.2" port="6084" />

<boot strap- node address="2001: DB8:: 1" port="6084" />

<turn-density> 20 </turn-density>

<clients-permtted> false </clients-permtted>

<no-ice> fal se </ no-ice>

<chord: chord-updat e-i nterval >

400</ chor d: chor d- updat e-i nt erval >

<chor d: chor d- pi ng-i nt erval >30</ chor d: chor d- pi ng-i nterval >

<chord: chord-reactive> true </chord: chord-reactive>

<shar ed-secret > password </shared-secret>

<max- message- si ze>4000</ max- nessage- si ze>

<initial-ttl> 30 </initial-ttl>

<overlay-reliability-tinmer> 3000 </overlay-reliability-timer>

<overl ay-1ink-protocol >TLS</ over| ay- i nk- prot ocol >

<configuration-signer>47112162e84c69ba</ confi gurati on-si gner >

<ki nd- si gner> 47112162e84c69ba </ ki nd- si gner >

<ki nd- si gner > 6eba45d31a900c06 </ ki nd-si gner>

<bad- node> 6ebc45d31a900c06 </ bad- node>

<bad- node> 6ebc45d31a900ca6 </ bad- node>

<ext : exanpl e- ext ensi on> foo </ext:exanpl e- ext ensi on>

<mandat or y- ext ensi on>
urn:ietf:parans: xm:ns: p2p:config-extl

</ mandat or y- ext ensi on>

<requi r ed- ki nds>

<ki nd- bl ock>
<ki nd nanme="SI P- REG STRATI ON" >

Jenni ngs, et al. St andards Track [Page 125]

RFC 6940 RELOAD Base January 2014

<dat a- nodel >SI NGLE</ dat a- nodel >
<access- cont r ol >USER- MATCH</ access- control >
<max- count >1</ max- count >
<max- si ze>100</ max- si ze>
</ ki nd>
<ki nd- si gnat ur e>
VGhpcyBpcyBub3Qycm naHGhCg==
</ ki nd- si gnat ur e>
</ ki nd- bl ock>
<ki nd- bl ock>
<ki nd i d="2000">
<dat a- nodel >ARRAY</ dat a- nodel >
<access-cont r ol >NODE- MULTI PLE</ access-contr ol >
<max- node- nul ti pl e>3</ max- node- nul ti pl e>
<max- count >22</ max- count >
<max- si ze>4</ max- si ze>
<ext : exanpl e- ki nd- ext ensi on> 1
</ ext : exanpl e- ki nd- ext ensi on>
</ ki nd>
<ki nd- si gnat ur e>
VGhpcyBpcyBub3Qycm naHGhCg==
</ ki nd- si gnat ur e>
</ ki nd- bl ock>
</ required-ki nds>
</ configuration>
<si gnat ur e> VGhpcyBpcyBub3Qcm naHGhCg== </ si gnat ure>

<confi guration instance-name="other.exanpl e. net">
</ configuration>
<si gnat ur e> VGhpcyBpcyBub3Qcmnm naHhCg== </ si gnat ur e>

</ overl| ay>

The file MJUST be a well-forned XM. docunent, and it SHOULD contain an
encodi ng declaration in the XML declaration. The file MJST use the
UTF-8 character encoding. The nanmespaces for the elenments defined in
this specification are urn:ietf:paranms: xm : ns: p2p: confi g- base and
urn:ietf:params: xm : ns: p2p: confi g-chord.

Note that elenents or attributes that are defined as type xsd: bool ean
in the RELAX NG schema (Section 11.1.1) have two | exica
representations, "1" or "true" for the concept true, and "0" or
"false" for the concept false. Whitespace and case processing
follows the rules of [OASIS.relax_ng] and XM. Schena Dat at ypes

[MBC. REC- xml schena- 2-20041028] .

Jenni ngs, et al. St andards Track [Page 126]

RFC 6940 RELOAD Base January 2014

The file MAY contain multiple "configuration" elenments, where each
one contains the configuration information for a different overlay.
Each configuration el ement MAY be foll owed by signature el ements that
provide a signature over the preceding configuration element. Each
configuration elenent has the followi ng attributes:

i nst ance- nane
The nane of the overlay (referred to as "overlay nane" in this
speci fication)

expiration
Time in the future at which this overlay configuration is no
| onger valid. The node SHOULD retrieve a new copy of the
configuration at a randomy selected tine that is before the
expiration time. Note that if the certificates expire before a
new configuration is retried, the node will not be able to
validate the configuration file. Al tinmes MJST conformto the
Internet date/tine format defined in [RFC3339] and be specified
usi ng UTC.

sequence
A rnonot oni cal |l y increasi ng sequence nunber between 0 and 2716- 2.

I nsi de each overlay elenment, the follow ng el enents can occur

t opol ogy-pl ug-in
This el ement defines the overlay al gorithm being used. |If
m ssing, the default is "CHORD RELOAD'.

node-id-length
This el ement contains the length of a Nodeld (NodeldLength), in
bytes. This value MJST be between 16 (128 bits) and 20 (160
bits). If this elenent is not present, the default of 16 is used.

root-cert
This el ement contains a base-64-encoded X. 509v3 certificate that
is a root trust anchor used to sign all certificates in this
overlay. There can be nore than one root-cert el enent.

enrol | ment - server
This el ement contains the URL at which the enroll ment server can
be reached in a "url" elenment. This URL MUST be of type "https:".
More than one enrol |l nent-server el enment MAY be present. Note that
there is no necessary rel ationship between the overlay nane/
configuration server nane and the enroll ment server nane.

Jenni ngs, et al. St andards Track [Page 127]

RFC 6940 RELOAD Base January 2014

sel f-signed-permtted
This el ement indicates whether self-signed certificates are
permtted. |If it is set to "true", then self-signed certificates
are allowed, in which case the enroll nent-server and root-cert
el ements MAY be absent. Oherwi se, it SHOULD be absent, but MAY
be set to "false". This elenent also contains an attribute
"digest", which indicates the digest to be used to conpute the
Node-I1D. Valid values for this paraneter are "shal" and "sha256",
representing SHA-1 [RFC3174] and SHA- 256 [RFC6234], respectively.
| mpl ement ati ons MUST support both of these al gorithmns.

boot st r ap- node
This el ement represents the address of one of the bootstrap nodes.
It has an attribute called "address" that represents the IP
address (either 1Pv4 or 1Pv6, since they can be distingui shed) and
an optional attribute called "port" that represents the port and
defaults to 6084. The IPv6 address is in typical hexadecimal form
usi ng standard period and col on separators as specified in
[RFC5952]. More than one bootstrap-node el enent MAY be present.

turn-density
This element is a positive integer that represents the approximate
reci procal of density of nodes that can act as TURN servers. For
exanple, if 5% of the nodes can act as TURN servers, this el enent
woul d be set to 20. |If it is not present, the default value is 1
If there are no TURN servers in the overlay, it is set to zero.

clients-pernmitted
This el ement represents whether clients are permtted or whether
all nodes nust be peers. |If clients are pernmtted, the el enent
MUST be set to "true" or be absent. |If the nodes are not allowed
toremain clients after the initial join, the element MJST be set
to "false". There is currently no way for the overlay to enforce
this.

no-ice
This el ement represents whether nodes are REQUI RED to use the
"No-I CE" Overlay Link protocols in this overlay. |If it is absent,
it is treated as if it were set to "fal se"

chord-updat e-i nterva
The update frequency for the CHORD- RELOAD Topol ogy Plug-in (see
Section 10).

chord- pi ng-i nterva

The Ping frequency for the CHORD RELOAD Topol ogy Plug-in (see
Section 10).

Jenni ngs, et al. St andards Track [Page 128]

RFC 6940 RELOAD Base January 2014

chord-reactive

Whet her reactive recovery SHOULD be used for this overlay. It is
set to "true" or "false". |If mssing, the default is "true" (see
Section 10).

shar ed- secr et
I f shared secret nbde is used, this elenment contains the shared
secret. The security guarantee here is that any agent which is
able to access the Configuration Docurment (presunmably protected by
some sort of HTTP access control or network topology) is able to
recover the shared secret and hence join the overl ay.

nax- message- si ze
Maxi mum si ze, in bytes, of any nessage in the overlay. |If this
val ue is not present, the default is 5000.

initial-ttl
Initial default TTL for nessages (see Section 6.3.2). |If this
val ue is not present, the default is 100.

overlay-reliability-tinmer
Default value for the end-to-end retransnmi ssion timer for
messages, in mlliseconds. |If not present, the default value is
3000. The value MJST be at |east 200 milliseconds, which neans
the mnimumtime delay before dropping a link is 1000
mlliseconds.

over | ay-1ink-protoco
I ndicates a perm ssible overlay Iink protocol (see Section 6.6.1
for requirenents for such protocols). An arbitrary nunber of
these elenments may appear. |f none appear, then this inplies the
default value, "TLS', which refers to the use of TLS and DTLS. |If
one or nore el enents appear, then no default value applies.

ki nd- si gner
This contains a single Node-1D in hexadecimal and indicates that
the certificate with this Node-IDis allowed to sign Kinds.
I denti fying Kkind-signer by Node-ID instead of certificate allows
the use of short-lived certificates without constantly having to
provi de an updated configuration file.

confi guration-signer
This contains a single Node-1D in hexadeci mal and indicates that
the certificate with this Node-ID is allowed to sign
configurations for this instance-name. Ildentifying the signer by
Node- 1D i nstead of certificate allows the use of short-Ilived
certificates without constantly having to provide an updated
configuration file.

Jenni ngs, et al. St andards Track [Page 129]

RFC 6940 RELOAD Base January 2014

bad- node
This contains a single Node-I1D in hexadeci nal and indicates that
the certificate with this Node-ID MJUST NOT be considered valid.
This allows certificate revocation. An arbitrary nunber of these
el ements can be provided. Note that because certificates my
expire, bad-node entries need be present only for the lifetime of
the certificate. Technically speaking, bad Node-I1Ds nay be reused
after their certificates have expired. The requirenent for
Node- 1 Ds to be pseudorandonmly generated gives this event a
vani shing probability.

mandat or y- ext ensi on
This el ement contains the nane of an XML nanmespace that a node
joining the overlay MJUST support. The presence of a mandatory-
ext ensi on el ement does not require the extension to be used in the
current configuration file, but can indicate that it may be used
in the future. Note that the namespace is case-sensitive, as
specified in Section 2.3 of [w3c-xm -nanmespaces]. More than one
nmandat or y- ext ensi on el enent MAY be present.

I nsi de each configuration elenent, the required-kinds el ement MAY

al so occur. This element indicates the Kinds that nenmbers MJST
support and contains multiple kind-block elenments that each define a
single Kind that MJUST be supported by nodes in the overlay. Each

ki nd- bl ock consists of a single kind el enent and a ki nd-si gnature.
The kind el enent defines the Kind. The kind-signhature is the

si gnature conputed over the kind el ement.

Each kind el enent has either an id attribute or a nane attribute.

The nane attribute is a string representing the Kind (the nane
registered to I ANA), while the id is an integer Kind-1D all ocated out
of private space.

In addition, the kind el ement MJST contain the follow ng el enents:
max- count
The maxi mum nunber of val ues whi ch nenbers of the overlay nust
support.

dat a- nodel
The data npdel to be used.

max- si ze
The maxi mum si ze of individual val ues.

access-contro
The access control npdel to be used.

Jenni ngs, et al. St andards Track [Page 130]

RFC 6940 RELOAD Base January 2014

The kind el ement MAY al so contain the foll owi ng el ement:

max- node-mul tipl e
If the access control is NODE-MILTIPLE, this el enment MJUST be
included. This indicates the naxi numvalue for the i counter. |t
MUST be an integer greater than O.

Al'l of the non-optional values MJST be provided. |If the Kind is

regi stered with 1 ANA, the data-nodel and access-control el ements MUST
match those in the Kind registration, and clients MJST ignore themin
favor of the I ANA versions. Miltiple kind-block el enents MAY be
present.

The ki nd-bl ock el ement al so MJUST contain a "kind-signature" el ement.
This signature is conmputed across the kind el ement fromthe begi nning
of the first < of the kind elenent to the end of the last > of the
kind elenment in the same way as the signature el enent described |ater
in this section. kind-block el enents MJST be signed by a node |isted
in the kind-signers block of the current configuration. Receivers
MUST verify the signature prior to accepting a kind-bl ock

The configuration el ement MUST be treated as a binary bl ob that
cannot be changed -- including any whitespace changes -- or the
signature will break. The signature MJUST be conputed by taking each
configuration elenent and starting from and including, the first <
at the start of <configuration> up to and including the > in </
configuration> and treating this as a binary blob that MJST be signed
using the standard SecurityBl ock defined in Section 6.3.4. The
SecurityBl ock MIST be base-64 encoded using the base64 al phabet from
[RFC4648] and MJST be put in the signature elenment follow ng the
configuration object in the configuration file. Any configuration
file MUST be signed by one of the configuration-signer elements from
the previous extant configuration. Recipients MJST verify the
signature prior to accepting the configuration file.

When a node receives a new configuration file, it MJST change its
configuration to neet the new requirenents. This may require the
node to exit the DHT and rejoin. |If a node is not capable of
supporting the new requirenments, it MJST exit the overlay. |If some
i nformati on about a particular Kind changes from what the node
previously knew about the Kind (for exanple, the max size), the new
information in the configuration files overrides any previously

| earned infornmation. |f any Kind data was signed by a node that is
no |l onger allowed to sign Kinds, that Kind MJST be discarded al ong
with any stored information of that Kind. Note that forcing an
aval anche restart of the overlay with a configuration change that
requires rejoining the overlay may result in serious performance
probl ens, including total collapse of the network if configuration

Jenni ngs, et al. St andards Track [Page 131]

RFC 6940 RELOAD Base January 2014

paranmeters are not properly considered. Such an event may be

necessary in case of a conpronmised CA or simlar problem but for

| arge overlays, it should be avoided in alnost all circunstances.
11.1.1. RELAX NG G ammar

The grammar for the configuration data is:

nanespace chord
nanespace | oca

"urn:ietf:paranms: xm:ns:p2p: config-chord"

def aul t namespace p2pcf = "urn:ietf:paranms: xn : ns: p2p: confi g- base"
nanmespace rng = "http://relaxng.org/ ns/structure/ 1. 0"
anything =

(element * { anything }
| attribute * { text }
| text)*

foreign-el enents = element * - (p2pcf:* | local:* | chord:*)
{ anything }*
foreign-attributes = attribute * - (p2pcf:*|local:*|chord:*)
{ text }*
foreign-nodes = (foreign-attributes | foreign-elenments)*

start = elenment p2pcf:overlay {
over| ay- el ement
}

over | ay-el emrent &= el enment configuration {
attribute instance-nanme { xsd:string },
attribute expiration { xsd:dateTine }?
attribute sequence { xsd:long }?,
foreign-attributes*,
par anet er
1+
overl ay-el enent &= el enent signature {
attribute algorithm{ signature-algorithmtype }?,
xsd: base64Bi nary

}*
signature-algorithmtype | = "rsa-shal”
signature-algorithmtype |= xsd:string # signature alg extensions

paranmeter &= el ement topol ogy-plugin { topol ogy-plugin-type }?
t opol ogy-pl ugi n-type | = xsd:string # topo plugin extensions
par amet er &= el enment nmax- message-size { xsd:unsignedint }°?
paranmeter &= elenment initial-ttl { xsd:int }?

paranmeter &= element root-cert { xsd: base64Binary }*

Jenni ngs, et al. St andards Track [Page 132]

RFC 6940 RELOAD Base January 2014

par aneter &= el ement required-kinds { kind-block* }?
paraneter &= el enent enrollnent-server { xsd:anyURl }*
paraneter &= el enent kind-signer { xsd:string }*

par anmeter &= el ement configuration-signer { xsd:string }*
par aneter &= el ement bad-node { xsd:string }*

paranmeter &= el ement no-ice { xsd: boolean }?

paranmeter &= el enment shared-secret { xsd:string }?
paraneter &= el enent overlay-link-protocol { xsd:string }*
parameter &= elenment clients-permitted { xsd:boolean }?
parameter &= element turn-density { xsd:unsignedByte }?
paranmeter &= el ement node-id-length { xsd:int }?

par aneter &= el ement mandat ory-extension { xsd:string }*
par aneter &= foreign-el enents*

par ameter &=

el ement sel f-signed-permtted {
attribute digest { self-signed-digest-type },
xsd: bool ean

1?
sel f-si gned-di gest-type | = "shal"
sel f-signed-digest-type |= xsd:string # signature di gest extensions

par aneter &= el ement boot strap-node {
attribute address { xsd:string },
attribute port { xsd:int }?
}*

ki nd- bl ock = el ement ki nd- bl ock {
el ement kind {
(attribute nane { kind-nanes }
| attribute id { xsd:unsignedint }),
ki nd- par anet er
} &
el ement ki nd-signature {
attribute algorithm{ signature-algorithmtype }?,
xsd: base64Bi nary
172
}

ki nd- paraneter &= el enent max-count { xsd:int }
ki nd- paraneter &= el enent nax-size { xsd:int }
ki nd- paraneter &= el enent nax-node-nmultiple { xsd:int }?

i

ki nd- par anet er el emrent dat a- nodel { dat a-nodel -type }

dat a- nodel -type | = "SI NGLE"

dat a- nodel -type | = " ARRAY"

dat a- nodel -type | = " DI CTlI ONARY"
|:

dat a- nodel -t ype xsd: string # data nodel extensions

Jenni ngs, et al. St andards Track [Page 133]

RFC 6940 RELOAD Base January 2014

11.

ki nd- paraneter &= e
access-control -type
access-control -type
access-control -type
access-control -type
access-control -type

nent access-control { access-control-type }
" USER- MATCH'

" NODE- MATCH"

" USER- NODE- MATCH"

" NODE- MULTI PLE"

xsd: string # access control extensions

- ——— 0O

ki nd- parameter &= foreign-el ements*

" TURN- SERVI CE"

" CERTI FI CATE_BY_NODE"

" CERTI FI CATE_BY_USER'

xsd: string # kind extensions

ki nd- nanes
ki nd- nanes
ki nd- nanes
ki nd- nanes

Chord specific paraneters

t opol ogy- pl ugi n-type | = " CHORD- RELOAD"

par aneter &= el ement chord: chord-ping-interval { xsd:int }?
par aneter &= el ement chord: chord-update-interval { xsd:int }?
paranmeter &= el ement chord: chord-reactive { xsd: bool ean }?

2. Discovery through Configuration Server

VWhen a node first enrolls in a new overlay, it starts with a
di scovery process to find a configuration server.

The node MAY start by determ ning the overlay nane. This val ue MJST
be provi ded by the user or some other out-of-band provisioning
mechani sm The out - of - band nechani sm MAY al so provi de an optiona
URL for the configuration server. |If a URL for the configuration
server is not provided, the node MIUST do a DNS SRV query using a
Service nane of "reload-config" and a protocol of TCP to find a
configuration server and formthe URL by appending a path of
“/.well-known/rel oad-config" to the overlay nane. This uses the
"wel | -known URI" framework defined in [RFC5785]. For example, if the
overl ay nanme was exanple.com the URL woul d be
"https://exanpl e. com . wel | -known/rel oad-confi g".

Once an address and URL for the configuration server are determn ned,
the peer MJST form an HTTPS connection to that IP address. |[If an
optional URL for the configuration server was provided, the
certificate MJUST match the domain name fromthe URL as described in
[RFC2818]; otherwise, the certificate MJST match the overlay nane as
described in [RFC2818]. |If the HTTPS certificates pass the nane

mat chi ng, the node MJST fetch a new copy of the configuration file.
To do this, the peer perforns a GET to the URL. The result of the
HTTP GET is an XM. configuration file described above. |If the XM. is
not valid or the instance-nane attribute of the overlay-elenent in
the XML does not nmatch the overlay nane, this configurations file

Jenni ngs, et al. St andards Track [Page 134]

RFC 6940 RELOAD Base January 2014

SHOULD be di scarded. O herwi se, the new configuration MJST repl ace
any previously learned configuration file for this overl ay.

For overlays that do not use a configuration server, nodes MJST
obtain the configuration information needed to join the overlay

t hrough sone out-of - band approach, such as an XM. configuration file
sent over enmil.

11.3. Credentials

If the Configuration Document contains an enroll nment-server el enent,
credentials are REQU RED to join the Overlay Instance. A peer which
does not yet have credentials MJST contact the enrollnent server to
acquire them

RELOAD defines its own trivial certificate request protocol. W
woul d have |iked to have used an existing protocol, but were
concerned about the inplenentation burden of even the sinplest of
those protocols, such as [RFC5272] and [RFC5273]. The objective was
to have a protocol which could be easily inplenmented in a Wb server
whi ch the operator did not control (e.g., in a hosted service) and
whi ch was conpatible with the existing certificate-handling tooling
as used with the Web certificate infrastructure. This means
accepting bare PKCS#10 requests and returning a single bare X 509
certificate. Although the MM types for these objects are defined,
none of the existing protocols support exactly this nodel

The certificate request protocol MJST be performed over HTTPS. The
server certificate MJUST match the overlay nanme as described in

[RFC2818]. The request MJST be an HTTP POST with the paraneters
encoded as described in [RFC2388] and with the follow ng properties:

o |If authentication is required, there MJST be form paraneters of
"password” and "usernanme" containing the user’s account nanme and
password in the clear (hence the need for HITPS). The username
and password strings MJST be UTF-8 strings conpared as binary
objects. Applications using RELOAD SHOULD defi ne any needed
string preparation as per [RFC4013] or its successor docunents.

o If nmore than one Node-ID is required, there MJST be a form
par amet er of "nodei ds" containing the nunber of Node-I1Ds required.

o0 There MJUST be a form paraneter of "csr" with a content type of
"application/pkcsl0", as defined in [RFC2311], that contains the
certificate signing request (CSR)

o The Accept header MJST contain the type "application/pkix-cert",
indicating the type that is expected in the response.

Jenni ngs, et al. St andards Track [Page 135]

RFC 6940 RELOAD Base January 2014

The enrol | nent server MJST authenticate the request using the

provi ded account name and password. The reason for using the RFC
2388 "multipart/formdata” encoding is so that the password paraneter
will not be encoded in the URL, to reduce the chance of accidenta

| eakage of the password. |If the authentication succeeds and the
requested user name in the CSR is acceptable, the server MJST
generate and return a certificate for the CSRin the "csr" paraneter
of the request. The SubjectAltNanme field in the certificate MJST
contain the foll ow ng val ues:

0 One or nore Node-I1Ds which MIUST be cryptographically random
[RFC4086]. Each MJST be chosen by the enroll nment server in such a
way that it is unpredictable to the requesting user. For exanple,
the user MJST NOT be inforned of potential (random) Node-IDs prior
to authenticating. Each is placed in the subjectAltName using the
uni f or MResourcel dentifier type, each MJST contain RELOAD URI, as
described in Section 14.15, and each MJST contain a Destination
List with a single entry of type "node_id". The enrollnent server
SHOULD nai ntain a mappi ng of users to Node-IDs and if the sane
user returns (e.g., to have their certificate re-issued), the
enrol | ment server should return the sane Node-IDs, thus avoiding
the need for inplenentations to re-store all their data when their
certificates expire.

o A single nane (the "user nane") that this user is allowed to use
in the overlay, using type rfc822Nane. Enrollnment servers SHOULD
take care to allow only | egal characters in the name (e.g., no
enmbedded NULs), rather than sinply accepting any nanme provi ded by

the user. In sone usages, the right side of the user name wll
match the overlay nane, but there is no requirenent for this match
in this specification. Applications using this specification MAY
define such a requirenent or MAY otherwise linit the allowed range
of all owed user names.

The SubjectAltNanme field in the certificate MJUST NOT contain any
identities other than those |isted above. The subject distinguished
nane in the certificate MJST be enpty.

The certificate MIST be returned as type "application/pkix-cert", as
defined in [RFC2585], with an HITP status code of 200 OK

Jenni ngs, et al. St andards Track [Page 136]

RFC 6940 RELOAD Base January 2014

Certificate processing errors SHOULD result in an HTTP return code of
403 Forbi dden, along with a body of type "text/plain" and body that
consi sts of one of the tokens defined in the following Iist:

failed _authentication
The account nane and password conbi nation used in the HTTPS
request was not valid.

user nanme_not _avail abl e
The requested user name in the CSR was not acceptable.

Node- | Ds_not _avai |l abl e
The nunber of Node-IDs requested was not acceptabl e.

bad_CSR
There was sonme other problemwi th the CSR

If the client receives an unknown token in the body, it SHOULD treat
it as a failure for an unknown reason

The client MJST check that the returned certificate chains back to
one of the certificates received in the "root-cert” |ist of the
overlay configuration data (including PKIX BasicConstraints checks).
The node then reads the certificate to find the Node-1D it can use.

11.3.1. Self-Generated Credentials

If the "self-signed-permtted" elenent is present in the
configuration and is set to "true", then a node MJST generate its own
sel f-signed certificate to join the overlay. The self-signed
certificate MAY contain any user nanme of the user’s choice.

For self-signed certificates containing only one Node-ID, the Node-ID
MJUST be conputed by applying the digest specified in the self-signed-
permtted el enent to the DER representati on of the user’s public key
(rmore specifically, the subjectPublicKeylnfo) and taking the high-
order bits. For self-signed certificates containing nmultiple
Node- |1 Ds, the index of the Node-I1D (from1l to the nunber of Node-IDs
needed) nust be prepended as a 4-byte big-endian integer to the DER
representation of the user’s public key and taking the high-order
bits. When accepting a self-signed certificate, nodes MJST check
that the Node-I1D and public keys match. This prevents Node-ID theft.

Once the node has constructed a self-signed certificate, it MAY join
the overlay. It MJST store its certificate in the overlay

(Section 8), but SHOULD | ook to see if the user nanme is already taken
and, if so, choose another user name. Note that this provides
protection only agai nst accidental name collisions. Nane theft is

Jenni ngs, et al. St andards Track [Page 137]

RFC 6940 RELOAD Base January 2014

still possible. |If protection against name theft is desired, then
the enroll ment service MJST be used.

11.4. Contacting a Bootstrap Node

In order to join the overlay, the Joining Node MUST contact a node in
the overlay. Typically this neans contacting the bootstrap nodes,
since they are reachable by the |ocal peer or have public IP
addresses. |f the Joining Node has cached a list of peers that it
has previously been connected with in this overlay, as an

optim zation it MAY attenpt to use one or nore of them as bootstrap
nodes before falling back to the bootstrap nodes listed in the
configuration file.

When contacting a bootstrap node, the Joining Node MJST first form
the DTLS or TLS connection to the bootstrap node and then send an
Attach request over this connection with the destinati on Resource-1D
set to the Joining Node's Node-1D plus 1

When the requester node finally does receive a response from sone
respondi ng node, it MJST use the Node-ID in the response to start
sendi ng requests to join the Overlay Instance as described in
Section 6. 4.

After a node has successfully joined the overlay network, it wll
have direct connections to several peers. Sonme MAY be added to the
cached bootstrap nodes list and used in future boots. Peers that are
not directly connected MUST NOT be cached. The suggested nunber of
peers to cache is 10. Al gorithns for determ ning which peers to
cache are beyond the scope of this specification

12. Message Fl ow Exanpl e

The foll owi ng abbreviations are used in the nmessage fl ow di agramns:
JN = Joi ning Node, AP = Admitting Peer, NP = next peer after the AP,
NNP = next next peer which is the peer after NP, PP = previous peer
before the AP, PPP = previous previous peer which is the peer before
the PP, BP = bootstrap node.

In the follow ng exanple, we assume that JN has formed a connection
to one of the bootstrap nodes. JN then sends an Attach through that
peer to a Resource-I1D of itself plus 1 (JN+1). It gets routed to the
AP, because JN is not yet part of the overlay. Wen AP responds, JN
and the AP use ICE to set up a connection and then set up DILS. Once
AP has connected to JN, AP sends to JN an Update to populate its
Routing Table. The follow ng exanple shows the Update happening
after the DTLS connection is formed, but it could al so happen before,
in which case the Update would often be routed through other nodes.

Jenni ngs, et al. St andards Track [Page 138]

January 2014

RELOAD Base

RFC 6940

JN+1

At t achReq Dest

e o o e e e e e e emiemcaai2>

Att achAns

PP
|
|
|
INHL|

PPP
|
|
|

Updat eAns

|
|
|
e o o e e e e e e e e e e meeeeaaa2>
|
|
|

At t achReq Dest

At t achAns
Updat eReq

[Page 139]

Figure 1
St andards Track

et al.

Jenni ngs,

RFC 6940 RELOAD Base January 2014

The JN then forns connections to the appropriate neighbors, such as
NP, by sending an Attach which gets routed via other nodes. Wen NP
responds, JN and NP use |ICE and DTLS to set up a connection.

JN PPP PP AP NP NNP BP
AttachReq NP		
[----mmmm - >

AttachReq NP

| |
| |
| |
| |
| |
			-------- >		
			Att achAns		
			<--------		
Att achAns					
<--mmmmmm e					
I CE					
<:::::::::::::::::::::::::::::::::::::>					
TLS					
< >					
Figure 2

Jenni ngs, et al. St andards Track [Page 140]

RFC 6940

RELOAD Base

January 2014

The JN al so needs to populate its Finger Table (for the Chord-based

DHT) .

overl ay.

It issues an Attach to a variety of
The di agram bel ow shows JN sendi ng an Attach hal fway around

the Chord ring to the JN + 27127.

J

Jenni ngs

N NP

| Att achReq JN+2<<126

|
|
|
|
-------- >	
	AttachReq JN+2<<126
	-------- >
	Att achAns
	<--------
At t achAns	
<--------	
1 CE	
TLS	
[<o >	
Figure 3
, et al. St andards Track

XX TP

| ocations around the

[Page 141]

RFC 6940 RELOAD Base January 2014

Once JN has a reasonabl e set of connections, it is ready to take its
place in the DHT. It does this by sending a Join to AP. AP sends a
series of Store requests to JNto store the data that JNwll be
responsi ble for. AP then sends JN an Update that explicitly |abels
JN as its predecessor. At this point, JNis part of the ring and is
responsi ble for a section of the overlay. AP can now forget any data
which is assigned to JN and not to AP.

JN PPP PP AP NP NNP BP

Joi nReq		
--mmmmm e >		

| | |

| | |
Joi nAns | | |
L |

| | |

| | |

| | |

| | |

| | |

| | |

| | |

| | |

| | |

| | |

| | |

| | |

Smmmmmmeeeeee e | | | |

| | | | | |

| | | | | |

St or eAns | | | | | |

| =-mmmm s >| | | |

| | | | | | |

| | | | |

| StoreReq Data B | | | | |

| <mmmmmmmm e | | | |

| | | | | | |

| | | | | | |

| St or eAns | | | | | |

| =-mmmmmm e >| | | |

| | | | | | |

| | | | | | |
| Updat eReq]| | | | |

| <-mmmmm e | | | |

| | | | | | |

| | | | | | |

| Updat eAns| | | | | |

| =mmmmm e >| | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

Figure 4

Jenni ngs, et al. St andards Track [Page 142]

RFC 6940 RELOAD Base January 2014

In Chord, JN s Nei ghbor Table needs to contain its own predecessors.
It couldn’t connect to them previously, because it did not yet know
their addresses. However, now that it has received an Update from
AP, as in the previous diagram it has AP s predecessors, which are
also its own, so it sends Attaches to them Below, it is shown
connecting only to AP's cl osest predecessor, PP.

NP NNP BP

|
| Att achReq Dest =PP
[=- - m e >

JN PPP PP A
|
|
|

Updat eReq

N
1
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

Jenni ngs, et al. St andards Track [Page 143]

RFC 6940 RELOAD Base January 2014

Figure 5

Finally, now that JN has a copy of all the data and is ready to route
nessages and receive requests, it sends Updates to everyone in its
Routing Table to tell themit is ready to go. Below, it is shown
sendi ng such an update to TP.

JN NP XX TP
Updat eReq		
=-mmmmmm e >		
Updat eAns		
<-mmmmme e		

Figure 6

13. Security Considerations
13.1. Overview

RELOAD provi des a generic storage service, albeit one designed to be
useful for P2PSIP. In this section, we discuss security issues that
are likely to be relevant to any usage of RELOAD. More background

i nformati on can be found in [RFC5765] .

In any Overlay Instance, any given user depends on a nunber of peers
wi th which they have no well-defined relationship except that they
are fellow menbers of the Overlay Instance. |In practice, these other
nodes may be friendly, lazy, curious, or outright malicious. No
security system can provide conplete protection in an environnent
where nost nodes are nmalicious. The goal of security in RELOAD is to

Jenni ngs, et al. St andards Track [Page 144]

RFC 6940 RELOAD Base January 2014

13.

13.

provi de strong security guarantees of some properties even in the
face of a large nunmber of malicious nodes and to allow the overlay to
function correctly in the face of a nodest nunber of nalicious nodes.

P2PSI P depl oynents require the ability to authenticate both peers and
resources (users) without the active presence of a trusted entity in
the system W describe two nechanisns. The first nechanismis
based on public key certificates and is suitable for genera

depl oyments. The second is an adni ssion control nechani sm based on
an overl ay-w de shared synmmetric key.

2. Attacks on P2P Overl ays

The two basic functions provided by overlay nodes are storage and
routing: some peer is responsible for storing a node’'s data and for
allowing a third node to fetch this stored data, while other peers
are responsible for routing nessages to and fromthe storing nodes.
Each of these issues is covered in the followi ng sections.

P2P overlays are subject to attacks by subversive nodes that may
attenpt to disrupt routing, corrupt or renobve user registrations, or
eavesdrop on signaling. The certificate-based security algorithns we
describe in this specification are intended to protect overlay
routing and user registration information in RELOAD nessages.

To protect the signaling fromattackers pretending to be valid nodes
(or nodes other than thenselves), the first requirenent is to ensure
that all messages are received from authorized nenbers of the
overlay. For this reason, RELOAD MJST transport all messages over a
secure channel (TLS and DTLS are defined in this docunent) which
provi des nessage integrity and authentication of the directly

conmuni cating peer. |In addition, nmessages and data MJST be digitally
signed with the sender’s private key, providing end-to-end security
for conmmuni cati ons.

3. Certificate-Based Security

This specification stores users’ registrations and possi bly ot her
data in an overlay network. This requires a solution both to
securing this data and to securing, as well as possible, the routing
in the overlay. Both types of security are based on requiring that
every entity in the system (whether user or peer) authenticate
cryptographically using an asymretric key pair tied to a certificate.

When a user enrolls in the Overlay Instance, they request or are
assigned a uni que nane, such as "alice@ht.exanple.net". These nanes
MJST be uni que and are neant to be chosen and used by humans nuch
like a SIP address-of-record (AOR) or an enmil address. The user

Jenni ngs, et al. St andards Track [Page 145]

RFC 6940 RELOAD Base January 2014

MUST al so be assigned one or nore Node-I1Ds by the central enroll nent
authority. Both the nane and the Node-1Ds are placed in the
certificate, along with the user’s public key.

Each certificate enables an entity to act in two sorts of roles:

0o As a user, storing data at specific Resource-IDs in the Overlay
I nst ance corresponding to the user nane.

0o As a overlay peer with the Node-IDs listed in the certificate.

Note that since only users of this Overlay Instance need to validate
a certificate, this usage does not require a global Public Key
Infrastructure (PKI). Instead, certificates MJUST be signed by a
central enrollnment authority which acts as the certificate authority
for the Overlay Instance. This authority signs each node’s
certificate. Because each node possesses the CA's certificate (which
they receive upon enrollnent), they can verify the certificates of
the other entities in the overlay wi thout further comrunication
Because the certificates contain the user’s/node’ s public key,
conmuni cati ons fromthe user/node can, in turn, be verified.

If self-signed certificates are used, then the security provided is
significantly decreased, since attackers can nount Sybil attacks. In
addition, attackers cannot trust the user names in certificates

(al though they can trust the Node-I|Ds, because they are
cryptographically verifiable). This schene may be appropriate for
some snmall deploynents, such as a small office or an ad hoc overl ay
set up anpong participants in a neeting where all hosts on the network
are trusted. Sone additional security can be provided by using the
shared secret admission control scherme as well.

Because all stored data is signed by the owner of the data, the
storing node can verify that the storer is authorized to performa
store at that Resource-1D and al so can all ow any consumer of the data
to verify the provenance and integrity of the data when it retrieves
it.

Not e that RELOAD does not itself provide a revocation/status
mechani sm (al t hough certificates may, of course, include Online
Certificate Status Protocol [OCSP] responder information). Thus,
certificate lifetimes SHOULD be chosen to bal ance the conprom se

wi ndow versus the cost of certificate renewal. Because RELOAD is

al ready designed to operate in the face of sonme fraction of malicious
nodes, this formof conpromse is not fatal.

Al inplementations MJST inplement certificate-based security.

Jenni ngs, et al. St andards Track [Page 146]

RFC 6940 RELOAD Base January 2014

13.

13.

13.

4. Shared-Secret Security

RELOAD al so supports a shared secret adnission control schene that
relies on a single key that is shared anobng all nenbers of the
overlay. It is appropriate for small groups that wish to forma
private network w thout conplexity. |In shared secret node, all the
peers MJST share a single symetric key which is used to key TLS-PSK
or TLS-SRP node. A peer which does not know the key cannot form TLS
connections with any other peer and therefore cannot join the

overl ay.

One natural approach to a shared-secret schene is to use a user-
entered password as the key. The difficulty with this is that in
TLS- PSK nmode, such keys are very susceptible to dictionary attacks.

I f passwords are used as the source of shared keys, then TLS-SRP is a
superior choice, because it is not subject to dictionary attacks.

5. Storage Security

When certificate-based security is used in RELOAD, any given
Resource-1 D) Kind-1D pair is bound to sone small set of certificates.
In order to wite data, the witer nmust prove possession of the
private key for one of those certificates. Mreover, all data is
stored, signed with the sane private key that was used to authorize
the storage. This set of rules nakes questions of authorization and
data integrity, which have historically been thorny for overl ays,
relatively sinple.

5.1. Authorization

When a node wants to store sone value, it MJST first digitally sign
the value with its own private key. It then sends a Store request

that contains both the value and the signature towards the storing

peer (which is defined by the Resource Nane construction al gorithm
for that particular Kind of value).

When the storing peer receives the request, it MJST determ ne whet her
the storing node is authorized to store at this Resource-ID Kind-I1D
pair. Determining this requires conparing the user’s identity to the
requi rements of the access control nodel (see Section 7.3). If it
satisfies those requirenments, the user is authorized to wite,
pendi ng quota checks, as described in the next section

For exanple, consider a certificate with the follow ng properties:
User nane: alice@lht. exanpl e.com

Node- | D: 013456789abcdef
Seri al : 1234

Jenni ngs, et al. St andards Track [Page 147]

RFC 6940 RELOAD Base January 2014

13.

13.

If Alice wishes to Store a value of the "SIP Location" Kind, the
Resource Name will be the SIP ACR "sip:alice@ht.exanple.com'. The
Resource-1D will be determ ned by hashing the Resource Nane. Because
SI P Location uses the USER- NODE- MATCH policy, it first verifies that
the user nane in the certificate hashes to the requested Resource-ID.
It then verifies that the Node-ID in the certificate matches the

di ctionary key being used for the store. |f both of these checks
succeed, the Store is authorized. Note that because the access
control nodel is different for different Kinds, the exact set of
checks will vary.

5.2. Distributed Quota

Being a peer in an Overlay Instance carries with it the
responsibility to store data for a given region of the Overlay

I nstance. However, allowi ng nodes to store unlimted anounts of data
woul d create unaccept abl e burdens on peers and woul d al so enabl e
trivial denial-of-service (DoS) attacks. RELOAD addresses this issue
by requiring configurations to define maxi mum sizes for each Kind of
stored data. Attenpts to store values exceeding this size MJIST be
rejected. (If peers are inconsistent about this, then strange
artifacts will happen when the zone of responsibility shifts and a

di fferent peer beconmes responsible for overlarge data.) Because each
Resource-ID)Kind-1D pair is bound to a small set of certificates,
these size restrictions also create a distributed quota nechani sm
with the quotas adm nistered by the central configuration server.

Allowing different Kinds of data to have different size restrictions
al l ows new usages the flexibility to define limts that fit their
needs w thout requiring all usages to have expansive limts.

5.3. Correctness

Because each stored value is signed, it is trivial for any retrieving
node to verify the integrity of the stored value. Mdre care needs to
be taken to prevent version rollback attacks. Rollback attacks on
storage are prevented by the use of store tinmes and lifetine val ues
in each store. A lifetime represents the latest tinme at which the
data is valid and thus linits (although does not conpletely prevent)
the ability of the storing node to performa rollback attack on
retrievers. 1In order to prevent a rollback attack at the tine of the
Store request, it is REQU RED that storage tines be nonotonically
increasing. Storing peers MJST reject Store requests with storage
times smaller than or equal to those that they are currently storing.
In addition, a fetching node which receives a data value with a
storage time older than the result of the previous fetch knows that a
rol | back has occurred.

Jenni ngs, et al. St andards Track [Page 148]

RFC 6940 RELOAD Base January 2014

13.5.4. Residual Attacks

The nechani sns descri bed here provide a high degree of security, but
some attacks remmin possible. Mst sinply, it is possible for
storing peers to refuse to store a value (i.e., they reject any
request). In addition, a storing peer can deny know edge of val ues
which it has previously accepted. To sone extent, these attacks can
be aneliorated by attenpting to store to and retrieve fromreplicas,
but a retrieving node does not know whether or not it should try
this, as there is a cost to doing so.

The certificate-based authentication schenme prevents a single peer
frombeing able to forge data owned by other peers. Furthernore,

al t hough a subversive peer can refuse to return data resources for
which it is responsible, it cannot return forged data, because it
cannot provide authentication for such registrations. Therefore,
paral | el searches for redundant registrations can mtigate nost of
the effects of a conpromi sed peer. The ultimate reliability of such
an overlay is a statistical question based on the replication factor
and the percentage of conpromn sed peers.

In addition, when a Kind is multivalued (e.g., an array data nodel),
the storing peer can return only some subset of the values, thus
biasing its responses. This can be countered by using single val ues
rather than sets, but that nakes coordi nati on between nultiple
storing agents much nore difficult. This is a trade-off that nust be
made when desi gni ng any usage.

13.6. Routing Security

Because the storage security systemguarantees (within lints) the
integrity of the stored data, routing security focuses on stopping
the attacker fromperform ng a DoS attack that m sroutes requests in
the overlay. There are a few obvious observations to make about

this. First, it is easy to ensure that an attacker is at |least a
valid node in the Overlay Instance. Second, this is a DoS attack
only. Third, if a large percentage of the nodes on the Overl ay
Instance are controlled by the attacker, it is probably inmpossible to
perfectly secure against this.

Jenni ngs, et al. St andards Track [Page 149]

RFC 6940 RELOAD Base January 2014

13.

13.

6.1. Background

In general, attacks on DHT routing are nounted by the attacker
arranging to route traffic through one or two nodes that it controls.
In the Eclipse attack [Eclipse], the attacker tanpers wth messages
to and from nodes for which it is on-path with respect to a given
victimnode. This allows it to pretend to be all the nodes that are
reachable through it. In the Sybil attack [Sybil], the attacker

regi sters a large nunber of nodes and is therefore able to capture a
| arge amount of the traffic through the DHT.

Both the Eclipse and Sybil attacks require the attacker to be able to
exerci se control over her Node-I1Ds. The Sybil attack requires the
creation of a large nunber of peers. The Eclipse attack requires
that the attacker be able to inpersonate specific peers. 1In both
cases, RELOAD attenpts to mitigate these attacks by the use of
centralized, certificate-based adm ssion control

6.2. Adm ssions Contro

Admission to a RELOAD Overlay Instance is controlled by requiring
that each peer have a certificate containing its Node-1D. The

requi rement to have a certificate is enforced by using certificate-
based nutual authentication on each connection. (Note: the follow ng
applies only when self-signed certificates are not used.) Wenever a
peer connects to another peer, each side automatically checks that
the other has a suitable certificate. These Node-1Ds MJST be
random y assigned by the central enrollnent server. This has two
benefits:

o It allows the enrollnment server to limt the nunber of Node-IDs
i ssued to any individual user

o It prevents the attacker from choosing specific Node-IDs.

The first property allows protection against Sybil attacks (provided
that the enroll ment server uses strict rate-limting policies). The
second property deters but does not conpletely prevent Eclipse
attacks. Because an Eclipse attacker nust inpersonate peers on the
ot her side of the attacker, the attacker nmust have a certificate for
sui tabl e Node-I1Ds, which requires himto repeatedly query the
enrol | ment server for new certificates, which will match only by
chance. Fromthe attacker’'s perspective, the difficulty is that if
the attacker has only a small nunber of certificates, the region of
the Overlay Instance he is inpersonating appears to be very sparsely
popul ated by conparison to the victinis |ocal region

Jenni ngs, et al. St andards Track [Page 150]

RFC 6940 RELOAD Base January 2014

13.

13.

6.3. Peer ldentification and Authentication

In general, whenever a peer engages in overlay activity that night
affect the Routing Table, it must establish its identity. This
happens in two ways. First, whenever a peer establishes a direct
connection to another peer, it authenticates via certificate-based
nmutual authentication. Al nessages between peers are sent over this
protected channel, and therefore the peers can verify the data origin
of the last-hop peer for requests and responses without further

crypt ogr aphy.

In sone situations, however, it is desirable to be able to establish
the identity of a peer with whomone is not directly connected. The
nost natural case is when a peer Updates its state. At this point,
ot her peers may need to update their view of the overlay structure,
but they need to verify that the Update message cane fromthe actua
peer rather than froman attacker. To prevent having a peer accept
Updat e nessages froman attacker, all overlay routing nessages are
signed by the peer that generated them

For messages that inpact the topology of the overlay, replay is
typically prevented by having the information come directly from or
be verified by, the nodes that clainmed to have generated the update.
Data storage replay detection is done by signing the tinme of the node
that generated the signature on the Store request, thus providing a
ti me-based replay protection, but the time synchronization is needed
only between peers that can wite to the sane | ocation

6.4. Protecting the Signaling

The goal here is to stop an attacker from knowi ng who is signaling
what to whom An attacker is unlikely to be able to observe the
activities of a specific individual, given the randonization of |Ds
and routing based on the present peers di scussed above. Furthernore,
because nessages can be routed using only the header information, the
actual body of the RELOAD nessage can be encrypted during

transm ssion.

There are two lines of defense here. The first is the use of TLS or
DTLS for each communi cations |ink between peers. This provides
protecti on agai nst attackers who are not nenbers of the overlay. The
second line of defense is to digitally sign each nessage. This
prevents adversarial peers fromnodi fying nessages in flight, even if
they are on the routing path.

Jenni ngs, et al. St andards Track [Page 151]

RFC 6940 RELOAD Base January 2014

13.6.5. Routing Loops and DoS Attacks

Sour ce-routing nechani sns are known to create the possibility for DoS
anplification, especially by the induction of routing |oops

[RFC5095]. In order to limt anplification, the initial-ttl value in
the configuration file SHOULD be set to a value slightly larger than
the | ongest expected path through the network. For Chord, experience
has shown that |o0g(2) of the number of nodes in the network + 5 is a
saf e bound. Because nodes are required to enforce the initial-ttl as
the maxi num val ue, an attacker cannot achieve an anplification factor
greater than initial-ttl, thus limting the additional capabilities
provi ded by source routing.

In order to prevent the use of |oops for targeted inplenentation
attacks, inplenentations SHOULD check the Destination List for
duplicate entries and discard such records with an
"Error_Invalid_Message" error. This does not conpletely prevent

| oops, but it does require that at |east one attacker node be part of
the | oop.

13.6.6. Residual Attacks

The routing security mechanisms in RELOAD are designed to contain
rather than elimnate attacks on routing. It is still possible for
an attacker to nount a variety of attacks. |In particular, if an
attacker is able to take up a position on the overlay routing between
A and B, it can nake it appear as if B does not exist or is

di sconnected. |t can also advertise false network netrics in an
attenpt to reroute traffic. However, these are primarily DoS
at t acks.

The certificate-based security schene secures the nanmespace, but if
an individual peer is compromised or if an attacker obtains a
certificate fromthe CA then a nunmber of subversive peers can stil
appear in the overlay. While these peers cannot falsify responses to
resource queries, they can respond with error nessages, effecting a
DoS attack on the resource registration. They can al so subvert
routing to other conprom sed peers. To defend agai nst such attacks,
a resource search must still consist of parallel searches for
replicated registrations.

Jenni ngs, et al. St andards Track [Page 152]

RFC 6940 RELOAD Base January 2014

14. | ANA Consi derations

This section contains the new code points registered by this
docurent .

14.1. Well-Known URI Registration

| ANA has registered a "well-known URI" as described in [RFC5785]:

o m e e e e e e e e o o m e e e a e oo +
URI suffix:	rel oad-config
Change controller:	1ETF <iesg@etf.org>
Specification docunent(s):	RFC 6940
Related information:	None
o m e e e e e e e e e oo o e e e e a o +

14.2. Port Registrations

| ANA has already allocated a TCP port for the nmmin peer-to-peer
protocol. This port had the nane p2psip-enroll and the port nunber
of 6084. Per this docunent, |ANA has updated this registration to
change the service name to rel oad-config.

| ANA has nmade the follow ng port registration:
Regi strati on Techni cal

Cont act
Regi strati on Oamner

| ETF Chair <chair@etf.org>

| ETF <iesg@etf.org>

Transport Protocol	TCP
Port Numnber	6084
Service Name	rel oad-config
Description	Peer-to-Peer Infrastructure
	Configuration
o e m e e e e e e e e e o e m e e e e e e e e e e e e e e am o - +

Jenni ngs, et al. St andards Track [Page 153]

RFC 6940 RELOAD Base January 2014

14.3. Overlay Al gorithm Types

| ANA has created a "RELOAD Overlay Al gorithm Types" Registry.

Entries in this registry are strings denoting the nanes of overlay

al gorithms, as described in Section 11.1 of [RFC6940]. The
registration policy for this registry is "I ETF Review' [RFC522]. The
initial contents of this registry are:

. e +
| Algorithm Nanme | Reference
o m e e o TSR +
| CHORD-RELOAD | RFC 6940
| EXP- OVERLAY | RFC 6940
. e +

The val ue EXP- OVERLAY has been made avail abl e for the purposes of
experimentation. This value is not neant for vendor-specific use of
any sort, and it MJUST NOT be used for operational deploynents.

14.4. Access Control Policies

| ANA has created a "RELOAD Access Control Policies" Registry.
Entries in this registry are strings denoting access contro
policies, as described in Section 7.3 of [RFC6940]. New entries in
this registry SHALL be registered via Standards Action [RFC5226].
The initial contents of this registry are:

e S +
| Access Policy | Reference
R R —— +
| USER- MATCH | RFC 6940
| NODE- MATCH | RFC 6940
| USER- NCDE- MATCH | RFC 6940
| NODE-MULTIPLE | RFC 6940
| EXP- MATCH | RFC 6940
R R —— +

The val ue EXP- MATCH has been made avail abl e for the purposes of
experimentation. This value is not nmeant for vendor-specific use of
any sort, and it MUST NOT be used for operational deploynents.

Jenni ngs, et al. St andards Track [Page 154]

RFC 6940 RELOAD Base January 2014

14.5. Application-1D

| ANA has created a "RELOAD Application-1D" Registry. Entries in this
registry are 16-bit integers denoting Application-1Ds, as described
in Section 6.5.2 of [RFC6940]. Code points in the range 1 to 32767
SHALL be registered via Standards Action [RFC5226]. Code points in
the range 32768 to 61440 SHALL be registered via Expert Review

[RFC5226]. Code points in the range 61441 to 65534 are reserved for
private use. The initial contents of this registry are:

S o m e e o o e e e e e e e e e e e e aa o s +
| Application | Application-ID | Speci fication |
oo e o oo +
1 NVALI D	0	RFC 6940
SIP	5060	Reserved for use by SIP Usage
SIP	5061	Reserved for use by SIP Usage
Reserved	65535	RFC 6940
S S o e m e e e e e e e e oo oo +

14.6. Data Kind-1D

| ANA has created a "RELOAD Data Kind-ID' registry. Entries in this
registry are 32-bit integers denoting data Kinds, as described in
Section 5.2 of [RFC6940]. Code points in the range 0x00000001 to
OX7FFFFFFF SHALL be registered via Standards Action [RFC5226]. Code
points in the range 0x8000000 to OxFO000000 SHALL be registered via
Expert Revi ew [RFC5226]. Code points in the range OxFO000001 to
OXFFFFFFFE are reserved for private use via the Kind description
mechani sm described in Section 11 of [RFC6940]. The initial contents
of this registry are:

- e e +
| Kind | Kind-1D | Reference |
o m e e e e aa o - Fomm e oo - S +
| | NVALID | 0x0 | RFC 6940 |
| TURN- SERVI CE | 0x2 | RFC 6940 |
| CERTI FI CATE_BY_NCDE | 0x3 | RFC 6940 |
| CERTI FI CATE_BY USER | 0x10 | RFC 6940 |
| Reserved | Ox7fffffff | RFC 6940 |
| Reserved | oxfffffffe | RFC 6940 |
T S TSR +

Jenni ngs, et al. St andards Track [Page 155]

RFC 6940 RELOAD Base January 2014

14.7. Data Model

| ANA has created a "RELOAD Data Moddel " registry. Entries in this
registry are strings denoting data nodels, as described in

Section 7.2 of [RFC6940]. New entries in this registry SHALL be
regi stered via Standards Action [RFC5226]. The initial contents of
this registry are:

. e +
| Data Mbdel | Reference |
S TSR +
	NVALID	RFC 6940
SINGLE	RFC 6940	
ARRAY	RFC 6940	
DICTIONARY	RFC 6940	
EXP-DATA	RFC 6940	
RESERVED	RFC 6940	
S SR +

The val ue EXP- DATA has been nade avail abl e for the purposes of
experimentation. This value is not nmeant for vendor-specific use of
any sort, and it MUST NOT be used for operational deploynents.

14.8. Message Codes

| ANA has created a "RELOAD Message Codes" registry. Entries in this
registry are 16-bit integers denoting method codes, as described in
Section 6.3.3 of [RFC6940]. These codes SHALL be regi stered via

St andards Action [RFC5226]. The initial contents of this registry
are:

Jenni ngs, et al. St andards Track [Page 156]

RFC 6940 RELOAD Base January 2014

o m e e e e e e e e e e e e eem e o Fom oo +
| Message Code Nane | Code Val ue | Reference |
oo e e e e e e e e e e e ee e oo R +
invalidMessageCode	0x0	RFC 6940
probe_req	0x1	RFC 6940
probe_ans	0x2	RFC 6940
attach_req	0x3	RFC 6940
attach_ans	0x4	RFC 6940
Unassigned	0x5	
Unassigned	0x6	
store_req	0x7	RFC 6940
store_ans	0x8	RFC 6940
fetch req	0x9	RFC 6940
fetch_ans	OxA	RFC 6940
Unassigned (was renove_req)	0xB	RFC 6940
Unassigned (was renove_ans)	0xC	RFC 6940
find_req	0xD	RFC 6940
find_ans	OxE	RFC 6940
join_req	OxF	RFC 6940
join_ans	0x10	RFC 6940
leave_req	0x11	RFC 6940
leave_ans	0x12	RFC 6940
update_req	0x13	RFC 6940
update_ans	0x14	RFC 6940
route_query req	0x15	RFC 6940
route_query_ ans	0x16	RFC 6940
ping_req	0x17	RFC 6940
ping_ans	0x18	RFC 6940
stat_req	0x19	RFC 6940
stat_ans	O0x1A	RFC 6940
Unassigned (was attachlite_req)	0x1B	RFC 6940
Unassigned (was attachlite_ans)	0x1C	RFC 6940
app_attach_req	0x1D	RFC 6940
app_attach_ans	Ox1E	RFC 6940
Unassigned (was app_attachlite_req)	Ox1F	RFC 6940
Unassigned (was app_attachlite_ans)	0x20	RFC 6940
config_update req	0x21	RFC 6940
config_update_ans	0x22	RFC 6940
exp_a_req	0x23	RFC 6940
exp_a_ans	0x24	RFC 6940
exp_b _req	0x25	RFC 6940
exp_b_ans	0x26	RFC 6940
Reserved	0x8000..0xFFFE	RFC 6940
error	OXFFFF	RFC 6940
oo e e e e e e e e e e e ee e oo R +

Jenni ngs, et al. St andards Track [Page 157]

RFC 6940 RELOAD Base January 2014

The val ues exp_a req, exp_a_ans, exp_b req, and exp_b_ans have been
nmade avail able for the purposes of experinentation. These values are
not meant for vendor-specific use of any sort, and they MJST NOT be
used for operational depl oynents.

14.9. Error Codes

| ANA has created a "RELOAD Error Code" registry. Entries in this
registry are 16-bit integers denoting error codes, as described in
Section 6.3.3.1 of [RFC6940]. New entries SHALL be defined via

St andards Action [RFC5226]. The initial contents of this registry

are:
e oo S +
| Error Code Nane | Code Value | Reference
oo e e e e e e e e e ema e o oo o - S +
| invalidErrorCode | 0x0 | RFC 6940
| Unassi gned | Ox1 | |
| Error_Forbidden | 0x2 | RFC 6940
| Error_Not_ Found | 0x3 | RFC 6940
| Error_Request_Ti neout | 0x4 | RFC 6940
| Error_Generation_Counter_Too_Low | 0x5 | RFC 6940
| Error_Inconpatible_wth_Overlay | 0x6 | RFC 6940
| Error_Unsupported_Forwardi ng_Option | 0x7 | RFC 6940
| Error_Data Too_Large | 0x8 | RFC 6940
| Error _Data Too Od | 0x9 | RFC 6940
| Error_TTL_Exceeded | OxA | RFC 6940
| Error_Message Too_Large | 0xB | RFC 6940
| Error_Unknown_Ki nd | 0xC | RFC 6940
| Error_Unknown_EXt ensi on | 0xD | RFC 6940
| Error_Response_Too Large | OXE | RFC 6940
| Error_Config Too Od | OxF | RFC 6940
| Error_Config_Too_New | 0x10 | RFC 6940
| Error_In_Progress | 0x11 | RFC 6940
| Error_Exp_A | 0x12 | RFC 6940
| Error_Exp_B | 0x13 | RFC 6940
| Error_Invalid Message | 0x14 | RFC 6940
| Reserved | 0x8000..0xFFFE | RFC 6940
Fo o e e e oo R +

The val ues Error_Exp_A and Error_Exp_B have been made avail able for
the purposes of experimentation. These values are not neant for
vendor-specific use of any sort, and they MUST NOT be used for
operational deploynents.

Jenni ngs, et al. St andards Track [Page 158]

RFC 6940 RELOAD Base January 2014

14.10. Overlay Link Types

| ANA has created a "RELOAD Overlay Link Registry". Entries in this
registry are 8-bit integers, as described in Section 6.5.1.1 of

[RFC6940]. For nore information on the link types defined here, see
Section 6.6 of [RFC6940]. New entries SHALL be defined via Standards
Action [RFC5226]. This registry has been initially populated with
the follow ng val ues:

o e e e e e e o [S +
| Protocol | Code | Reference |
oo - - Ho- - - - R —— +
1 NVALI D- PROTOCCL	0	RFC 6940	
DTLS- UDP- SR	1	RFC 6940	
DTLS- UDP- SR-NO-	CE	3	RFC 6940
TLS-TCP-FH NO- I CE	4	RFC 6940	
EXP-LINK	5] RFC 6940		
Reserved	255	RFC 6940	
S S e e +

The val ue EXP-LINK has been made avail abl e for the purposes of
experimentation. This value is not neant for vendor-specific use of
any sort, and it MJUST NOT be used for operational deploynents.

14.11. Overlay Link Protocols

| ANA has created a "RELOAD Overlay Link Protocol Registry". Entries
in this registry are strings denoting protocols as described in
Section 11.1 of this docunent and SHALL be defined via Standards
Action [RFC5226]. This registry has been initially populated with
the follow ng val ues:

. e +
| Link Protocol | Reference |
Fom e e e oo - TSR +
| TLS | RFC 6940 |
| EXP-PROTOCOL | RFC 6940 |
. e +

The val ue EXP- PROTOCOL has been nmade avail abl e for the purposes of
experimentation. This value is not neant for vendor-specific use of
any sort, and it MJUST NOT be used for operational deploynents.

Jenni ngs, et al. St andards Track [Page 159]

RFC 6940 RELOAD Base January 2014

14.12. Forwardi ng Options

| ANA has created a "RELOAD Forwardi ng Option Registry". Entries in
this registry are 8-bit integers denoting options, as described in
Section 6.3.2.3 of [RFC6940]. Values between 1 and 127 SHALL be
defined via Standards Action [RFC5226]. Entries in this registry
bet ween 128 and 254 SHALL be defined via Specification Required

[RFC5226]. This registry has been initially populated with the
foll owi ng val ues:

o e e e e e e e S R, TSR +
| Forwarding Option | Code | Reference
e S S S +
| invalidForwardi ngOption | 0| RFC 6940
| exp-forward | 1| RFC 6940
| Reserved | 255 | RFC 6940
o e e e e e e e S R, TSR +

The val ue exp-forward has been nade avail able for the purposes of
experimentation. This value is not meant for vendor-specific use of
any sort, and it MJUST NOT be used for operational deploynents.

14.13. Probe Information Types

| ANA has created a "RELOAD Probe Information Type Registry". Entries
are 8-bit integers denoting types as described in Section 6.4.2.5.1
of [RFC6940] and SHALL be defined via Standards Action [RFC5226].
This registry has been initially populated with the foll ow ng val ues:

o e e e e e oo S R, SR +
| Probe Option | Code | Reference
oo oo R +
| invalidProbeQption | 0| RFC 6940 |
| responsible_set | 1| RFC 6940
| num.resources | 2 | RFC 6940
| uptime | 3| RFC 6940
| exp-probe | 4 | RFC 6940
| Reserved | 255 | RFC 6940
oo S R +

The val ue exp-probe has been made avail abl e for the purposes of
experinmentation. This value is not neant for vendor-specific use of
any sort, and it MJUST NOT be used for operational deploynents.

Jenni ngs, et al. St andards Track [Page 160]

RFC 6940 RELOAD Base January 2014

14.14. Message Extensions

| ANA has created a "RELOAD Extensions Registry". Entries in this
registry are 8-bit integers denoting extensions as described in
Section 6.3.3 of [RFC6940] and SHALL be defined via Specification
Required [RFC5226]. This registry has been initially populated with
the follow ng val ues:

R I e +
| Extensions Nane | Code | Reference
o e m e e e e e e e e e Fomm e TSR +
| invalidMessageExt ensi onType | 0x0 | RFC 6940
| exp-ext | 0x1 | RFC 6940
| Reserved | OXFFFF | RFC 6940
T Fommmaa - e +

The val ue exp-ext has been nade avail able for the purposes of
experimentation. This value is not neant for vendor-specific use of
any sort, and it MJUST NOT be used for operational deploynents.

14.15. Reload URI Schene

This section describes the schene for a reload URI, which can be used
to refer to either:

o A peer, e.g., as used in a certificate (see Section 11.3 of
[RFC6940]) .

o A resource inside a peer.

The reload URI is defined using a subset of the URI schema specified
in Appendi x A of RFC 3986 [RFC3986] and the associated URI Cuidelines
[RFC4395] per the foll owi ng ABNF synt ax:

RELOAD-URI = "reload://" destination "@ overlay "/"
[specifier]

destination = 1*HEXDI G

overlay = reg-nane

specifier = 1*HEXD G

The definitions of these productions are as follows:
desti nation
A hexadeci mal - encoded Destination List object (i.e., nultiple

concat enat ed Destination objects with no Il ength prefix prior to
the object as a whole).

Jenni ngs, et al. St andards Track [Page 161]

RFC 6940 RELOAD Base January 2014

14.

14.

over | ay
The nane of the overl ay.

specifier

A hexadeci mal - encoded St oredDat aSpecifier indicating the data

el ement .
If no specifier is present, this UR addresses the peer which can be
reached via the indicated Destination List at the indicated overlay
nane. |If a specifier is present, the URl addresses the data val ue.
15.1. URlI Registration

The foll owing sumari zes the informati on necessary to register the
rel oad URI.

URI Scheme Nane: rel oad
St at us: per manent
URI Schene Syntax: see Section 14.15 of RFC 6940

URI Schene Senmantics: The reload URI is intended to be used as a
reference to a RELOAD peer or resource.

Encodi ng Consi derations: The reload URI is not intended to be human-
readabl e text, so it is encoded entirely in US- ASCl I

Applications/protocols that Use this URI Schene: The RELQAD protoco
descri bed in RFC 6940.

Interoperability Considerations: See RFC 6940.
Security Considerations: See RFC 6940

Contact: Cullen Jennings <fluffy@isco.conp
Aut hor/ Change Controller: |ESG

Ref erences: RFC 6940

16. Media Type Registration

Type Nanme: application

Subt ype Nanme: p2p-overl| ay+xm

Requi red Paraneters: none

Jenni ngs, et al. St andards Track [Page 162]

RFC 6940 RELOAD Base January 2014

14.

Optional Paraneters: none

Encodi ng Consi derations: Mist be binary encoded.

Security Considerations: This nedia type is typically not used to
transport information that needs to be kept confidential. However,
there are cases where it is integrity of the information is

i mportant. For these cases, using a digital signature is
RECOVMENDED. One way of doing this is specified in RFC 6940. In the
case when the nedia includes a shared-secret elenent, the contents of
the file MJIST be kept confidential or el se anyone who can see the
shared secret can affect the RELOAD overl ay networKk.

Interoperability Considerations: No known interoperability

consi deration beyond those identified for application/xm in

[RFC3023] .

Publ i shed Specification: RFC 6940

Applications that Use this Media Type: The type is used to configure
the peer-to-peer overlay networks defined in RFC 6940.

Addi tional Information: The syntax for this media type is specified
in Section 11.1 of [RFC6940]. The contents MJST be valid XM that is
conpliant with the RELAX NG grammar specified in RFC 6940 and t hat
use the UTF-8[RFC3629] character encodi ng.

Magi ¢ Nunber (s): none

File Extension(s): relo

Maci ntosh File Type Code(s): none

Person & Email Address to Contact for Further Information: Cullen
Jenni ngs <fl uffy@i sco. conp

I nt ended Usage: COVMON

Restrictions on Usage: None

Aut hor: Cul l en Jennings <fl uffy@i sco. conp
Change Controller: |ESG

17. XM Namespace Regi stration

Thi s docunent registers two URIs for the config and config-chord XM
nanespaces in the |ETF XM. registry defined in [RFC3688].

Jenni ngs, et al. St andards Track [Page 163]

RFC 6940 RELOAD Base January 2014

14.

14.

15.

17.1. Config URL

URI: urn:ietf:parans: xm:ns: p2p: confi g-base

Regi strant Contact: |ESG

XM.: N A, the requested URIs are XM. namespaces

17.2. Config Chord URL

URI: urn:ietf:parans:xm:ns:p2p:config-chord

Regi strant Contact: The | ESG

XM.: N A, the requested URIs are XM. namespaces
Acknowl edgnent s

This specification is a nerge of the "REsource LCcation And Di scovery
(RELOAD) " docunent by David A Bryan, Marcia Zangrilli, and Bruce B.
Lowekanp; the "Address Settlenent by Peer to Peer" docunent by Cullen
Jenni ngs, Jonat han Rosenberg, and Eric Rescorla; the "Security

Ext ensi ons for RELOAD' document by Bruce B. Lowekanp and Janes
Deverick; the "A Chord-based DHT for Resource Lookup in P2PSIP" by
Marcia Zangrilli and David A. Bryan; and the Peer-to-Peer Protocol
(P2PP) docunent by Sal man A. Baset, Henning Schul zrinne, and Marcin
Mat uszewski . Thanks to the authors of [RFC5389] for text included
fromthat document. Vidya Narayanan provi ded many comrents and

i mprovenents.

The ideas and text for the Chord-specific extension data to the Leave
nmechani sns were provi ded by Jouni Maenpaa, CGonzalo Canarillo, and
Jani Haut akor pi .

Thanks to the nmany people who contributed, including Ted Hardie,

M chael Chen, Dan York, Das Saumitra, Lyndsay Canpbell, Brian Rosen,
David Bryan, Dave Craig, and Julian Cain. Extensive |last call
conments were provided by Jouni Maenpaa, Roni Even, Gonzal o
Camarillo, Ari Keranen, John Buford, M chael Chen, Frederic-Philippe
Met, Mary Barnes, Rol and Bl ess, David Bryan, and Polina Coltsman.
Speci al thanks to Marc Petit-Huguenin, who provided an amazi ng anount
of detail ed review.

Dean WIllis and Marc Petit-Huguenin hel ped resolve and provided text
to fix many coments received during the | ESG review.

Jenni ngs, et al. St andards Track [Page 164]

RFC 6940

RELOAD Base January 2014

16. References

16.1. Normmti ve References

[QASI S. rel ax_ng]

[RFC1918]

[RFC2119]

[RFC2388]

[RFC2585]

[RFC2782]

[RFC2818]

[RFC3023]

[RFC3174]

[RFC3339]

[REC3447]

[RFC3629]

[RFC3986]

Jenni ngs, et

Bray, T. and M Mirata, "RELAX NG Specification", Decenber
2001.

Rekhter, Y., Mdskowitz, R, Karrenberg, D., Goot, G, and
E. Lear, "Address Allocation for Private Internets", BCP
5, RFC 1918, February 1996.

Bradner, S., "Key words for use in RFCs to Indicate
Requi renment Level s", BCP 14, RFC 2119, March 1997.

Masinter, L., "Returning Values from Forms: nultipart/
formdata”, RFC 2388, August 1998.

Housl ey, R and P. Hoffrman, "Internet X 509 Public Key
Infrastructure Operational Protocols: FTP and HTTP', RFC
2585, May 1999.

Gul brandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
specifying the | ocation of services (DNS SRV)", RFC 2782,
February 2000.

Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

Murata, M, St. Laurent, S., and D. Kohn, "XM. Media
Types", RFC 3023, January 2001.

Eastl ake, D. and P. Jones, "US Secure Hash Algorithm1
(SHA1l)", RFC 3174, Septenber 2001.

Klyne, G, Ed. and C. Newran, "Date and Tine on the
Internet: Tinmestanps”, RFC 3339, July 2002.

Jonsson, J. and B. Kaliski, "Public-Key Cryptography
St andards (PKCS) #1: RSA Cryptography Specifications
Version 2.1", RFC 3447, February 2003.

Yergeau, F., "UTF-8, a transformation format of | SO
10646", STD 63, RFC 3629, Novenber 2003.

Berners-Lee, T., Fielding, R, and L. Masinter, "Uniform

Resource ldentifier (URI): Generic Syntax", STD 66, RFC
3986, January 2005.

al . St andards Track [Page 165]

RFC 6940 RELOAD Base January 2014

[RFC4279] Eronen, P. and H Tschofenig, "Pre-Shared Key Ci phersuites
for Transport Layer Security (TLS)", RFC 4279, Decenber
2005.

[RFC4395] Hansen, T., Hardie, T., and L. Masinter, "Cuidelines and
Regi stration Procedures for New URI Schenes", BCP 35, RFC
4395, February 2006.

[RFC4648] Josefsson, S., "The Basel6, Base32, and Base64 Data
Encodi ngs", RFC 4648, Cctober 2006.

[RFC5226] Narten, T. and H Alvestrand, "Guidelines for Witing an
| ANA Consi derations Section in RFCs", BCP 26, RFC 5226,
May 2008.

[RFC5245] Rosenberg, J., "lInteractive Connectivity Establishment
(ICE): A Protocol for Network Address Transl ator (NAT)
Traversal for O fer/Answer Protocols", RFC 5245, April
2010.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.

[RFC5272] Schaad, J. and M Mers, "Certificate Managenent over CMS
(MO ", RFC 5272, June 2008.

[RFC5273] Schaad, J. and M Mers, "Certificate Managenent over CMS
(CMO): Transport Protocols", RFC 5273, June 2008.

[RFC5389] Rosenberg, J., Mahy, R, Matthews, P., and D. W ng,
"Session Traversal Uilities for NAT (STUN)", RFC 5389,
Oct ober 2008.

[RFC5405] Eggert, L. and G Fairhurst, "Unicast UDP Usage Cuidelines
for Application Designers”, BCP 145, RFC 5405, Novemnber
2008.

[RFC5766] Mahy, R, Matthews, P., and J. Rosenberg, "Traversal Using
Rel ays around NAT (TURN): Rel ay Extensions to Session
Traversal Uilities for NAT (STUN)", RFC 5766, April 2010.

[RFC5952] Kawanura, S. and M Kawashi ma, "A Recommendation for |Pv6
Address Text Representation", RFC 5952, August 2010.

[RFC6091] Mavrogi annopoul os, N. and D. G Ilnor, "Using OpenPGP Keys

for Transport Layer Security (TLS) Authentication", RFC
6091, February 2011.

Jenni ngs, et al. St andards Track [Page 166]

RFC 6940 RELOAD Base January 2014

16.

[RFC6234] Eastlake, D. and T. Hansen, "US Secure Hash Al gorithns
(SHA and SHA-based HMAC and HKDF)", RFC 6234, May 2011.

[RFC6298] Paxson, V., Allman, M, Chu, J., and M Sargent,
"Conmputing TCPs Retransm ssion Tinmer", RFC 6298, June
2011.

[RFC6347] Rescorla, E. and N. Mdadugu, "Datagram Transport Layer
Security Version 1.2", RFC 6347, January 2012.

[WVBC. REC- xml schenma- 2- 20041028]
Mal hotra, A. and P. Biron, "XM. Schena Part 2: Datatypes
Second Edition", Wrld Wde Wb Consorti um Recomrendati on
REC- xm schema- 2- 20041028, Cctober 2004,
<http://ww. w3. or g/ TR/ 2004/ REC- xm schema- 2- 20041028>.

[wW3c- xm - namespaces]
Bray, T., Hollander, D., Layman, A., Tobin, R, and
Uni versity of Edi nburgh and WBC, "Nanespaces in XM. 1.0
(Third Edition)", Decenber 2008.

2. Informative References

[Chor d] Stoica, |., Mrris, R, Liben-Nowell, D., Karger, D.,
Kaashoek, M, Dabek, F., and H Bal akrishnan, "Chord: A
Scal abl e Peer-to-peer Lookup Protocol for Internet
Applications", |EEE/ ACM Transactions on Networki ng Vol une
11, Issue 1, 17-32, Feb 2003, 2001.

[DHT- RELOAD]

Maenpaa, J. and G Canarillo, "A Self-tuning Distributed
Hash Table (DHT) for REsource LCcation And Di scovery
(RELOAD) ", Work in Progress, August 2013.

[Eclipse] Singh, A, Ngan, T., Druschel, T., and D. Wll ach,
"Eclipse Attacks on Overlay Networks: Threats and
Def enses", | NFOCOM 2006, April 2006.

[P2P- DI AGNOSTI CS]
Song, H., Jiang, X., Even, R, and D. Bryan, "P2P Overl ay
Di agnostics", Wrk in Progress, August 2013.

[P2PSI P- RELAY]
Zong, N., Jiang, X., Even, R, and Y. Zhang, "An extension
to RELOAD to support Relay Peer Routing", Work in
Progress, Cctober 2013.

Jenni ngs, et al. St andards Track [Page 167]

RFC 6940 RELOAD Base January 2014

[REDI R- RELOAD]
Maenpaa, J. and G Camarillo, "Service Discovery Usage for
REsource LCcation And Di scovery (RELOAD)", Work in
Progress, August 2013.

[RFC1035] Mockapetris, P., "Domain names - inplenentation and
specification", STD 13, RFC 1035, Novenber 1987.

[RFC1122] Braden, R, "Requirenents for Internet Hosts -
Conmuni cati on Layers", STD 3, RFC 1122, Cctober 1989.

[RFC2311] Dusse, S., Hoffnman, P., Ransdell, B., Lundblade, L., and
L. Repka, "S/M ME Version 2 Message Specification", RFC
2311, March 1998.

[RFC3688] Mealling, M, "The I ETF XM. Registry", BCP 81, RFC 3688,
January 2004.

[RFC4013] Zeilenga, K., "SASLprep: Stringprep Profile for User Nanes
and Passwords", RFC 4013, February 2005.

[RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomess
Requi renments for Security", BCP 106, RFC 4086, June 2005.

[RFC4145] Yon, D. and G Canamrillo, "TCP-Based Media Transport in
t he Session Description Protocol (SDP)", RFC 4145,
Sept enmber 2005.

[RFC4340] Kohler, E., Handley, M, and S. Floyd, "Datagram
Congestion Control Protocol (DCCP)", RFC 4340, March 2006.

[RFCA787] Audet, F. and C. Jennings, "Network Address Transl ation
(NAT) Behavioral Requirenments for Unicast UDP', BCP 127,
RFC 4787, January 2007.

[RFC4960] Stewart, R, "Stream Control Transm ssion Protocol", RFC
4960, Septenber 2007.

[RFC5054] Taylor, D., Wi, T., Mvrogi annopoulos, N., and T. Perrin,
"Using the Secure Renpte Password (SRP) Protocol for TLS
Aut henti cati on", RFC 5054, Novenber 2007.

[RFC5095] Abley, J., Savola, P., and G Neville-Neil, "Deprecation
of Type O Routing Headers in |IPv6", RFC 5095, Decenber
2007.

[RFC5201] Moskowitz, R, N kander, P., Jokela, P., and T. Henderson
"Host ldentity Protocol", RFC 5201, April 2008.

Jenni ngs, et al. St andards Track [Page 168]

RFC 6940 RELOAD Base January 2014

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R, and W Polk, "Internet X 509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", RFC 5280, May 2008.

[RFC5694] Camarillo, G, Ed., and | AB, "Peer-to-Peer (P2P)
Architecture: Definition, Taxonon es, Exanples, and
Applicability", RFC 5694, Novenmber 2009.

[RFC5765] Schul zrinne, H, Mirocco, E., and E. Ilvov, "Security
| ssues and Sol utions in Peer-to-Peer Systens for Realtine
Conmuni cati ons", RFC 5765, February 2010.

[RFC5785] Nottingham M and E. Hammer-Lahav, "Defining Well-Known
Uni form Resource ldentifiers (URIs)", RFC 5785, April
2010.

[RFC6079] Canarillo, G, N kander, P., Hautakorpi, J., Keranen, A ,
and A. Johnston, "H P BONE: Host Identity Protocol (H P)
Based Overlay Networking Environment (BONE)", RFC 6079,
January 2011.

[RFC6544] Rosenberg, J., Keranen, A., Lowekanp, B., and A Roach,
"TCP Candi dates with Interactive Connectivity
Establi shment (ICE)", RFC 6544, March 2012.

[RFC7086] Keranen, A., Camarillo, G, and J. Maenpaa, "Host ldentity
Prot ocol - Based Overl ay Networking Environment (H P BONE)
I nstance Specification for REsource LCcation And Di scovery
(RELCAD) ", RFC 7086, January 2014.

[SI P- RELOAD]
Jenni ngs, C., Lowekanmp, B., Rescorla, E , Baset, S.,
Schul zrinne, H, and T. Schmidt, "A SIP Usage for RELCAD',
Work in Progress, July 2013.

[Sybil] Douceur, J., "The Sybil Attack", |PTPS 02, March 2002.

[Uni xTi me] Wkipedia, "Unix Tinme", 2013, <http://en.w ki pedi a. org/w
i ndex. php?title=Unix_tine&ol di d=551527446>.

[bryan- desi gn- hot p2p08]
Bryan, D., Lowekanp, B., and M Zangrilli, "The Design of
a Versatile, Secure P2PSIP Comruni cations Architecture for
the Public Internet", Hot-P2P 08, 2008.

Jenni ngs, et al. St andards Track [Page 169]

RFC 6940 RELOAD Base January 2014

[handl i ng- chur n- useni x04]
Rhea, S., Ceels, D., Roscoe, T., and J. Kubi atow cz,
"Handling Churn in a DHT", In Proc. of the USEN X Annual
Techni cal Conference June 2004 USEN X 2004, 2004.

[1 ookups- chur n- p2p06]
Wi, D., Tian, Y., and K. Ng, "Analytical Study on
| mprovi ng DHT Lookup Perfornance under Churn", |EEE
P2P' 06, 2006.

[m ni m zi ng- chur n- si gconmrD6]
CGodfrey, P., Shenker, S., and |I. Stoica, "Mnimzing Churn
in Distributed Systens", SIGCOW 2006, 2006.

[non-transitive-dhts-worl ds05]
Freednman, M, Lakshm narayanan, K., Rhea, S., and I.
Stoica, "Non-Transitive Connectivity and DHTs", WORLDS' 05,
2005.

[opendht - si gcomD5]
Rhea, S., Godfrey, B., Karp, B., Kubiatow cz, J.,
Rat nasany, S., Shenker, S., Stoica, |., and H Yu,
"OpenDHT: A Public DHT and its Uses", SIGCOW 05, 2005.

[vul nerabilities-acsac04]
Srivatsa, M and L. Liu, "Wulnerabilities and Security
Threats in Structured Peer-to-Peer Systens: A Quantitative
Anal ysi s", ACSAC 2004, 2004.

[wi ki Chord]
W ki pedi a, "Chord (peer-to-peer)", 2013,
<http://en.w ki pedi a. org/ w
i ndex. php?titl e=Chord_9%28peer-to- peer ¥29&ol di d=549516287>.

[w ki KBRl W ki pedi a, "Key-based routing”, 2013, <en.w ki pedi a. org/w
i ndex. php?titl e=Key-based routing&ol di d=543850833>.

[wi ki Skiplist]

W ki pedia, "Skip list", 2013, <http://en.w ki pedi a. org/w
i ndex. php?title=Skip_I|ist&oldi d=551304213>.

Jenni ngs, et al. St andards Track [Page 170]

RFC 6940 RELOAD Base January 2014

Appendi x A. Routing Alternatives

Si gni ficant di scussion has been focused on the selection of a routing
algorithm for P2PSIP. This section discusses the notivations for

sel ecting symretric recursive routing for RELOAD and descri bes the
extensions that would be required to support additional routing

al gorithns.

A.l. Iterative vs. Recursive

I[terative routing has a nunber of advantages. It is easier to debug,
consunes fewer resources on internediate peers, and allows the
qgquerying peer to identify and route around m sbehavi ng peers
[non-transitive-dhts-worl ds05]. However, in the presence of NATs,
iterative routing is intolerably expensive, because a new connection
nmust be established for each hop (using | CE) [bryan-desi gn-hotp2p08].

Iterative routing is supported through the RouteQuery nechani sm and
is primarily intended for debugging. It also allows the querying
peer to evaluate the routing decisions nade by the peers at each hop
consi der alternatives, and perhaps detect at what point the
forwarding path fails.

A 2. Symetric vs. Forward Response

An alternative to the synmetric recursive routing nethod used by
RELOAD is forward-only routing, where the response is routed to the
requester as if it were a new nessage initiated by the responder

(I'n the previous exanple, Z sends the response to A as if it were
sending a request.) Forward-only routing requires no state in either
the nessage or internedi ate peers.

The drawback of forward-only routing is that it does not work when
the overlay is unstable. For exanple, if Ais in the process of
joining the overlay and is sending a Join request to Z, it is not yet
reachable via forward-only routing. Even if it is established in the
overlay, if network failures produce tenporary instability, A nay not
be reachable (and nay be trying to stabilize its network connectivity
via Attach nessages).

Furthernore, forward-only responses are less likely to reach the
qgueryi ng peer than symmetric recursive ones are, because the forward
path is nore likely to have a failed peer than is the request path
(which was just tested to route the request)
[non-transitive-dhts-worl ds05].

Jenni ngs, et al. St andards Track [Page 171]

RFC 6940 RELOAD Base January 2014

An extension to RELOAD that supports forward-only routing but relies
on symretric responses as a fallback woul d be possible, but due to
the complexities of determ ning when to use forward-only routing and
when to fallback to symretric routing, we have chosen not to include
it as an option at this point.

A. 3. Direct Response

Anot her routing option is direct response routing, in which the

response is returned directly to the querying node. |In the previous
exanple, if A encodes its |IP address in the request, then Z can
sinply deliver the response directly to A. |In the absence of NATs or

ot her connectivity issues, this is the optimal routing technique.

The chal l enge of inplenenting direct response routing is the presence
of NATs. There are a nunber of conplexities that nmust be addressed.
In this discussion, we will continue our assunption that A issued the
request and Z is generating the response.

o The IP address listed by A nay be unreachabl e, either due to NAT
or firewall rules. Therefore, a direct response technique nust
fall back to symretric response [non-transitive-dhts-worl ds05].

The hop-by-hop ACKs used by RELOAD allow Z to determ ne when A has
recei ved the nessage (and the TLS negotiation will provide earlier
confirmation that A is reachable), but this fallback requires a
timeout that will increase the response | atency whenever A is not
reachable from 2z

o Wienever Ais behind a NAT it, will have nmultiple candidate IP
addresses, each of which nust be advertised to ensure
connectivity. Therefore, Z will need to attenpt nultiple

connections to deliver the response.

0 One (or all) of A's candidate addresses may route fromZ to a
different device on the Internet. In the worst case, these nodes
may actually be running RELOAD on the sane port. Therefore, it is
absol utely necessary to establish a secure connection to
aut henticate A before delivering the response. This step
di m ni shes the efficiency of direct response routing, because
multiple round-trips are required before the nmessage can be
del i vered.

o If Ais behind a NAT and does not have a connection already
established with Z, there are only two ways the direct response
will work. The first is that A and Z nmust both be behind the same
NAT, in which case the NAT is not involved. |In the nore conmpn
case, when Z is outside A's NAT, the response will be received
only if A's NAT inplenents endpoint-independent filtering. As the

Jenni ngs, et al. St andards Track [Page 172]

RFC 6940 RELOAD Base January 2014

choice of filtering nbde conflates application transparency wth
security [RFC4787] and no clear recommendation is avail able, the
preval ence of this feature in future devices remains unclear.

An extension to RELOAD that supports direct response routing but
relies on symmetric responses as a fallback woul d be possible, but
due to the conplexities of determ ning when to use direct response
routing and when to fallback to symetric routing, and the reduced
performance for responses to peers behind restrictive NATs, we have
chosen not to include it as an option at this point.

A. 4. Relay Peers

[P2PSI P- RELAY] has proposed i nplenmenting a formof direct response by
having A identify a peer, Q that will be directly reachabl e by any
other peer. A uses Attach to establish a connection with Q and
advertises Qs IP address in the request sent to Z. Z sends the
response to Q which relays it to A This then reduces the | atency
to two hops, and Z is negotiating a secure connection to Q

This technique relies on the relative popul ati on of nodes such as A
that require relay peers and peers such as Q that are capable of

serving as a relay peer. It also requires nodes to be able to
identify which category they are in. This identification problem has
turned out to be hard to solve and is still an open area of

expl orati on.

An extension to RELOAD that supports relay peers is possible, but due
to the complexities of inplenmenting such an alternative, we have not
added such a feature to RELOAD at this point.

A concept similar to relay peers, essentially choosing a relay peer
at random has previously been suggested to solve problens of pair-
Wi se non-transitivity [non-transitive-dhts-worlds05], but
determnistic filtering provided by NATs makes randomrel ay peers no
nore likely to work than the respondi ng peer

A.5. Symmetric Route Stability

A common concern about symmetric recursive routing has been that one
or nore peers along the request path may fail before the response is
received. The significance of this problemessentially depends on

the response | atency of the overlay. An overlay that produces slow

responses will be vulnerable to churn, whereas responses that are
delivered very quickly are vulnerable only to failures that occur
over that small interval.

Jenni ngs, et al. St andards Track [Page 173]

RFC 6940 RELOAD Base January 2014

The other aspect of this issue is whether the request itself can be
successfully delivered. Assum ng typical connection naintenance
intervals, the time period between the | ast nai ntenance and the
request being sent will be orders of magnitude greater than the del ay
bet ween t he request being forwarded and the response being received.
Therefore, if the path was stable enough to be available to route the
request, it is alnobst certainly going to remain available to route
the response.

An overlay that is unstable enough to suffer this type of failure
frequently is unlikely to be able to support reliable functionality
regardl ess of the routing nechanism However, regardl ess of the
stability of the return path, studies show that in the event of high
churn, iterative routing is a better solution to ensure request

conpl etion [l ookups-churn-p2p06] [non-transitive-dhts-worl ds05]

Finally, because RELOAD retries the end-to-end request, that retry
will address the issues of churn that remain

Appendi x B. Wy dients?

There are a wide variety of reasons a node nay act as a client rather
than as a peer. This section outlines sonme of those scenarios and
how the client’s behavi or changes based on its capabilities.

B.1. Wiy Not Only Peers?

For a nunber of reasons, a particular node may be forced to act as a
client even though it is willing to act as a peer. These include:

o The node does not have appropriate network connectivity, typically
because it has a | ow bandwi dth network connection

o The node may not have sufficient resources, such as conputing
power, storage space, or battery power.

o The overlay algorithmnmay dictate specific requirenents for peer
sel ection. These may include participating in the overlay to
deterni ne trustworthiness, controlling the nunber of peers in the
overlay to reduce overly long routing paths, and ensuring m ni mum
application uptime before a node can join as a peer

The ultimate criteria for a node to becone a peer are detern ned by
the overlay al gorithm and specific deploynent. A node acting as a
client that has a full inplenentation of RELOAD and the appropriate
overlay algorithmis capable of locating its responsible peer in the
overlay and using Attach to establish a direct connection to that
peer. In that way, it nmay elect to be reachable under either of the

Jenni ngs, et al. St andards Track [Page 174]

RFC 6940 RELOAD Base January 2014

routing approaches |listed above. Particularly for overlay algorithns
that elect nodes to serve as peers based on trustworthiness or

popul ation, the overlay algorithmmay require such a client to | ocate
itself at a particular place in the overl ay.

B.2. Cdients as Application-Level Agents

SI P defines an extensive protocol for registration and security
between a client and its registrar/proxy server(s). Any SIP device
can act as a client of a RELOAD based P2PSIP overlay if it contacts a
peer that inplenents the server-side functionality required by the

SIP protocol. 1In this case, the peer would be acting as if it were
the user’s peer and woul d need the appropriate credentials for that
user.

Application-1level support for clients is defined by a usage. A usage
of fering support for application-level clients should specify how the
security of the systemis maintained when the data is noved between
the application and RELOAD | ayers.

Jenni ngs, et al. St andards Track [Page 175]

RFC 6940 RELOAD Base January 2014

Aut hors’ Addr esses

Cul I en Jenni ngs

Ci sco

400 3rd Avenue SW Suite 350
Cal gary

Canada

EMai |l : fluffy@isco.com

Bruce B. Lowekanp (editor)
Skype

Palo Alto, CA

USA

EMai | : bbl @ owekanp. net

Eric Rescorla

RTFM I nc.

2064 Edgewood Drive
Palo Alto, CA 94303
USA

Phone: +1 650 678 2350
EMail: ekr@tfmcom

Sal man A. Baset

Col unbia University
1214 Ansterdam Avenue
New Yor k, NY

USA

EMai | : sal man@s. col unbi a. edu
Henni ng Schul zri nne

Col unbi a University

1214 Anst erdam Avenue

New Yor k, NY

USA

EMai | : hgs@s. col unbi a. edu

Jenni ngs, et al. St andards Track [Page 176]

