I nt ernet Engi neering Task Force (1 ETF) S. Farrel

Request for Comments: 7486 Trinity Coll ege Dublin
Cat egory: Experi ment al P. Hof f man
| SSN: 2070-1721 VPN Consortium
M Thomas
Phr esheez
March 2015

HTTP Ori gi n-Bound Aut henticati on (HOBA)
Abst r act

HTTP Ori gi n- Bound Aut hentication (HOBA) is a digital-signature-based
design for an HTTP authentication method. The design can al so be
used in JavaScri pt-based authentication enbedded in HTM.. HOBA is an
alternative to HITP authentication schenmes that require passwords and
therefore avoids all problens related to passwords, such as | eakage
of server-side password dat abases.

Status of This Meno

Thi s docunent is not an Internet Standards Track specification; it is
publ i shed for exam nation, experinental inplenmentation, and
eval uati on.

Thi s docunent defines an Experinmental Protocol for the Internet
conmunity. This docunent is a product of the Internet Engi neering
Task Force (IETF). It represents the consensus of the | ETF
comunity. It has received public review and has been approved for
publication by the Internet Engineering Steering Goup (IESG. Not
all documents approved by the | ESG are a candi date for any |evel of
I nternet Standard; see Section 2 of RFC 5741.

I nformati on about the current status of this docunment, any errata,

and how to provide feedback on it may be obtained at
http://ww. rfc-editor.org/info/rfc7486

Farrell, et al. Experi nment al [ Page 1]



RFC 7486 HTTP Ori gi n- Bound Aut h ( HOBA) March 2015

Copyri ght Notice

Copyright (c) 2015 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Thi s docunent is subject to BCP 78 and the | ETF Trust’'s Legal
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of

publ

ication of this document. Please review these docunents

carefully, as they describe your rights and restrictions with respect

to this docunent.

t he

Trust Legal Provisions and are provided w thout warranty as

described in the Sinplified BSD License.

Tabl e of Contents

1.

e =

akwnN

oo

® ® © 0

©owoo

Farrell,

| ntroducti on

.1. Interfacing io Appl i cat| ons (Cook| es)
.2. Termnology . . .
.3. Step-by-Step Q/erw ew of HOBA—http

The HOBA Aut hentication Schene .o

I ntroduction to the HOBA-http Mechani sm
I ntroduction to the HOBA-js Mechani sm.
HOBA' s Aut henti cation Process . .

.1. CPK Preparation Phase .
.2. Signing Phase . .
.3. Authentication Phase

O her Parts of the HOBA Process .
Regi stration . .

1.1. HobaregDeflnlt|0n
Associ ating Additional Keys to an Existing Account

2.1. Mving Private Keys . . .

2.2. Human- Menor abl e One-Ti ne Password (Don t Do Th|s Owe)

2.3. CQut-of-Band URL . -
Logging Qut . . .
Getting a Fresh ChaIIenge . .

Mandat or y-t o- | npl enent Algor|thrrs .

Security Considerations .

PwooondoO R

.1. Privacy Considerations

| ocal St orage Security for JavaScr| pt
Mul tiple Accounts on One User Agent
I njective Mappi ng for HOBA- TBS

ANA Consi derations . .o

.wel | -known URI
Al gorithm Nanes .
Key ldentifier Types

2
3
4.
| ..

.1. HOBA Aut hentication Scherre
2 ..
3
4

Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of

[(ele) o) &) RN-NN V]

10

11
11
11
12
13
14

16
16
17
17
17
18
18
18
19
20
20
21
21
21
21
22

et al. Experi ment al [ Page 2]



RFC 7486 HTTP Ori gi n- Bound Aut h ( HOBA) March 2015

9.5. Device ldentifier Types . . . . . . . . . . . . . . . . . 22
9.6. Hobareg HTTP Header Field . . . . . . . . . . . . . . . . 23
10. References . . . . . . . . . . . . . . . . . . . . .. . .. 23
10.1. Normative References . . . . . . . . . . . . . . . . . . 23
10.2. Informative References . . . . . . . . . . . . . . . . . 24
Appendi x A.  Problens with Passwords . . . . . . . . . . . . . . 26
Appendix B. Exanple . . . . . . . . . . . . . . . . .. ... . 27
Acknowl edgenents . . . . . . . . . . . . . . . . . . . .. ... 28
Authors’ Addresses . . . . . . . . . . . . . . . . . . . . ... 28
1. Introduction

HTTP Ori gi n-Bound Aut hentication (HOBA) is an authentication design
that can be used as an HTTP aut hentication scheme [ RFC7235] and for
JavaScri pt - based aut henticati on enbedded in HTM.. The main goal of
HOBA is to offer an easy-to-inplement authentication schene that is
not based on passwords but that can easily replace HTTP or HTM.
forns-based password authentication. Deploynment of HOBA can reduce
or elimnate password entries in databases, with potentially
significant security benefits.

HOBA is an HITP aut henticati on nechanismthat conplies with the
framework for such schemes [RFC7235]. As a JavaScript design, HOBA
denonstrates a way for clients and servers to interact using the sane
credentials that are used by the HTTP authentication schene.

Current usernane/ password aut hentication nethods such as HITP Basi c,
HTTP Di gest, and web forms have been in use for many years but are
susceptible to theft of server-side password databases. |nstead of
passwords, HOBA uses digital signatures in a challenge-response
schenme as its authentication mechanism HOBA al so adds usefu
features such as credential managenment and session |ogout. |In HOBA,
the client creates a new public-private key pair for each host ("web
origin" [RFC6454]) to which it authenticates. These keys are used in
HOBA for HTTP clients to authenticate thenselves to servers in the
HTTP protocol or in a JavaScript authentication program

HOBA sessi on managenent is identical to usernane/password session
managenment, with a server-side session nanagenment tool or script
inserting a session cookie [RFC6265] into the output to the browser.
Use of Transport Layer Security (TLS) for the HITP session is stil
necessary to prevent session cooki e hijacking.

HOBA keys are "bare keys", so there is no need for the semantic

overhead of X 509 public key certificates, particularly with respect
to nam ng and trust anchors. The Cient Public Key (CPK) structures

Farrell, et al. Experi ment al [ Page 3]



RFC 7486 HTTP Ori gi n- Bound Aut h ( HOBA) March 2015

in HOBA do not have any publicly visible identifier for the user who
possesses the corresponding private key, nor the web origin with
which the client is using the CPK

HOBA al so defi nes sone services that are needed for npbdern HITP
aut henti cati on:

0 Servers can bind a CPK with an identifier, such as an account
name. Servers using HOBA define their own policies for binding
CPKs with accounts during account registration

o Users are likely to use nore than one device or User Agent (UA)
for the same HTTP-based service, so HOBA gives a way to associ ate
nore than one CPK to the same account without having to register
for each separately.

o Logout features can be useful for UAs, so HOBA defines a way to
close a current HTTP "session".

o Digital signatures can be expensive to conmpute, so HOBA defines a
way for HTTP servers to indicate how | ong a given chall enge val ue
is valid, and a way for UAs to fetch a fresh chall enge at any
time.

Users are also likely to lose a private key, or the client’s nenory
of which key pair is associated with which origin, such as when a
user | oses the conmputer or nobile device in which state is stored.
HOBA does not define a nechanismfor deleting the associati on between
an existing CPK and an account. Such a mechani sm can be i npl enent ed
at the application |ayer.

The HOBA schene is far fromnew, for exanple, the basic idea is
pretty nmuch identical to the first two nessages from "Mechanism R' on
page 6 of [M 93], which predates HOBA by 20 years.

1.1. Interfacing to Applications (Cookies)

HOBA can be used as a drop-in replacenent for password-based user

aut hentication schemes used in conmon web applications. The sinplest
way is to (re)direct the UAto a HOBA "Login" URL and for the
response to a successful HTTP request containing a HOBA signature to
set a session cookie [RFC6265]. Further interactions with the web
application will then be secured via the session cookie, as is
comonl y done today.

Farrell, et al. Experi ment al [ Page 4]



RFC 7486 HTTP Ori gi n- Bound Aut h ( HOBA) March 2015

Whi | e cookies are bearer tokens, and thus weaker than HOBA
signatures, they are currently ubiquitously used. |If non-bearer

t oken session continuation schemes are developed in the future in the
| ETF or el sewhere, then those can interface to HOBA as easily as with
any password-based aut henti cation schene.

1.2. Term nol ogy

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "NOT RECOMVENDED', "MAY", and
"OPTIONAL" in this docunent are to be interpreted as described in RFC
2119 [ RFC2119].

Thi s specification uses the Augnmented Backus- Naur Form ( ABNF)
notati on of [ RFC5234].

Account: The term "account” is (loosely) used to refer to whatever
data structure(s) the server maintains that are associated with an
identity. That will contain at | east one CPK and a web origin; it
will also optionally include an HTTP "realm as defined in the HTTP
aut hentication specification [RFC7235]. It might also involve nany
ot her non-standard pieces of data that the server accunul ates as part
of account creation processes. An account nmay have many CPKs t hat
are considered equivalent in terns of being usable for

aut hentication, but the nmeaning of "equivalent" is really up to the
server and is not defined here.

Client public key (CPK): A CPK is the public key and associ ated
cryptographi c parameters needed for a server to validate a signature.

HOBA-http: W use this termwhen describing something that is
specific to HOBA as an HTTP aut hentication nechani sm

HOBA-js: W use this term when describing sonething that is unrel ated
to HOBA-http but is relevant for HOBA as a design pattern that can be
i npl enented in a browser in JavaScript.

User agent (UA): typically, but not always, a web browser.

User: a person who is running a UA. In this docunent, "user" does
not mean "user name" or "account name".

Web client: the content and JavaScript code that run within the
context of a single UA instance (such as a tab in a web browser).

Farrell, et al. Experi ment al [ Page 5]



RFC 7486 HTTP Ori gi n- Bound Aut h ( HOBA) March 2015

1.3. Step-by-Step Overview of HOBA-http

Step-by-step, a typical HOBA-http registration and authentication
flow m ght ook like this:

1. The client connects to the server and nakes a request, and the
server’'s response includes a WNWV Aut henti cate header field that
contai ns the "HOBA" auth-schene, along with associ ated paraneters
(see Section 3).

2. If the client was not already registered with the web origin and
realmit is trying to access, the "joining" process is invoked
(see Section 6.1). This creates a key pair and makes the CPK
known to the server so that the server can carry out the account
creation processes required.

3. The client uses the challenge fromthe HOBA aut h-schene
paraneters, along with other information it knows about the web
origin and realm to create and sign a HOBA to-be-signed (HOBA-
TBS) string (see Section 2).

4. The client creates a HOBA client-result (HOBA-RES), using the
si gned HOBA-TBS for the "sig" value (see Section 2).

5. The client includes the Authorization header field in its next
request, using the "HOBA" auth-schene and putting the HOBA
client-result in an auth-paramnaned "result" (see Section 3).

6. The server authenticates the HOBA client-result (see
Section 5.1).

7. Typically, the server’s response includes a session cookie that
allows the client to indicate its authentication state in future
requests (see Section 1.1).

2. The HOBA Aut henticati on Schene

A UA that inplenments HOBA maintains a |list of web origins and real ns.
The UA al so nmaintains one or nore client credentials for each web
origin/real mconbination for which it has created a CPK

On receipt of a challenge (and optional realn) froma server, the
client narshals a HOBA-TBS blob that includes a client generated
nonce, the web origin, the realm an identifier for the CPK, and the
chal l enge string, and signs that blob with the private key
corresponding to the CPK for that web origin. The formatting chosen

Farrell, et al. Experi ment al [ Page 6]



RFC 7486

HTTP Ori gi n- Bound Aut h ( HOBA) March 2015

for this TBS blob is chosen so as to nake server-side signature
verification as sinple as possible for a wide range of current server

t ool i ng.

Figure 1 specifies the ABNF for the signature input.
neans that the field does not have a specific fornat

"unr eserved"

The term

defined and allows the characters specified in Section 2.3 of

[ RFC3986] .
HOBA-TBS = |l en ":" nonce
len ":" alg
len ":" origin
len ":" [ realm ]
len ":" kid
len ":" chall enge

len = 1*DIA T
nonce = l1l*base64urlchars

alg = 1*2DIGA T

origin = scheme "://" authority
; schene, etc., are from RFC 3986

real m = unreserved

; realmis to be treated as in Section 2.2 of RFC 7235

kid = 1*base64url chars

chal | enge = 1*base64url chars

; Characters for Base64URL encoding from Table 2 of RFC 4648
; all of which are US-ASCI| (see RFC 20)

base64url chars = %30- 39 ; Digits

port

/[ %%41-5A ; Uppercase letters
/[ 961-7A ; Lowercase letters
Y ; Special characters

Figure 1. To-Be-Signed Data for HOBA

The fiel ds above contain the foll ow ng:

o

Farrell

I en: Each field is preceded by the nunber of octets of the
following field, expressed as a decimal nunber in ASC | [RFC20].
Lengths are separated fromfield values by a colon character. So
if a nonce with the value "ABCD' were used, then that woul d be
preceeded by "4:" (see the exanple in Appendix B for details).

nonce: a random val ue chosen by the UA and MJUST be base64url
encoded before being included in the HOBA-TBS val ue. (base64url
encoding is defined in [ RFC4648]; guidelines for randommess are
given in [ RFC4086].) UAs MJST be able to use at |least 32 bits of
randommess in generating a nonce. UAs SHOULD be able to use 64 or
nore bits of randommess for nonces.

et al. Experi ment al [ Page 7]



RFC 7486 HTTP Ori gi n- Bound Aut h ( HOBA) March 2015

o alg: specifies the signature algorithmbeing used. See Section 7
for details of algorithmsupport requirements. The | ANA-
regi stered al gorithmvalues (see Section 9.3) are encoded as one-
or two-digit ASCII numbers. For exanple, RSA-SHA256 (nunber 0) is
encoded as the ASCII character "0" (0x30), while a future
algorithmregi stered as nunber 17 woul d be encoded as the ASCI
characters "17" (0x3137).

o origin: the web origin expressed as the concatenation of the
schene, authority, and port from[RFC3986]. These are not base64
encoded, as they will be nost readily available to the server in
plain text. For exanple, if accessing the URL
"https://ww. exanpl e. com 8080/ foo0", then the bytes input to the

signature process will be "https://ww. exanpl e.com 8080". There
is no default for the port nunmber, and the port nunmber MJST be
present.

o realm a string with the syntactic restrictions defined in
[RFC7235]. |If norealmis specified for this authentication, then
this is absent but is preceeded by a | ength of zero ("0:").

Recal | that both sides know when this needs to be there,
i ndependent of the encoding via a zero | ength.

o kid: a key identifier. This MJST be a base64url -encoded val ue
that is presented to the server in the HOBA client result (see
bel ow) .

o challenge: MJIST be a base64url -encoded chal | enge val ue that the
server chose to send to the client. The chall enge MJST be chosen
so that it is infeasible to guess and SHOULD be i ndi sti ngui shabl e
from (the base64url encoding of) a randomstring that is at |east
128 bits I ong.

The HOBA-TBS string is the input to the client’s signing process but
is not itself sent over the network since sone fields are already

i nherent in the HITP exchange. The chall enge, however, is sent over
the network so as to reduce the anpbunt of state that needs to be

mai nt ai ned by servers. (One form of stateless challenge mght be a
ci phertext that the server decrypts and checks, but that is an

i mpl enentation detail.) The value that is sent over the network by
the UAis the HOBA "client result”, which we now define.

The HOBA "client result” is a dot-separated string that includes the
signature and is sent in the HTTP Authorizati on header field val ue
using the value syntax defined in Figure 2. The "sig" value is the
base64url - encoded version of the binary output of the signing
process. The kid, challenge, and nonce are as defined above and are
al so base64ur| encoded.

Farrell, et al. Experi ment al [ Page 8]



RFC 7486 HTTP Ori gi n- Bound Aut h ( HOBA) March 2015

HOBA-RES = kid "." challenge "." nonce "." sig
sig = 1*baseb4url chars

Figure 2: HOBA dient Result Val ue

If a mal forned nmessage of any kind is received by a server, the
server MJST fail authentication. |[|f a malforned nessage of any kind
is received by a client, the client MJUST abandon that authentication
attenpt. (The client is, of course, free to start another

aut hentication attenpt if it desires.)

3. Introduction to the HOBA-http Mechani sm

An HTTP server that supports HOBA authentication includes the "HOBA"
aut h-schenme value in a WWV Aut henti cate header field when it wants
the client to authenticate with HOBA. Note that the HOBA aut h-schene
m ght not be the only one that the server includes in a WWW

Aut hent i cat e header.

The HOBA schenme has two REQUI RED attributes (chall enge and nmax- age)
and one OPTIONAL attribute (realm:

o The "chall enge" attribute MJST be included. The challenge is the
string made up of the base64url-encoded octets that the server
wants the client to sign in its response. The challenge MJST be
uni que for every 401 HTTP response in order to prevent replay
attacks from passi ve observers.

o0 A "max-age" attribute MUST be included. 1t specifies the numnber
of seconds fromthe tine the HITP response is emtted for which
responses to this challenge can be accepted; for exanple, "max-

age: 10" would indicate ten seconds. |If nax-age is set to zero,
then that means that only one signature will be accepted for this
chal | enge.

o A "realnt attribute MAY be included to indicate the scope of
protection in the nmanner described in HTTP/ 1.1, Authentication
[ RFC7235]. The "realni attribute MUST NOT appear nore than once.

VWhen the "client response" is created, the UA encodes the HOBA
client-result and returns that in the Authorization header. The
client-result is a string matching the HOBA- RES production in
Figure 2 as an auth-paramw th the name "result".

The server MUST check the cryptographic correctness of the signature
based on a public key it knows for the kid in the signatures, and if
the server cannot do that, or if the signature fails cryptographic
checks, then validation has failed. The server can use any

Farrell, et al. Experi ment al [ Page 9]



RFC 7486 HTTP Ori gi n- Bound Aut h ( HOBA) March 2015

addi ti onal mechanisnms to validate the signature. |f the validation
fails, or if the server chooses to reject the signature for any
reason whatsoever, the server fails the request with a 401

Unaut hori zed HTTP response.

The server MUST check that the same web origin is used in all of the
server’'s TLS server certificates, the URL being accessed, and the
HOBA signature. |f any of those checks fail, the server treats the
signature as being cryptographically incorrect.

Note that a HOBA signature is good for however |ong a non-zero max-
age paraneter allows. This neans that replay is possible within the
ti me wi ndow specified by the "nmax-age" val ue chosen by the server.
Servers can attenpt to detect any such replay (via caching if they so
choose) and MAY react to such replays by responding with a second (or
subsequent) 401 HTTP response containing a new chal | enge.

To optim ze their use of challenges, UAs MAY prefetch a chall enge

val ue, for exanple, after (nmax-age)/?2 seconds have el apsed, using the
".wel | - known/ hoba/ getchal " schene described later in this docunent.
This also allows for precal cul ation of HOBA signatures, if that is
required in order to produce a responsive user interface.

4. Introduction to the HOBA-js Mechani sm

Web sites using JavaScript can al so perform origi n-bound

aut hentication w thout needing to involve the HTTP | ayer and by

i nference not needing HOBA-http support in browsers. HOBA-js is not
an on-the-wire protocol |ike HOBA-http is; instead, it is a design
pattern that can be realized conpletely in JavaScript served in
normal HTM. pages.

One thing that is highly desirable for HOBA-js is WbCrypto (see
<http://ww. w3. org/ TR WebCrypt 0API >), which is (at the tinme of
witing) starting to see deploynent. 1In lieu of WebCrypto,
JavaScript crypto libraries can be enployed with the known
deficiencies of their pseudo-random nunber generators and the genera
imaturity of those libraries.

Wt hout Webcrypto, one elenent is required for HOBA-js; |ocal Storage
(see <http://ww. w3. org/ TR/ webst orage/>) from HTM.5 can be used for
persi stent key storage. For exanple, an inplenentation would store a
di ctionary account identifier as well as public key and private key
tuples in the origin' s local Storage for subsequent authentication
requests. How this information is actually stored in |ocal Storage is
an inplementation detail. This type of key storage relies on the
security properties of the same-origin policy that |ocal Storage
enforces. See the security considerations for discussion about

Farrell, et al. Experi ment al [ Page 10]



RFC 7486 HTTP Ori gi n- Bound Aut h ( HOBA) March 2015

attacks on local Storage. Note that |ndexedDB (see
<http://ww. w3. org/ TR/ I ndexedDB/ >) is an alternative to |ocal Storage
that can al so be used here and that is used by WebCrypto.

Because of JavaScript’s sane-origin policy, scripts from subdomai ns
do not have access to the sane | ocal Storage that scripts in their
parent domai ns do. For |arger or nore conplex sites, this could be
an issue that requires enrollnment into subdomai ns, which could be
difficult for users. One way to get around this is to use session
cooki es because they can be used across subdomains. That is, with
HOBA-js, the user mght log in using a single well-known domain, and
then session cookies are used whilst the user navigates around the
site.

5. HOBA's Aut hentication Process

This section describes how clients and servers use HOBA for

aut hentication. The interaction between an HTTP client and HTTP
server using HOBA happens in three phases: the CPK preparation phase,
the signing phase, and the authentication phase. This section also
covers the actions that give HOBA features simlar to today's
passwor d- based schemes.

5.1. CPK Preparation Phase

In the CPK preparation phase, the client deternmines if it already has
a CPK for the web origin with which it needs to authenticate. |f the
client has a CPK, the client will use it; if the client does not have
a CPK, it generates one in anticipation of the server asking for one.

5.2. Signing Phase

In the signing phase, the client connects to the server, the server
asks for HOBA-based authentication, and the client authenticates by
signing a blob of information as described in the previous sections.

5.3. Authentication Phase

The aut henticati on phase is conpletely dependent on the policies and
practices of the server. That is, this phase involves no

st andardi zed protocol in HOBA-http; in HOBA-js, there is no suggested
i nteraction tenpl ate.

In the authentication phase, the server uses the key identifier (Kkid)
to determine the CPK fromthe signing phase and decides if it

recogni zes the CPK. If the server recogni zes the CPK the server may
finish the client authentication process.

Farrell, et al. Experi ment al [ Page 11]



RFC 7486 HTTP Ori gi n- Bound Aut h ( HOBA) March 2015

If this stage of the process involves additional information for

aut hentication, such as asking the user which account she wants to
use (in the case where a UAis used for nmultiple accounts on a site),
the server can pronpt the user for account identifying informtion

or the user could choose based on HTM. of fered by the server before
the 401 response is triggered. None of this is standardized: it al
follows the server’s security policy and session flow. At the end of
this, the server probably assigns or updates a session cookie for the
client.

During the authentication phase, if the server cannot determ ne the
correct CPK, it could use HTML and JavaScript to ask the user if they
are really a new user or want to associate this new CPK with anot her
CPK. The server can then use sonme out-of-band nethod (such as a
confirmation email round trip, SMS, or a UA that is already enrolled)
to verify that the "new' user is the sane as the already-enrolled
one. Thus, logging in on a new UAis identical to logging in with an
exi sting account.

If the server does not recognize the CPK, the server night send the
client through either a join or |ogin-new UA (see bel ow) process.
This process is conpletely up to the server and probably entails
usi ng HTML and JavaScript to ask the user sone questions in order to
assess whether or not the server wants to give the client an account.
Conpl etion of the joining process mght require confirnmation by
emai |, SMS, CAPTCHA, and so on

Note that there is no necessity for the server to initiate a joining
or login process upon conpletion of the signing phase. Indeed, the
server may desire to challenge the UA even for unprotected resources
and set a session cookie for later use in a join or login process as
it beconmes necessary. For exanple, a server might only want to offer
an account to sormeone who had been to a few pages on the web site; in
such a case, the server could use the CPK from an associ ated session
cookie as a way of building reputation for the user until the server
wants the user to join.

6. Oher Parts of the HOBA Process

The aut hentication process is nore than just the act of

aut hentication. In password-based authentication and HOBA, there are
ot her processes that are needed both before and after an

aut hentication step. This section covers those processes. Were
possi bl e, it conbines practices of HOBA-http and HOBA-js; where that
is not possible, the differences are called out.

Farrell, et al. Experi ment al [ Page 12]



RFC 7486 HTTP Ori gi n- Bound Aut h ( HOBA) March 2015

Al'l HOBA interactions other than those defined in Section 5 MJST be
performed in TLS-protected sessions [ RFC5246]. |If the current HTTP
traffic is not running under TLS, a new session is started before any
of the actions described here are performed.

HOBA-http uses a well-known URI [RFC5785] "hoba" as a base URI for
perform ng many tasks: "https://ww. exanpl e.com . wel | -known/ hoba".
These URI's are based on the nane of the host that the HTTP client is
accessi ng.

There are many use cases for these URLs to redirect to other URLs: a
site that does registration through a federated site, a site that
only does registration under HTTPS, and so on. Like any HITP client,
HOBA-http clients have to be able to handl e redirection of these
requests. However, as that would potentially cause security issues
when a re-direct brings the client to a different web origin, servers
i mpl enenting HOBA-http SHOULD NOT redirect to a different web origin
from bel ow ".well -known/ hoba" URLs. The above is considered
sufficient to allow experinmentation with HOBA, but if at some point
HOBA i s placed on the Standards Track, then a full analysis of off-
origin redirections would need to be docunent ed.

6.1. Registration

Normal Iy, a registration (also called "joining") is expected to
happen after a UA receives a 401 response for a web origin and realm
(for HOBA-http) or on demand (for HOBA-js) for which it has no

associ ated CPK. The process of registration for a HOBA account on a
server is relatively lightweight. The UA generates a new key pair
and associates it with the web origin/realmin question

Note that if the UA has a CPK associated with the web origin, but not
for the real mconcerned, then a newregistration is REQURED. |If the
server did not wish for that outcome, then it ought to use the same
or no realm

The registration nessage for HOBA-http is sent as a POST nessage to
the URL ".well-known/hoba/register” with an HTM. form (x-ww«+ form
encoded, see <http://ww. w3. org/ TR/ 2014/ REC- ht m 5- 20141028/

forms. ht M #url - encoded-f orm dat a>), descri bed bel ow. The

regi stration nessage for HOBA-js can be in any format specified by
the server, but it could be the same as the one described here for
HOBA-http. It is up to the server to decide what kind of user
interaction is required before the account is finally set up. Wen
the server’s chosen registration flowis conpleted successfully, the
server MJST add a Hobareg HTTP header (see Section 6.1.1) to the HTTP
response nessage that conpletes the registration flow

Farrell, et al. Experi ment al [ Page 13]



RFC 7486 HTTP Ori gi n- Bound Aut h ( HOBA) March 2015

The regi stration nessage sent to the server has one mandatory field
(pub) and sone optional fields that allow the UA to specify the type
and val ue of key and device identifiers that the UA wishes to use.

0o pub: a mandatory field containing the Privacy Enhanced Mail (PEM
formatted public key of the client. See Appendix C of [RFC6376]
for an exanple of how to generate this key format.

o kidtype: contains the type of key identifier. This is a nuneric
val ue intended to contain one of the values from Section 9.4. |If
this is not present, then the mandatory-to-inpl enent hashed public
key option MJST be used.

o kid: contains the key identifier as a base64url-encoded string
that is of the type indicated in the kidtype. |If the kid is a
hash of a public key, then the correct (base64url-encoded) hash
val ue MJUST be provided and the server SHOULD check that and refuse
the registration if an incorrect value was suppli ed.

o didtype: specifies a kind of device identifier intended to contain
one of the values from Section 9.5. |f absent, then the "string"
formof device identifier defined in Section 9.5 MJST be used.

o did: a UTF-8 string that specifies the device identifier. This
can be used to help a user be confident that authentication has
wor ked, e.g., follow ng authentication, sone web content m ght say
"You last logged in fromdevice "did at tine T."

Note that replay of registration (and other HOBA) messages is quite
possi bl e. That, however, can be counteracted if chall enge freshness
is ensured. See Section 2 for details. Note also that w th HOBA-
http, the HOBA signature does not cover the POST nessage body. |If
that is required, then HOBA-JS may be a better fit for registration
and ot her account managenent actions.

6.1.1. Hobareg Definition

Since registration can often be a nulti-step process, e.g., requiring
a user to fill in contact details, the initial response to the HITP
POST nessage defined above may not be the end of the registration
process even though the HTTP response has a 200 K status. This
creates an issue for the UA since, during the registration process
(e.g., while dealing with interstitial pages), the UA doesn't yet
know whet her the CPK is good for that web origin or not.

For this reason, the server MJUST add a header field to the response

message when the registration has succeeded in order to indicate the
new state. The header to be used is "Hobareg", and the val ue when

Farrell, et al. Experi ment al [ Page 14]



RFC 7486 HTTP Ori gi n- Bound Aut h ( HOBA) March 2015

regi stration has succeeded is to be "regok". \When registrationis in
an intermediate state (e.g., on an HTTP response for an interstitia
page), the server MAY add this header with a value of "regi nwork".
See Section 9.6 for the relevant | ANA registration of this header
field.

For interstitial pages, the client MAY include a HOBA Authorization
header. This is not considered a "MJST", as that m ght needl essly
conplicate client inplenentations, but is noted here in case a server
i mpl enenter assumes that all registration nessages contain a HOBA
Aut hori zati on header.

Hobar eg-val = "regok" / "regi nwork"
Fi gure 3: Hobareg Header Field Definition

Figure 3 provides an ABNF definition for the values allowed in the
Hobareg header field. Note that these (and the header field name)
are case insensitive. Section 8.3.1 of [RFC7231] calls for
docunenting the following details for this new header field:

0 Only one single value is allowed in a Hobareg header field.
Shoul d nore than one (a list) be encountered, or any other ABNF-
i nvalid value, that SHOULD be interpreted as being the sane as
"regi nwor k".

o The Hobareg header field can only be used in HTTP responses.

o Since Hobareg is only neant for responses, it ought not appear in
requests.

o The HITP response code does affect the interpretati on of Hobareg.
Regi stration is only considered to have succeeded if the regok
value is seen in a 2xx response. 4xx and other errors nean that
registration has failed regardl ess of the value of Hobareg seen
The request nethod has no influence on the interpretation of
Hobar eg.

o Intermediaries never insert, delete, or nodify a Hobareg header
field.

0 As a response-only header field, it is not appropriate to list a
Hobareg in a Vary response header field.

0 Hobareg is allowed in trailers.

0 As a response-only header field, Hobareg will not be preserved
across re-directs.

Farrell, et al. Experi ment al [ Page 15]



RFC 7486 HTTP Ori gi n- Bound Aut h ( HOBA) March 2015

6.

6.

6.

0 Hobareg itself discloses little security- or privacy-sensitive
information. |f an attacker can sonehow detect that a Hobareg
header field is being added, then that attacker would know t hat
the UAis in the process of registration, which could be
significant. However, it is likely that the set of messages
bet ween the UA and server woul d expose this information in many
cases, regardl ess of whether or not TLS is used. Using TLS is
still, however, a good plan

2. Associating Additional Keys to an Existing Account

Fromt he user perspective, the UA having a CPK for a web origin wll
often appear to be the sane as having a way to sign in to an account
at that web site. Since users often have nore than one UA, and since
the CPKs are, in general, UA specific, that raises the question of
how t he user can sign in to that account fromdifferent UAs. And
fromthe server perspective, that turns into the question of howto
safely bind different CPKs to one account. |In this section, we
descri be some ways in which this can be done, as well as one way in
whi ch this ought not be done.

Note that the context here is usually that the user has succeeded in
regi stering with one or more UAs (for the purposes of this section

we call this "the first UA" bel ow) and can use HOBA with those, and
the user is now addi ng another UA. The newest UA night or mght not
have a CPK for the site in question. Since it is in fact trivial, we
assune that the site is able to put in place some appropriate,

qui cker, easier registration for a CPK for the newest UA. The issue
then becomes one of binding the CPK fromthe newest UA with those of
ot her UAs bound to the account.

2.1. Mving Private Keys

It is conmmon for a user to have nultiple UAs and to want all those
UAs to be able to authenticate to a single account. One nethod to
all ow a user who has an existing account to be able to authenticate
on a second device is to securely transport the private and public
keys and the origin information fromthe first device to the second.
If this approach is taken, then there is no inpact on the HOBA-http
or HOBA-js, so this is a pure UA inplenentation i ssue and not

di scussed further.

2.2. Human- Menorabl e One-Ti ne Password (Don’'t Do This One)

It will be tenpting for inplenenters to use a human- nenor abl e One-
Time Password (OTP) in order to "authenticate" binding CPKs to the
same account. The workflow here would |ikely be sonething along the
lines of some server admnistrative utility generating a human-

Farrell, et al. Experi ment al [ Page 16]



RFC 7486 HTTP Ori gi n- Bound Aut h ( HOBA) March 2015

nmenorabl e OTP such as "1234" and sending that to the user out of band
for the user to enter at two web pages, each authenticated via the
rel evant CPK. While this seens obvi ous enough and coul d even be
secure enough in sone limted cases, we consider that this is too
risky to use in the Internet, and so servers SHOULD NOT provide such
a nechanism The reason this is so dangerous is that it would be
trivial for an automated client to guess such tokens and "steal" the
bi nding intended for sonme other user. At any scale, there would

al ways be sone in-process bindings so that even with only a trickle
of guesses (and hence not being detectable via nmessage vol une), an
attacker woul d have a high probability of succeeding in registering a
binding with the attacker’s CPK

Thi s method of binding CPKs together is therefore NOT RECOMVENDED.
6.2.3. CQut-of-Band URL

One easy binding nethod is to sinply provide a web page where, using
the first UA, the user can generate a URL (containing sone
"unguessabl e" cryptographically generated value) that the user then
| ater dereferences on the newest UA. The user could email that URL
to herself, for exanple, or the web server accessed at the first UA
could automatically do that.

Such a URL SHOULD contain at |east the equivalent of 128 bits of
randommess.

6.3. Loggi ng Cut

The user can tell the server it wishes to log out. Wth HOBA-http,
this is done by sending a HOBA-aut henticated POST nessage to the URL
".wel | - known/ hoba/l ogout” on the site in question. The UA SHOULD

al so del ete session cookies associated with the session so that the
user’s state is no |longer "logged in."

The server MUST NOT all ow TLS session resunption for any | ogged out
sessi on.

The server SHOULD al so revoke or del ete any cookies associated with
t he session.

6.4. GCetting a Fresh Chall enge

The UA can get a "fresh" challenge fromthe server. In HOBA-http, it
sends a POST nmessage to ".well-known/ hoba/getchal". |If successful,
the response MUST contain a fresh (base64url -encoded) HOBA chal | enge
for this origin in the body of the response. Witespace in the
response MJUST be ignored.

Farrell, et al. Experi ment al [ Page 17]



RFC 7486 HTTP Ori gi n- Bound Aut h ( HOBA) March 2015

7.

8.

Mandat ory-t o- | npl enent Al gorithns

RSA- SHA256 MUST be supported. HOBA inpl enentati ons MJUST use RSA-
SHA256 if it is provided by the underlying cryptographic libraries.
RSA- SHA1 MAY be used. RSA nodul us lengths of at |east 2048 bits
SHOULD be used. RSA indicates the RSASSA- PKCS1-v1l 5 algorithm
defined in Section 8.2 of [RFC3447], and SHA-1 and SHA-256 are
defined in [SHS]. Keys with noduli shorter than 2048 bits SHOULD
only be used in cases where generating 2048-bit (or |onger) keys is
i mpractical, e.g., on very constrained or old devices.

Security Considerations

Bi nding ny CPK with sonmeone el se’s account would be fun and
profitable so SHOULD be appropriately hard. |In particular, URLs or
ot her val ues generated by the server as part of any CPK binding
process MJST be hard to guess, for whatever |level of difficulty is
chosen by the server. The server SHOULD NOT all ow a random guess to
reveal whether or not an account exists.

I f key binding was server selected, then a bad actor could bind

di fferent accounts belonging to the user fromthe network with
possi bl e bad consequences, especially if one of the private keys was
conprom sed sonmehow.

When the max-age paraneter is not zero, then a HOBA signature has a
property that is like a bearer token for the rel evant nunber of
seconds: it can be replayed for a server-selected duration.
Simlarly, for HOBA-js, signatures m ght be replayabl e dependi ng on
the specific inplenentation. The security considerations of

[ RFC6750] therefore apply in any case where the HOBA signature can be
repl ayed. Server adm nistrators can set the nmax-age to the ninimm
acceptabl e value in such cases, which would often be expected to be
just a few seconds. There seens to be no reason to ever set the nax-
age nore than a few m nutes; the val ue ought al so decrease over tine
as device capabilities inmprove. The admnistrator will nost l|ikely
want to set the nax-age to sonething that is not too short for the

sl owest signing device that is significant for that site.

1. Privacy Considerations

HOBA does, to some extent, inpact privacy and could be considered to
represent a super-cookie to the server or to any entity on the path
fromUA to HITP server that can see the HOBA signature. This is
because we need to send a key identifier as part of the signature and
that will not vary for a given key. For this reason, and others, it
is strongly RECOMVENDED to only use HOBA over server-authenticated
TLS and to mgrate web sites using HOBA to only use "https" URLs.

Farrell, et al. Experi ment al [ Page 18]



RFC 7486 HTTP Ori gi n- Bound Aut h ( HOBA) March 2015

UAs SHOULD provide users a way to nanage their CPKs. |Ideally, there
woul d be a way for a user to maintain their HOBA details for a site
while at the same tinme deleting other site information such as
cooki es or non- HOBA HTML5 | ocal Storage. However, as this is likely
to be conpl ex, and appropriate user interfaces counterintuitive, we
expect that UAs that inplement HOBA will |ikely treat HOBA
infornmation as just sone nore site data that woul d di sappear shoul d
the user choose to "forget" that site.

Device identifiers are intended to specify classes of device in a way
that can assist with registration and with presentation to the user

of information about previous sessions, e.g., last login tine.
Device identifier types MJUST NOT be privacy sensitive, with val ues
that would allow tracking a user in unexpected ways. |n particular

using a device identifier type that is analogous to the Internationa
Mobi | e Equi prent ldentifier (IMEl) would be a really bad idea and is
the reason for the "MJST NOT" above. |In that case, "nobile phone”
could be an acceptabl e choi ce.

I f possible, inplementations ought to encourage the use of device
identifier values that are not personally identifying except for the
user concerned; for exanple, "Alice’'s nmobile" is likely to be chosen
and is sonewhat identifying, but "Alice s phone: UU D 1234-5567-
89abc-def 0" would be a very bad choi ce.

8.2. local Storage Security for JavaScri pt

The use of local Storage (likely with a non-WebCrypto inpl enentation
of HOBA-js) will undoubtedly be a cause for concern. |ocal Storage
uses the sanme-origin nodel that says that the schenme, domain, and
port define a | ocal Storage i nstance. Beyond that, any code executing
wi Il have access to private keying material. O particular concern
are Cross-Site Scripting (XSS) attacks, which could conceivably take
the keying material and use it to create UAs under the control of an
attacker. XSS attacks are, in reality, devastating across the board
since they can and do steal credit card information, passwords,
performillicit acts, etc. |It’'s not evident that we are introducing
uni que threats fromwhich cleartext passwords don’t already suffer.

Anot her source of concern is |ocal access to the keys. That is, if
an attacker has access to the UAitself, they could snoop on the key
through a JavaScript console or find the file(s) that inplenent

| ocal Storage on the host conputer. Again, it's not clear that we are
worse in this regard because the same attacker could get at browser
password files, etc., too. One possible mtigation is to encrypt the
keystore with a password/PIN that the user supplies. This may sound
counterintuitive, but the object here is to keep passwords off of

Farrell, et al. Experi ment al [ Page 19]



RFC 7486 HTTP Ori gi n- Bound Aut h ( HOBA) March 2015

servers to mtigate the nultiplier effect of a |arge-scal e conprom se
(e.g., [ThreatReport]) because of shared passwords across sites.

It’s worth noting that HOBA uses asymetric keys and not passwords
when evaluating threats. As various password dat abase | eaks have
shown, the real threat of a password breach is not just to the site
that was breached, it's also to all of the sites on which a user used
the sane password. That is, the collateral danmage is severe because
password reuse is comopn. Storing a password in |ocal Storage woul d
al so have a simlar nultiplier effect for an attacker, though perhaps
on a smaller scale than a server-side conproni se: one successfu

crack gains the attacker potential access to hundreds if not

t housands of sites the user visits. HOBA does not suffer fromthat
attack nultiplier since each asymetric key pair is unique per

sitel/ UA user.

8.3. Miltiple Accounts on One User Agent

A shared UA with nmultiple accounts is possible if the account
identifier is stored along with the asynmetric key pair binding them
to one another. Miltiple entries can be kept, one for each account,
and selected by the current user. This, of course, is fraught with
the possibility for abuse, since a server is potentially enrolling
the device for a |long period and the user nmay not want to have to be
responsi ble for the credential for that long. To alleviate this
problem the user could request that the credential be erased from
the browser. Simlarly, during the enrollnent phase, a user could
request that the key pair only be kept for a certain anpunt of tine
or that it not be stored beyond the current browser session

However, all such features really ought to be part of the operating
systemor platformand not part of a HOBA inplenmentation, so those
are not discussed further.

8.4. Injective Mapping for HOBA-TBS

The repeated length fields in the HOBA-TBS structure are present in
order to ensure that there is no possibility that the catenation of
di fferent input values can cause confusion that mght |ead to an
attack, either against HOBA as specified here, or else an attack
agai nst sonme ot her protocol that reused this to-be-signed structure.
Those fields ensure that the mapping frominput fields to the HOBA-
TBS string is an injective napping.

Farrell, et al. Experi ment al [ Page 20]



RFC 7486 HTTP Ori gi n- Bound Aut h ( HOBA) March 2015

9. | ANA Consi derations

| ANA has nade registrations and created new registries as descri bed
bel ow.

Al'l new registries have been pl aced beneath a new "HTTP Oi gi n- Bound
Aut henti cation (HOBA) Paraneters" category.

9.1. HOBA Aut hentication Schene

A new schene has been registered in the HITP Authenticati on Scheme
Regi stry as foll ows:

Aut henti cati on Scherme Nane: HOBA
Ref erence: Section 3 of RFC 7486
Not es (optional): The HOBA schene can be used with either HITP
servers or proxies. Wen used in response to a 407 Proxy
Aut hentication Required indication, the appropriate proxy
aut henti cation header fields are used instead, as with any other HITP
aut henti cati on scherne.
9.2. .well-known URI

A new . wel |l -known URI has been registered in the Wll-Known URIs
regi stry as described bel ow

URI Suffix: hoba
Change Controller: |ETF
Ref erence: Section 6 of RFC 7486
Rel ated Information: NA
9.3. Algorithm Names
A new HOBA signature algorithns registry has been created as foll ows,
with Specification Required as the registration procedure. New HOBA

signature al gorithnms SHOULD be in use with other |ETF Standards Track
protocol s before being added to this registry.

Nurnber Meani ng Ref er ence
0 RSA- SHA256 RFC 7486
1 RSA- SHAL RFC 7486

Farrell, et al. Experi ment al [ Page 21]



RFC 7486 HTTP Ori gi n- Bound Aut h ( HOBA) March 2015
RSA is defined in Section 8.2 of [RFC3447], and SHA-1 and SHA-256 are
defined in [ SHS].

For this registry, the number columm should contain a small positive
integer. Following the ABNF in Figure 1, the maxi mnumvalue for this
i s decimal 99.

9.4. Key ldentifier Types

A new HOBA Key ldentifier Types registry has been created as foll ows,
with Specification Required as the registration procedure.

Nunmber Meani ng Ref erence
0 a hashed public key [ RFC6698]
1 a URl [ RFC3986]
2 an unformatted string, at the RFC 7486

user’ s/ UA's whi m

For the nunber 0, hashed public keys are as done in DNS-Based
Aut hentication of Named Entities (DANE) [RFC6698].

For this registry, the number columm should contain a small positive
i nteger.

9.5. Device ldentifier Types

A new HOBA Device ldentifier Types registry has been created as
follows, with Specification Required as the registration procedure.

The designated expert for this registry is to carefully pay attention
to the notes on this field in Section 8.1, in particular, the "MJST
NOT" stated therein.

Nunber Meani ng Ref erence

0 an unformatted string, at the RFC 7486
user’s/UA's whim

For this registry, the number columm should contain a small positive
i nteger.

Farrell, et al. Experi ment al [ Page 22]



RFC 7486 HTTP Ori gi n- Bound Aut h ( HOBA) March 2015

9.

10.

10.

6. Hobareg HTTP Header Field

A new identifier has been registered in the Pernmanent Message Header
Field Nanes registry as described bel ow.

Header Field Nane: Hobareg
Protocol: http (RFC 7230)
Status: experinmental
Aut hor/ Change control ler: |ETF
Ref erence: Section 6.1.1 of RFC 7486
Rel ated i nformation: N A
Ref er ences
1. Normative References

[ RFC20] Cerf, V., "ASCI| format for network interchange", STD 80,
RFC 20, Cctober 1969,
<http://www. rfc-editor.org/infol/rfc20>.

[ RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renment Level s", BCP 14, RFC 2119, March 1997,
<http://ww. rfc-editor.org/info/rfc2119>

[ RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
St andards (PKCS) #1: RSA Cryptography Specifications
Version 2.1", RFC 3447, February 2003,
<http://wwmv. rfc-editor.org/info/rfc3447>

[ RFC3986] Berners-Lee, T., Fielding, R, and L. Masinter, "Uniform
Resource ldentifier (URI): Generic Syntax", STD 66, RFC
3986, January 2005,
<http://ww. rfc-editor.org/info/rfc3986>

[ RFC4648] Josefsson, S., "The Basel6, Base32, and Base64 Data
Encodi ngs", RFC 4648, Cctober 2006,
<http://ww. rfc-editor.org/info/rfc4648>.

[ RFC5234] Crocker, D., Ed. and P. Overell, "Augnented BNF for Syntax
Speci fications: ABNF', STD 68, RFC 5234, January 2008,
<http://ww. rfc-editor.org/info/rfc5234>.

Farrell, et al. Experi ment al [ Page 23]



RFC 7486

10.

Farrell,

[ RFC5246]

[ RFC5785]

[ RFC6454]

[ RFC6698]

[ RFC6750]

[ RFC7231]

[ RFC7235]

[ SHS]

HTTP Ori gi n- Bound Aut h ( HOBA) March 2015

Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008,
<http://ww. rfc-editor.org/info/rfc5246>.

Notti ngham M and E. Hammer-Lahav, "Defining VWell-Known
Uni form Resource ldentifiers (URIs)", RFC 5785, April
2010, <http://ww. rfc-editor.org/info/rfc5785>.

Barth, A, "The Wb Origin Concept", RFC 6454, Decenber
2011, <http://www.rfc-editor.org/info/rfc6454>.

Hof frman, P. and J. Schlyter, "The DNS-Based Authentication
of Named Entities (DANE) Transport Layer Security (TLS)
Protocol : TLSA", RFC 6698, August 2012,
<http://ww.rfc-editor.org/infol/rfc6698>.

Jones, M and D. Hardt, "The QAuth 2.0 Authorization
Framewor k: Bearer Token Usage", RFC 6750, October 2012,
<http://ww. rfc-editor.org/info/rfc6750>.

Fielding, R, Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
June 2014, <http://ww.rfc-editor.org/info/rfc7231>.

Fielding, R, Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Authentication", RFC 7235, June 2014,
<http://ww. rfc-editor.org/info/rfc7235>.

NI ST, "Secure Hash Standard (SHS)", FIPS PUB 180-4, March
2012.

2. Infornmtive References

[ Bonneau]

[ M 93]

[ RFCA086]

[ RFC6265]

Bonneau, J., "The Sci ence of Guessing: Analyzing an
Anonym zed Corpus of 70 MIIion Passwords”, |EEE Symposium
on Security and Privacy 538-552, 2012.

Mtchell, C and A Thonas, "Standardising authentication
protocol s based on public key techni ques", Journal of
Conput er Security Volune 2, 23-36, 1993.

Eastl ake 3rd, D., Schiller, J., and S. Crocker,
"Randomess Requirenments for Security", BCP 106, RFC 4086,
June 2005, <http://ww.rfc-editor.org/info/rfc4086>.

Barth, A, "HTTP State Managenent Mechani sni', RFC 6265,
April 2011, <http://wwwrfc-editor.org/info/rfc6265>.

et al. Experi ment al [ Page 24]



RFC 7486

[ RFC6376]

HTTP Ori gi n- Bound Aut h ( HOBA) March 2015

Crocker, D., Ed., Hansen, T., Ed., and M Kucherawy, Ed.,
"Domai nKeys ldentified Mail (DKIM Signatures", STD 76,
RFC 6376, Septenber 2011,

<http://ww. rfc-editor.org/info/rfc6376>.

[ Thr eat Report]

Sophos, "Security Threat Report 2013", January 2013,
<htt p: // ww. sophos. conf en-us/ medi al i brary/ pdf s/ ot her/
sophossecuritythreatreport2013. pdf >.

Farrell, et al. Experi ment al [ Page 25]



RFC 7486 HTTP Ori gi n- Bound Aut h ( HOBA) March 2015

Appendi x A.  Problens with Passwords

By far, the nost common nechani smfor web authentication is passwords
that can be remenbered by the user, called "human-nenorabl e
passwords”. There is plenty of good research on how users typically
use human- nmenor abl e passwords (e.g., see [Bonneau]), but sone of the
hi ghlights are that users typically try hard to reuse passwords on as
many web sites as possible, and that web sites often use either enui
addresses or users’ nanes as the identifiers that go with these
passwor ds.

If an attacker gets access to the database of nenorizabl e passwords,
that attacker can inpersonate any of the users. Even if the breach
is discovered, the attacker can still inpersonate users until every
password is changed. Even if all the passwords are changed or at

| east made unusable, the attacker now possesses a list of likely
user name/ password pairs that mght exist on other sites.

Usi ng nmenori zabl e passwords on unencrypted channel s al so poses risks
to the users. |If a web site uses either the HITP Basic

aut henti cation nethod, or an HTML formthat does no cryptographic
protection of the password in transit, a passive attacker can see the

password and i mmedi ately inpersonate the user. |f a hash-based
aut hentication scheme such as HITP Di gest authentication is used, a
passi ve attacker still has a high chance of being able to determ ne

the password using a dictionary of known passwords.

Note that passwords that are not human-nenorable are still subject to
dat abase attack, though they are of course unlikely to be reused
across nany systens. Simlarly, database attacks of sone formor
other will work agai nst any password-based aut hentication schene,
regardl ess of the cryptographic protocol used. So for exanple, zero-
know edge or Password- Aut henti cated Key Exchange (PAKE) schenes,

t hough maki ng use of el egant cryptographic protocols, remain as

vul nerable to what is clearly the nbst common exploit seen when it
cones to passwords. HOBA is, however, not vul nerable to database
theft.

Farrell, et al. Experi ment al [ Page 26]



RFC 7486 HTTP Ori gi n- Bound Aut h ( HOBA) March 2015

Appendi x B. Exanpl e

The foll owi ng val ues show an exanpl e of HOBA-http authentication to
the origin "https://exanple.com443". Carriage returns have been
added and need to be renpved to validate the exanple.

Public Key:

----- BEG N PUBLI C KEY---- -

M | Bl j ANBgkghki GOwWOBAQEFAACCABAM | BCgKCAQEAVI E8f M G PZN9up94M28
6038B99f sz5cUgYHXXJ! nHI i 6gGKj gLgn3P7n4snUSQsWLEXxr khSr OTPhRDuPH_t

f XLKLBbh170f B7t 7shnPKxnmyZ69hCLbe7pBlHvaBz Tx PC2KOgsk Di DBOQ6- JLH®B
egXB14W 641RQ 0CsC5nXz 092k PCdV4ANZ45MADws 3t wCl UDCHOnNI bl G3Sor r BbCl

DPHQZS5Dk5pgS7P5hr Ar 634Zn4bz XhUnnivc ON2x4r v83009B3Il Rgj FAT9exEMyZBS
L26nmbKbK860uSOKyw Oxpd4ymHMVE6Led5qgf EMnICOPEI 90t | MegdHr ndHC _vpl dG
DQ DAQAB

----- END PUBLI C KEY- - - - -

Oigin: https://exanple.com 443

Key ldentifier: vesscanS2Kze4FFOg3e2UyCIPhu@_3_gzN-k_L6t 3w
Chal | enge: pUE77wOLyl HypHKhBgAI QHUGC751G Ow4/ 7pSl 09j c=

Si gnature al gorithm RSA-SHA256 ("0")

Nonce: PnmByUW sWbQ

Si gnat ur e:

VD- OLGVBVEV] f q4xEd35F nOr | qzJ20QWK5W8E52dgW xFDE6ROr yEsHc D31y khOi
4Y1 z1 HXi r x7bE4x 9y P- 9f MBCEWnHJ s YWYChf RpnScwAz - | h1Hn4y ORTb- U66mi Uz
q04ZgTHm4j Aj 45af U20wYpGXY2r 3W FRKc6J6d v_zIl _ROghERal xgXG QV&Zr KP
t QOV593Yf 91 PnFSpLyWsf nxscCMAUAIT- 4N Milypl - Ze4HsC9J06t RTQunQdof r 9
62J2i 9LE6UKSUDLCD20eEeSEVUR- - 40G r gj z YysHZkdVSxAi 70o@BK34EUW) 9K
S13qQA43mal MExkbApqr Sg

Aut hori zati on Header:

Aut hori zation: HOBA result="vesscanS2Kze4dFFQg3e2UyCIPhuQ5_3_gzN-
k_L6t 3w. pUE77wWOLy| Hy pHKhBgAi QHUGC751G Ow4/ 7pSl 09j c=. PmByUW sW6Q
. VD- OLGVBVEV] f g4xEd35F] nOr 1 qzJ20QWK5wW8E52dgWxFD6ROr yEsHc D31y khO
i 4Y1 zI1 HXi r x7bE4x 9y P- 9f MBCEWnHJI s YWYChf RpnScwAz - | h1Hn4y ORTb- U66mni U
zq04ZgTHmj Aj 45af U20wYpGXY2r 3W FRKc6J63 v_zl _ROghERal xgXG QV&Zr K
Pt QOV593Yf 91 PNFSpLyWsf nxsc CMAUAIT- 4Nj Milypl - Ze4HsC9J06t RTQunQdof r
962J2i 9LE6UKSUDLCD20eEeSEVUR- - 40G r gj z YysHZkdVSxAI 700(QBK34EUWg9k
| S13qQA43mal MExkbApQgr Sg*

Farrell, et al. Experi ment al [ Page 27]



RFC 7486 HTTP Ori gi n- Bound Aut h ( HOBA) March 2015

Acknowl edgenent s

Thanks to the followi ng for good conmrents received during the
preparation of this specification: R chard Barnes, David Bl ack,

Al i ssa Cooper, Donal d Eastl ake, Anmps Jeffries, Benjam n Kaduk, Watson
Ladd, Barry Leiba, Matt Lepinski, Ilari Liusvaara, James Manger,

Al exey Mel ni kov, Kathleen Mriarty, Yoav Nir, Mark Nottingham Julian
Reschke, Pete Resnick, M chael Richardson, Yaron Sheffer, and M chael
Sweet. Al errors and stupidities are of course the editors’ fault.

Aut hors’ Addresses
St ephen Farrell
Trinity College Dublin
Dublin 2
I rel and
Phone: +353- 1-896- 2354
EMai | : stephen.farrell @s.tcd.ie
Paul Hof f man
VPN Consortium
EMai | : paul . hof f man@pnc. org
M chael Thonmas

Phr esheez

EMai | : m ke@hresheez. com

Farrell, et al. Experi ment al [ Page 28]






