I nt ernet Engi neering Task Force (1 ETF) Y. Nir

Request for Comments: 8422 Check Poi nt
obsol etes: 4492 S. Josefsson
Cat egory: Standards Track SJD AB
| SSN: 2070- 1721 M Pegouri e- Gonnard

ARM

August 2018

Elliptic Curve Cryptography (ECC) Ci pher Suites
for Transport Layer Security (TLS) Versions 1.2 and Earlier

Abst ract

Thi s docunent describes key exchange al gorithms based on Elliptic
Curve Cryptography (ECC) for the Transport Layer Security (TLS)
protocol. In particular, it specifies the use of Epheneral Elliptic
Curve Diffie-Hell man (ECDHE) key agreement in a TLS handshake and the
use of the Elliptic Curve Digital Signature Al gorithm (ECDSA) and

Edwar ds-curve Digital Signature Al gorithm (EdDSA) as authentication
mechani sns.

Thi s docunent obsol et es RFC 4492.

Status of This Menp
This is an Internet Standards Track document.

Thi s docunent is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the |IETF community. It has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Goup (IESG. Further information on
Internet Standards is available in Section 2 of RFC 7841.

I nformati on about the current status of this docunment, any errata,

and how to provide feedback on it may be obtained at
https://wwv. rfc-editor.org/info/rfc8422

Nir, et al. St andards Track [Page 1]

RFC 8422 ECC Ci pher Suites for TLS August 2018

Copyri ght Notice

Copyright (c) 2018 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Thi s docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis document nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Nir, et al. St andards Track [Page 2]

RFC 8422 ECC Ci pher Suites for TLS

Tabl e of Contents

1. Introduction .

1.1. Conventions Used in Th| S Docurrent
2. Key Exchange Al gorithm

ECDHE_ECDSA .

ECDHE_RSA .

ECDH _anon .

Algorithns in Certlflcate Chal ns
i ent Authentication . Coe

ECDSA_si gn
4. TLS Extensions for ECC .
5. Data Structures and Conput atl ons

Client Hello Extensions
1.1. Supported Elliptic Curves Ext ension .
1.2. Supported Point Formats Extension .
1

¢ NN
FoRwONE

w

Server Hell o Extension
Server Certificate
Server Key Exchange .

w oo

Certificate Request

Client Certificate .

Client Key Exchange .

Certificate Verify . .
Elliptic Curve Cert|f|cates Coe
ECDH, ECDSA, and RSA Conputations .
.11 Public Key Validation .

Ci pher Suites . -

| mpl enent ati on St at us .

Security Considerations .

| ANA Consi derations .

0. References .

10.1. Normative Ref erences .

10.2. Informative References .

Appendi x A, Equival ent Curves (Inf or mat [ve)
Appendi x B. Differences from RFC 4492
Acknowl edgenent s Ce e e e

Aut hors’ Addresses

CONOOOIAWNOI0101 =

SRS RS
'—\
O

"‘.@.00.\‘@

Nir, et al. St andards Track

.3. The signature_al gorithnms Extension and EdDSA.

4.1. Uncorrpressed Poi nt . Fbr rrat for NI .ST. O:Jr;/e.s

August 2018

OCoOOoONN~NOOPR~RAD

WWWWWNNNNNNNNNNNNNNRPRPRRPRPRPRRERER
AR WONPOOONNOOPRRPWONPOOOOUIARWWEL OO

[Page 3]

RFC 8422 ECC Ci pher Suites for TLS August 2018

1. Introduction

Thi s docunent describes additions to TLS to support ECC that are
applicable to TLS versions 1.0 [RFC2246], 1.1 [RFC4346], and 1.2

[RFC5246]. The use of ECCin TLS 1.3 is defined in [TLS1.3] and is
explicitly out of scope for this docunent. |In particular, this
document defi nes:

o the use of the ECDHE key agreenent scheme with epheneral keys to
establish the TLS premaster secret, and

o the use of ECDSA and EdDSA signatures for authentication of TLS
peers.

The remai nder of this docunment is organized as follows. Section 2
provi des an overvi ew of ECC-based key exchange al gorithns for TLS
Section 3 describes the use of ECC certificates for client

aut hentication. TLS extensions that allow a client to negotiate the
use of specific curves and point fornmats are presented in Section 4.
Section 5 specifies various data structures needed for an ECC based
handshake, their encoding in TLS messages, and the processing of
those nessages. Section 6 defines ECC- based ci pher suites and
identifies a small subset of these as recomrended for al

i npl enentations of this specification. Section 8 discusses security
consi derations. Section 9 describes | ANA considerations for the nane
spaces created by this docunent’s predecessor. Appendi x B provides
di fferences from[RFC4492], the docunent that this one replaces.

I mpl ementation of this specification requires famliarity with TLS,
TLS extensi ons [RFC4366], and ECC

1.1. Conventions Used in This Docunent

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMMENDED', "NOT RECOMVENDED', "MAY", and
"OPTIONAL" in this docunent are to be interpreted as described in
BCP 14 [RFC2119] [RFCB174] when, and only when, they appear in al
capitals, as shown here.

2. Key Exchange Al gorithm

Thi s docunent defines three new ECC based key exchange al gorithms for
TLS. Al of themuse Epheneral ECDH (ECDHE) to conpute the TLS
premaster secret, and they differ only in the mechanism (if any) used
to authenticate them The derivation of the TLS naster secret from
the premaster secret and the subsequent generation of bul k
encryption/ MAC keys and initialization vectors is independent of the
key exchange al gorithm and not inpacted by the introduction of ECC

Nir, et al. St andards Track [Page 4]

RFC 8422 ECC Ci pher Suites for TLS August 2018

Table 1 summari zes the new key exchange al gorithns. Al of these key
exchange al gorithns provide forward secrecy if and only if fresh
epheneral keys are generated and used, and al so destroyed after use.

S o e mm— o +
| Algorithm | Description

. O +
| ECDHE_ECDSA | Epheneral ECDH with ECDSA or EdJDSA signatures.

| ECDHE_RSA | Epheneral ECDH with RSA signatures.

| ECDH anon | Anonynous epheneral ECDH, no signatures.
S o e mm— o +

Table 1: ECC Key Exchange Al gorithms

These key exchanges are anal ogous to DHE _DSS, DHE RSA, and DH_anon,
respectively.

Wth ECDHE RSA, a server can reuse its existing RSA certificate and
easily conply with a constrained client’s elliptic curve preferences
(see Section 4). However, the conputational cost incurred by a
server is higher for ECDHE RSA than for the traditional RSA key
exchange, which does not provide forward secrecy.

The anonynous key exchange al gorithm does not provide authentication
of the server or the client. Like other anonynobus TLS key exchanges,
it is subject to man-in-the-mddle attacks. Applications using TLS
with this algorithm SHOULD provi de aut hentication by other neans.

Nir, et al. St andards Track [Page 5]

RFC 8422 ECC Ci pher Suites for TLS August 2018

dient Server

ClientHello - ------- >

ServerHell o
Certificate*

Ser ver KeyExchange*
CertificateRequest*+

<-------- Ser ver Hel | oDone
Certificate*+
i ent KeyExchange
CertificateVerify*+
[ChangeCi pher Spec]
Finished -------- >

[ChangeCi pher Spec]

Cemmmea Fi ni shed

Application Data <mmmmm- - > Application Data

* message is not sent under sone conditions
+ nessage is not sent unless client authentication
is desired

Figure 1: Message Flowin a Full TLS 1.2 Handshake

Figure 1 shows all nessages involved in the TLS key establ i shnment
protocol (aka full handshake). The addition of ECC has direct inpact
only on the CientHello, the ServerHello, the server’'s Certificate
nmessage, the Server KeyExchange, the dient KeyExchange, the
CertificateRequest, the client’s Certificate message, and the
CertificateVerify. Next, we describe the ECC key exchange al gorithm
in greater detail in terns of the content and processing of these
nessages. For ease of exposition, we defer discussion of client

aut hentication and associ ated nessages (identified with a '+ in
Figure 1) until Section 3 and of the optional ECC-specific extensions
(which inmpact the Hell o nmessages) until Section 4.

. 1. ECDHE_ECDSA

I n ECDHE_ECDSA, the server’s certificate MJUST contain an ECDSA- or
EdDSA- capabl e public key.

The server sends its ephenmeral ECDH public key and a specification of
the correspondi ng curve in the ServerKeyExchange nessage. These
paranmeters MJST be signed with ECDSA or EJDSA using the private key
corresponding to the public key in the server’s Certificate.

The client generates an ECDH key pair on the same curve as the
server’s ephenmeral ECDH key and sends its public key in the
Cl i ent KeyExchange nessage.

Nir, et al. St andards Track [Page 6]

RFC 8422 ECC Ci pher Suites for TLS August 2018

Both client and server perform an ECDH operati on (see Section 5.10)
and use the resultant shared secret as the prenaster secret.

2.2. ECDHE_RSA

Thi s key exchange algorithmis the same as ECDHE ECDSA except that
the server’s certificate MJST contain an RSA public key authorized
for signing and the signature in the ServerKeyExchange nessage nust
be computed with the correspondi ng RSA private key.

2.3. ECDH anon

NOTE: Despite the nane beginning with "ECDH " (no E), the key used in
ECDH _anon is ephemeral just like the key in ECDHE _RSA and
ECDHE_ECDSA. The naming foll ows the exanple of DH anon, where the
key is al so epheneral but the name does not reflect it.

In ECDH anon, the server’s Certificate, the CertificateRequest, the
client’s Certificate, and the CertificateVerify nessages MJST NOT be
sent.

The server MUST send an ephemeral ECDH public key and a specification
of the corresponding curve in the ServerKeyExchange message. These
par amet ers MJUST NOT be signed.

The client generates an ECDH key pair on the sane curve as the
server’s epheneral ECDH key and sends its public key in the
d i ent KeyExchange nessage.

Both client and server perform an ECDH operation and use the
resul tant shared secret as the prenaster secret. Al ECDH
calcul ations are perforned as specified in Section 5.10.

2.4. Agorithms in Certificate Chains

Thi s specification does not inpose restrictions on signature schenes
used anywhere in the certificate chain. The previous version of this
docunent required the signatures to nmatch, but this restriction
originating in previous TLS versions, is lifted here as it had been
in RFC 5246.

Nir, et al. St andards Track [Page 7]

RFC 8422 ECC Ci pher Suites for TLS August 2018

3. dient Authentication

Thi s docunent defines a client authentication nechani smnaned after
the type of client certificate involved: ECDSA sign. The ECDSA sign
mechani smis usable with any of the non-anonynmous ECC key exchange
al gorithns described in Section 2 as well as ot her non-anonynous
(non- ECC) key exchange al gorithnms defined in TLS.

Note that client certificates with EdDSA public keys also use this
mechani sm

The server can request ECC-based client authentication by including
this certificate type in its CertificateRequest nessage. The client
must check if it possesses a certificate appropriate for the nethod
suggested by the server and is willing to use it for authentication

If these conditions are not net, the client SHOULD send a client

Certificate nessage containing no certificates. 1In this case, the
Cl i ent KeyExchange MJST be sent as described in Section 2, and the
CertificateVerify MJST NOT be sent. |If the server requires client

authentication, it may respond with a fatal handshake failure alert.

If the client has an appropriate certificate and is willing to use it
for authentication, it nust send that certificate in the client’s
Certificate nessage (as per Section 5.6) and prove possession of the
private key corresponding to the certified key. The process of
determ ni ng an appropriate certificate and provi ng possession is

di fferent for each authentication mechanismand is described bel ow

NOTE: It is permssible for a server to request (and the client to
send) a client certificate of a different type than the server
certificate.

3.1. ECDSA sign

To use this authentication nechanism the client MJST possess a
certificate containing an ECDSA- or EdDSA- capabl e public key.

The client proves possession of the private key corresponding to the

certified key by including a signature in the CertificateVerify
message as described in Section 5.8.

Nir, et al. St andards Track [Page 8]

RFC 8422 ECC Ci pher Suites for TLS August 2018

4.

TLS Extensions for ECC

Two TLS extensions are defined in this specification: (i) the
Supported Elliptic Curves Extension and (ii) the Supported Point
Formats Extension. These allow negotiating the use of specific
curves and point fornats (e.g., conpressed vs. unconpressed,
respectively) during a handshake starting a new session. These
extensions are especially relevant for constrained clients that nay
only support a linited nunber of curves or point formats. They
foll ow the general approach outlined in [RFC4366]; message details
are specified in Section 5. The client enunerates the curves it
supports and the point formats it can parse by including the
appropriate extensions in its CientHell o nessage. The server
simlarly enunerates the point formats it can parse by including an
extension in its ServerHell o nmessage.

A TLS client that proposes ECC ci pher suites inits CientHello
nmessage SHOULD i nclude these extensions. Servers inplenmenting ECC

ci pher suites MJUST support these extensions, and when a client uses

t hese extensions, servers MJUST NOT negotiate the use of an ECC ci pher
suite unless they can conplete the handshake while respecting the
choice of curves specified by the client. This elimnates the
possibility that a negotiated ECC handshake wi || be subsequently
aborted due to a client’s inability to deal with the server’s EC key.

The client MJUST NOT include these extensions in the ClientHello
nessage if it does not propose any ECC ci pher suites. A client that
proposes ECC ci pher suites may choose not to include these
extensions. In this case, the server is free to choose any one of
the elliptic curves or point formats listed in Section 5. That
section al so describes the structure and processing of these
extensions in greater detail

In the case of session resunption, the server sinply ignores the
Supported Elliptic Curves Extension and the Supported Point Formats
Ext ensi on appearing in the current CientHello nessage. These
extensions only play a role during handshakes negotiating a new
sessi on.

Nir, et al. St andards Track [Page 9]

RFC 8422 ECC Ci pher Suites for TLS August 2018

5. Data Structures and Conputations

This section specifies the data structures and conputati ons used by
ECC- based key mechani sms specified in the previous three sections.
The presentation | anguage used here is the same as that used in TLS.
Since this specification extends TLS, these descriptions should be
nerged with those in the TLS specification and any others that extend
TLS. This neans that enumtypes may not specify all possible val ues,
and structures with nultiple formats chosen with a select() clause
may not indicate all possible cases.

5.1. dient Hell o Extensions

This section specifies two TLS extensions that can be included with
the CientHell o nessage as described in [RFC4366]: the Supported
Elliptic Curves Extension and the Supported Point Formats Extension.

When t hese extensions are sent:

The extensi ons SHOULD be sent along with any CientHell o nessage that
proposes ECC ci pher suites.

Meani ng of these extensions:

These extensions allow a client to enunerate the elliptic curves it
supports and/or the point formats it can parse.

Structure of these extensions:

The general structure of TLS extensions is described in [RFC4366],
and this specification adds two types to ExtensionType.

enum {
el liptic_curves(10),
ec_point_formats(11)
} Ext ensi onType;

o elliptic_curves (Supported Elliptic Curves Extension): Indicates
the set of elliptic curves supported by the client. For this
ext ensi on, the opaque extension_data field contains
NanmedCur velLi st. See Section 5.1.1 for details.

o ec_point formats (Supported Point Formats Extension): |Indicates
the set of point formats that the client can parse. For this
ext ensi on, the opaque extension_data field contains
ECPoi nt Format Li st. See Section 5.1.2 for details.

Nir, et al. St andards Track [Page 10]

RFC 8422 ECC Ci pher Suites for TLS August 2018

Actions of the sender

A client that proposes ECC cipher suites in its CientHello nmessage
appends these extensions (along with any others), enumerating the
curves it supports and the point formats it can parse. dients
SHOULD send both the Supported Elliptic Curves Extension and the
Supported Point Formats Extension. |f the Supported Point Formats
Extension is indeed sent, it MJST contain the value O (unconpressed)
as one of the itens in the Iist of point formats.

Actions of the receiver:

A server that receives a CientHello containing one or both of these
ext ensions MJST use the client’s enunerated capabilities to guide its
sel ection of an appropriate cipher suite. One of the proposed ECC

ci pher suites must be negotiated only if the server can successfully
conpl ete the handshake whil e using the curves and point formats
supported by the client (cf. Sections 5.3 and 5.4).

NOTE: A server participating in an ECDHE ECDSA key exchange may use
di fferent curves for the ECDSA or EADSA key in its certificate and
for the epheneral ECDH key in the ServerKeyExchange nessage. The
server MJST consider the extensions in both cases.

If a server does not understand the Supported Elliptic Curves

Ext ensi on, does not understand the Supported Point Formats Extension
or is unable to conplete the ECC handshake while restricting itself
to the enunmerated curves and point formats, it MJST NOT negotiate the
use of an ECC ci pher suite. Depending on what other cipher suites
are proposed by the client and supported by the server, this my
result in a fatal handshake failure alert due to the |l ack of comon
ci pher suites.

5.1.1. Supported Elliptic Curves Extension

RFC 4492 defined 25 different curves in the NamedCurve registry (now
renamed the "TLS Supported Groups" registry, although the enuneration
below is still named NanedCurve) for use in TLS. Only three have
seen nuch use. This specification is deprecating the rest (with
nunbers 1-22). This specification also deprecates the explicit

Nir, et al. St andards Track [Page 11]

RFC 8422 ECC Ci pher Suites for TLS August 2018

curves with identifiers OxFFO1 and OxFF02. It al so adds the new
curves defined in [RFC7748]. The end result is as foll ows:

enum {
deprecated(1..22),
secp256rl (23), secp384rl (24), secp52lrl (25),
x25519(29), x448(30),
reserved (OxFEOO..OxFEFF),
depr ecat ed(OXxFF01. . OXFF02),
(OXFFFF)
} NamedCur ve;

Not e that other specifications have since added other values to this
enuneration. Sone of those values are not curves at all, but finite
field groups. See [RFC7919].

secp256rl, etc: Indicates support of the correspondi ng named curve or
groups. The naned curves secp256r1l, secp384rl, and secp521rl are
specified in SEC 2 [SECG SEC2]. These curves are al so recomrended in
ANSI X9. 62 [ANSI . X9-62. 2005] and FIPS 186-4 [FIPS. 186-4]. The rest
of this document refers to these three curves as the "N ST curves"
because they were originally standardi zed by the National Institute
of Standards and Technol ogy. The curves x25519 and x448 are defined
in [RFC7748]. Val ues OxFEOO t hrough OXFEFF are reserved for private
use.

The predecessor of this document al so supported explicitly defined
prime and char?2 curves, but these are deprecated by this
speci fication.

The NanedCurve nane space (now titled "TLS Supported G oups") is
mai ntai ned by | ANA. See Section 9 for information on how new val ue
assi gnments are added.

struct {
NanmedCurve naned_curve_|ist<2..2716-1>
} NanedCurveli st ;

Itens in naned_curve_list are ordered according to the client’s
preferences (favorite choice first).

As an exanple, a client that only supports secp256rl (aka N ST P-256;
val ue 23 = 0x0017) and secp384rl1 (aka NI ST P-384; value 24 = 0x0018)
and prefers to use secp256rl1 would include a TLS extensi on consisting
of the following octets. Note that the first two octets indicate the
ext ension type (Supported Elliptic Curves Extension):

00 OA 00 06 00 04 00 17 00 18

Nir, et al. St andards Track [Page 12]

RFC 8422 ECC Ci pher Suites for TLS August 2018

5.

5.

1.2. Supported Point Formats Extension

enum {
unconpressed (0),
deprecated (1..2),
reserved (248..255)
} ECPoi nt For mat ;
struct {
ECPoi nt Format ec_point_format _|ist<l..2"8-1>
} ECPoi nt For mat Li st ;

Three point formats were included in the definition of ECPoi nt For mat
above. This specification deprecates all but the unconpressed point
format. Inplenmentations of this docunent MJST support the
unconpressed format for all of their supported curves and MJST NOT
support other formats for curves defined in this specification. For
backwards conpatibility purposes, the point format |ist extension MAY
still be included and contain exactly one value: the unconpressed
point format (0). RFC 4492 specified that if this extension is
mssing, it means that only the unconpressed point format is
supported, so interoperability with inplenmentations that support the
unconpressed format should work with or w thout the extension

If the client sends the extension and the extension does not contain
the unconpressed point format, and the client has used the Supported
Groups extension to indicate support for any of the curves defined in
this specification, then the server MJST abort the handshake and
return an illegal _paranmeter alert.

The ECPoi nt Format nanme space (now titled "TLS EC Point Formats") is
mai ntai ned by | ANA. See Section 9 for infornmation on how new val ue
assi gnments are added.

A client conpliant with this specification that supports no other
curves MJST send the follow ng octets; note that the first two octets
i ndi cate the extension type (Supported Point Fornmats Extension):

00 OB 00 02 01 00
1.3. The signature_al gorithns Extension and EdDSA

The signature_al gorithns extension, defined in Section 7.4.1.4.1 of
[RFC5246], advertises the conbinations of signature al gorithm and
hash function that the client supports. The pure (non-prehashed)
forms of EJDSA do not hash the data before signing it. For this
reason, it does not make sense to conbine themwi th a hash function
in the extension.

Nir, et al. St andards Track [Page 13]

RFC 8422 ECC Ci pher Suites for TLS August 2018

For bits-on-the-wire conpatibility with TLS 1.3, we define a new
dumy val ue in the "TLS HashAl gorithm registry that we cal
“Intrinsic" (value 8), neaning that hashing is intrinsic to the
signature al gorithm

To represent ed25519 and ed448 in the signature_al gorithns extension
the value shall be (8,7) and (8,8), respectively.

5.2. Server Hell o Extension

This section specifies a TLS extension that can be included with the
Server Hel | o nessage as described in [RFC4366], the Supported Point
For mat s Ext ensi on.

VWhen this extension is sent:

The Supported Point Formats Extension is included in a ServerHello
nessage in response to a CientHell o message containing the Supported
Poi nt Formats Ext ensi on when negotiating an ECC ci pher suite.

Meani ng of this extension:

This extension allows a server to enunerate the point formats it can
parse (for the curve that will appear in its ServerKeyExchange
nessage when using the ECDHE ECDSA, ECDHE RSA, or ECDH anon key
exchange al gorithm

Structure of this extension:

The server’s Supported Point Formats Extension has the same structure
as the client’s Supported Point Formats Extension (see

Section 5.1.2). Itens in ec_point format _|ist here are ordered
according to the server’'s preference (favorite choice first). Note
that the server MAY include itens that were not found in the client’s
list. However, wthout extensions, this specification allows exactly
one point format, so there is not really any opportunity for

m smat ches.

Actions of the sender

A server that selects an ECC ci pher suite in response to a
ClientHell o nessage including a Supported Point Formats Extension
appends this extension (along with others) to its ServerHello
nessage, enunerating the point formats it can parse. The Supported
Poi nt Formats Extension, when used, MJST contain the value O
(uncompressed) as one of the items in the list of point fornmats.

Nir, et al. St andards Track [Page 14]

RFC 8422 ECC Ci pher Suites for TLS August 2018

Actions of the receiver:

A client that receives a ServerHell o nessage containing a Supported
Poi nt Formats Extension MJST respect the server’s choice of point
formats during the handshake (cf. Sections 5.6 and 5.7). If no
Supported Point Formats Extension is received with the ServerHello,
this is equivalent to an extension allowi ng only the unconpressed
poi nt format.

5.3. Server Certificate
When this nmessage is sent:

This nmessage is sent in all non-anonynous, ECC-based key exchange
al gorithms.

Meani ng of this nessage:

This nmessage is used to authentically convey the server’s static
public key to the client. The follow ng table shows the server
certificate type appropriate for each key exchange al gorithm ECC
public keys MJST be encoded in certificates as described in
Section 5.9.

NOTE: The server’'s Certificate nessage is capable of carrying a chain
of certificates. The restrictions nentioned in Table 2 apply only to
the server’'s certificate (first in the chain).

S o m e mm e m e mm o +
| Algorithm | Server Certificate Type |
. Fo e M e M eeiieieasecieiaasscscaaasasaeaans +
| ECDHE_ECDSA | Certificate MJST contain an ECDSA- or EdDSA- capabl e

| | public key.

| ECDHE RSA | Certificate MJST contain an RSA public key. |
S o m e mm e m e mm o +

Table 2: Server Certificate Types
Structure of this message:
Identical to the TLS Certificate format.
Actions of the sender
The server constructs an appropriate certificate chain and conveys it

tothe client in the Certificate message. |If the client has used a
Supported Elliptic Curves Extension, the public key in the server’s

Nir, et al. St andards Track [Page 15]

RFC 8422 ECC Ci pher Suites for TLS August 2018

certificate MUST respect the client’s choice of elliptic curves. A
server that cannot satisfy this requirement MJST NOT choose an ECC
ci pher suite in its ServerHell o message.)

Actions of the receiver:

The client validates the certificate chain, extracts the server’s
public key, and checks that the key type is appropriate for the
negoti at ed key exchange algorithm (A possible reason for a fata
handshake failure is that the client’s capabilities for handling
elliptic curves and point formats are exceeded; cf. Section 5.1.)

5.4. Server Key Exchange
When this nmessage is sent:

This message is sent when using the ECDHE ECDSA, ECDHE RSA, and
ECDH anon key exchange al gorithns.

Meani ng of this nessage:

This message is used to convey the server’s epheneral ECDH public key
(and the corresponding elliptic curve domain paraneters) to the
client.

The ECCurveType enum used to have values for explicit prine and for
explicit char2 curves. Those values are now deprecated, so only one
val ue renuains:

Structure of this nessage:

enum {
deprecated (1..2),
naned_curve (3),
reserved(248. . 255)
} ECCurveType

The val ue nanmed _curve indicates that a named curve is used. This
option is now the only renaining format.

Val ues 248 through 255 are reserved for private use.
The ECCurveType nane space (now titled "TLS EC Curve Types") is

mai ntai ned by | ANA. See Section 9 for information on how new val ue
assi gnments are added.

Nir, et al. St andards Track [Page 16]

RFC 8422 ECC Ci pher Suites for TLS August 2018

RFC 4492 had a specification for an ECCurve structure and an
ECBasi sType structure. Both of these are omtted now because they
were only used with the now deprecated explicit curves.

struct {
opaque point <1..278-1>;
} ECPoI nt;

point: This is the byte string representation of an elliptic curve
point follow ng the conversion routine in Section 4.3.6 of

[ANSI . X9- 62.2005]. This byte string may represent an elliptic curve
poi nt in unconpressed, conpressed, or hybrid format, but this
specification deprecates all but the unconpressed format. For the

NI ST curves, the format is repeated in Section 5.4.1 for conveni ence.
For the X25519 and X448 curves, the only valid representation is the
one specified in [RFC7748], a 32- or 56-octet representation of the u
val ue of the point. This structure MJST NOT be used with Ed25519 and
Ed448 public keys.

struct {
ECCur veType curve_type;
sel ect (curve_type) {
case naned_curve
NarmedCur ve namedcurve
1

} ECPar aneters;

curve_type: This identifies the type of the elliptic curve domain
par anmet ers.

nanedCurve: Specifies a recomended set of elliptic curve domain
paranmeters. All those values of NanmedCurve are allowed that refer to
a curve capable of Diffie-Hellman. Wth the deprecation of the
explicit curves, this now includes all of the NamedCurve val ues.

struct {
ECPar anet er s curve_par ans;
ECPoi nt publi c;

} Server ECDHPar ans;

curve_parans: Specifies the elliptic curve domain paraneters
associated with the ECDH public key.

public: The epheneral ECDH public key.

Nir, et al. St andards Track [Page 17]

RFC 8422 ECC Ci pher Suites for TLS August 2018

The Server KeyExchange nessage is extended as foll ows.

enum {
ec_diffie_hell man
} KeyExchangeAl gorit hm

o ec_diffie_hellman: Indicates the ServerKeyExchange nessage
contains an ECDH public key.

sel ect (KeyExchangeAl gorithn) ({
case ec_diffie_hell man:
Ser ver ECDHPar ans par ans;
Si gnature si gned_par ans;
} Server KeyExchange;

o parans: Specifies the ECDH public key and associ ated domai n
par anmet ers.

0 signed _parans: A hash of the parans, with the signature
appropriate to that hash applied. The private key correspondi ng
to the certified public key in the server’s Certificate nessage is
used for signing.

enum {

ecdsa(3),

ed25519(7)

ed448(8)
} SignatureAl gorithm
sel ect (SignatureAlgorithn ({

case ecdsa
digitally-signed struct {
opaque sha_hash[sha_si ze];

case ed25519, ed448:
digitally-signed struct {
opaque rawdat a[rawdat a_si ze] ;

} Signature;
Ser ver KeyExchange. si gned_par ans. sha_hash
SHA(C i ent Hel | 0. random + ServerHel | 0. random +
Ser ver KeyExchange. par ans) ;
Server KeyExchange. si gned_par ans. r awdat a
ClientHello.random + ServerHel |l o.random +
Ser ver KeyExchange. par arns;

NOTE: SignatureAlgorithmis "rsa" for the ECDHE RSA key exchange

al gorithm and "anonynous" for ECDH anon. These cases are defined in
TLS. SignatureAlgorithmis "ecdsa" or "eddsa" for ECDHE ECDSA.

Nir, et al. St andards Track [Page 18]

RFC 8422 ECC Ci pher Suites for TLS August 2018

ECDSA signatures are generated and verified as described in

Section 5.10. SHA, in the above tenplate for sha hash, may denote a
hash al gorithm other than SHA-1. As per ANSI X9.62, an ECDSA
signature consists of a pair of integers, r and s. The digitally-
signed element is encoded as an opaque vector <0..2"16-1>, the
contents of which are the DER encodi ng corresponding to the foll ow ng
ASN. 1 notation

Ecdsa- Si g- Val ue :: = SEQUENCE ({
r | NTEGER
s | NTEGER

}

EdDSA signatures in both the protocol and in certificates that
conformto [RFC8410] are generated and verified according to

[RFC8032]. The digitally-signed elenent is encoded as an opaque
vector <0..2716-1>, the contents of which include the octet string
out put of the EdDSA signing algorithm

Actions of the sender

The server selects elliptic curve domain paraneters and an ephenera
ECDH public key corresponding to these paraneters according to the
ECKAS- DH1 schene from | EEE 1363 [| EEE. P1363]. It conveys this
information to the client in the ServerKeyExchange nmessage using the
format defined above.

Actions of the receiver:

The client verifies the signature (when present) and retrieves the
server’'s elliptic curve domai n paraneters and epheneral ECDH public
key fromthe ServerKeyExchange nessage. (A possible reason for a
fatal handshake failure is that the client’s capabilities for
handling elliptic curves and point formats are exceeded; cf.
Section 5.1.)

5.4.1. Unconpressed Point Format for N ST Curves

The following represents the wire format for representing ECPoint in
Server KeyExchange records. The first octet of the representation

i ndicates the form which nmay be conpressed, unconpressed, or hybrid.
Thi s specification supports only the unconpressed format for these
curves. This is followed by the binary representation of the X val ue
in "big-endian" or "network" format, followed by the binary
representation of the Y value in "big-endian" or "network" fornat.
There are no internal |ength markers, so each nunber representation
occupi es as many octets as inplied by the curve parameters. For

Nir, et al. St andards Track [Page 19]

RFC 8422 ECC Ci pher Suites for TLS August 2018

P-256 this nmeans that each of X and Y use 32 octets, padded on the
left by zeros if necessary. For P-384, they take 48 octets each, and
for P-521, they take 66 octets each

Here’'s a nore formal representation:

enum {
unconpr essed(4),
(255)
} Poi nt Conver si onFor m

struct {
Poi nt Conver si onForm form
opaque X[coordi nate_| engt h] ;
opaque Y[coordi nate_| engt h] ;
} Unconpr essedPoi nt Repr esent ati on;

5.5. Certificate Request
When this nmessage is sent:
This message is sent when requesting client authentication
Meani ng of this nessage:

The server uses this nmessage to suggest acceptable client
aut henti cati on nethods.

Structure of this nessage:
The TLS Certificat eRequest nessage is extended as foll ows.

enum {
ecdsa_sign(64),
deprecatedl(65), /* was rsa_fixed_ecdh */
deprecat ed2(66), /* was ecdsa fixed_ecdh */
(255)

} dientCertificateType;

o ecdsa_sign: Indicates that the server would like to use the
corresponding client authentication nethod specified in Section 3.

Note that RFC 4492 al so defined RSA and ECDSA certificates that

i ncluded a fixed ECDH public key. These nechanisns saw very little
i mpl ementation, so this specification is deprecating them

Nir, et al. St andards Track [Page 20]

RFC 8422 ECC Ci pher Suites for TLS August 2018

Actions of the sender

The server decides which client authentication nethods it would |ike
to use and conveys this information to the client using the fornat
defi ned above.

Actions of the receiver:

The client determ nes whether it has a suitable certificate for use
with any of the requested nethods and whether to proceed with client
aut henti cati on.

5.6. dient Certificate
When this nmessage is sent:

This message is sent in response to a CertificateRequest when a
client has a suitable certificate and has decided to proceed with
client authentication. (Note that if the server has used a Supported
Poi nt Formats Extension, a certificate can only be considered
suitable for use with the ECDSA sign authentication nmethod if the
public key point specified in it is unconpressed, as that is the only
point format still supported.

Meani ng of this nessage:

This message is used to authentically convey the client’s static
public key to the server. ECC public keys rmust be encoded in
certificates as described in Section 5.9. The certificate MJST
contain an ECDSA- or EdDSA- capabl e public key.

NOTE: The client’s Certificate nessage is capable of carrying a chain
of certificates. The restrictions nentioned above apply only to the
client’s certificate (first in the chain).

Structure of this nessage:

Identical to the TLS client Certificate format.

Actions of the sender:

The client constructs an appropriate certificate chain and conveys it
to the server in the Certificate nessage.

Nir, et al. St andards Track [Page 21]

RFC 8422 ECC Ci pher Suites for TLS August 2018

Actions of the receiver:
The TLS server validates the certificate chain, extracts the client’s
public key, and checks that the key type is appropriate for the
client authentication method.

5.7. dient Key Exchange

When this nmessage is sent:

This nmessage is sent in all key exchange algorithnms. It contains the
client’s epheneral ECDH public key.

Meani ng of the message:

This message is used to convey epheneral data relating to the key
exchange belonging to the client (such as its epheneral ECDH public

key).
Structure of this message:

The TLS d i ent KeyExchange nmessage is extended as foll ows.

enum {
implicit,
explicit

} Publ i cVal ueEncodi ng;

o inplicit, explicit: For ECC cipher suites, this indicates whether
the client’s ECDH public key is in the client’s certificate
("inmplicit") or is provided, as an ephenmeral ECDH public key, in
the dient KeyExchange nmessage ("explicit"). The inplicit encoding
is deprecated and is retained here for backward conpatibility
only.

struct {
ECPoi nt ecdh_Yc;
} CdientECD ffieHell nanPubli c;

ecdh_Yc: Contains the client’s ephemeral ECDH public key as a byte
string ECPoint.point, which may represent an elliptic curve point in
unconpr essed format.

struct {
sel ect (KeyExchangeAl gorithn) {
case ec_diffie hellman: dientECD ffieHell manPublic
} exchange_keys;
} dient KeyExchange;

Nir, et al. St andards Track [Page 22]

RFC 8422 ECC Ci pher Suites for TLS August 2018

Actions of the sender

The client selects an ephenmeral ECDH public key corresponding to the
paranmeters it received fromthe server. The format is the same as in
Section 5. 4.

Actions of the receiver:

The server retrieves the client’s epheneral ECDH public key fromthe
d i ent KeyExchange nmessage and checks that it is on the sane elliptic
curve as the server’s ECDH key.

5.8. Certificate Verify
When this nmessage is sent:

This message is sent when the client sends a client certificate
containing a public key usable for digital signatures.

Meani ng of the message:

Thi s message contains a signature that proves possession of the
private key corresponding to the public key in the client’s
Certificate nessage.

Structure of this message:

The TLS CertificateVerify message and the underlying signhature type
are defined in the TLS base specifications, and the latter is
extended here in Section 5.4. For the "ecdsa" and "eddsa" cases, the
signature field in the CertificateVerify message contains an ECDSA or
EdDSA (respectively) signature conputed over handshake nessages
exchanged so far, exactly sinmilar to CertificateVerify with other
signing al gorithms:

CertificateVerify.signature.sha_hash
SHA(handshake_nessages) ;

CertificateVerify.signature.rawdata
handshake_nessages;

ECDSA signatures are conputed as described in Section 5.10, and SHA
in the above tenplate for sha_hash accordingly may denote a hash
algorithmother than SHA-1. As per ANSI X9.62, an ECDSA signature
consists of a pair of integers, r and s. The digitally-signed

el ement is encoded as an opaque vector <0..2"16-1>, the contents of
whi ch are the DER encodi ng [X. 690] corresponding to the foll ow ng
ASN. 1 notation [X 680].

Nir, et al. St andards Track [Page 23]

RFC 8422 ECC Ci pher Suites for TLS August 2018

Ecdsa- Si g- Val ue ::= SEQUENCE ({
r | NTEGER
s | NTEGER

}

EdDSA si gnatures are generated and verified according to [RFC8032].
The digitally-signed elenent is encoded as an opaque vector
<0..2716-1>, the contents of which include the octet string output of
t he EdDSA signing al gorithm

Actions of the sender:

The client conmputes its signature over all handshake nessages sent or
received starting at client hello and up to but not including this
nmessage. It uses the private key corresponding to its certified
public key to conmpute the signature, which is conveyed in the fornat
def i ned above.

Actions of the receiver:

The server extracts the client’s signature fromthe CertificateVerify
message and verifies the signature using the public key it received
inthe client’s Certificate nessage.

5.9. EHliptic Curve Certificates

X. 509 certificates containing ECC public keys or signed using ECDSA
MUST conply with [RFC3279] or another RFC that replaces or extends
it. X 509 certificates containing ECC public keys or signed using
EdDSA MUST conply with [RFC8410]. dients SHOULD use the elliptic
curve dommi n paraneters reconmended in ANSI X9.62, FIPS 186-4, and
SEC 2 [SECG SEC2], or in [RFC8032].

EdDSA keys using the Ed25519 al gorithm MJUST use the ed25519 signature
al gorithm and Ed448 keys MJST use the ed448 signature al gorithm
Thi s docunent does not define use of Ed25519ph and Ed448ph keys with
TLS. Ed25519, Ed25519ph, Ed448, and Ed448ph keys MJUST NOT be used
wi t h ECDSA.

5.10. ECDH, ECDSA, and RSA Conputations

Al ECDH cal cul ations for the NI ST curves (including paraneter and
key generation as well as the shared secret calcul ation) are
performed according to [|EEE. P1363] using the ECKAS-DHL schene with
the identity map as the Key Derivation Function (KDF) so that the
premaster secret is the x-coordinate of the ECDH shared secret
elliptic curve point represented as an octet string. Note that this
octet string (Z in | EEE 1363 term nol ogy), as output by FE20SP (Field

Nir, et al. St andards Track [Page 24]

RFC 8422 ECC Ci pher Suites for TLS August 2018

El ement to Octet String Conversion Primitive), has constant |ength
for any given field; l|eading zeros found in this octet string MJST
NOT be truncat ed.

(Note that this use of the identity KDF is a technicality. The
conplete picture is that ECDH is enployed with a non-trivial KDF
because TLS does not directly use the premaster secret for anything
other than for conputing the nmaster secret. |In TLS 1.0 and 1.1, this
nmeans that the MD5- and SHA- 1-based TLS Pseudorandom Functi on (PRF)
serves as a KDF; in TLS 1.2, the KDF is determ ned by ciphersuite,
and it is conceivable that future TLS versions or new TLS extensi ons
introduced in the future may vary this conputation.)

An ECDHE key exchange using X25519 (curve x25519) goes as foll ows:

(1) each party picks a secret key d uniformy at random and conputes
the correspondi ng public key x = X25519(d, @ ; (2) parties exchange
their public keys and conpute a shared secret as x_S = X25519(d,
Xx_peer); and (3), if either party obtains all-zeroes x_S, it MJST
abort the handshake (as required by definition of X25519 and X448).
ECDHE for X448 works similarly, replacing X25519 wi th X448 and x25519
with x448. The derived shared secret is used directly as the
premaster secret, which is always exactly 32 bytes when ECDHE with
X25519 is used and 56 bytes when ECDHE with X448 is used.

Al'l ECDSA conput ati ons MJST be perforned according to ANSI X9.62 or
its successors. Data to be signed/verified is hashed, and the result
runs directly through the ECDSA al gorithmw th no additional hashing.
A secure hash function such as SHA- 256, SHA-384, or SHA-512 from

[FI PS. 180-4] MJST be used.

Al'l EJDSA conput ati ons MJST be perforned according to [RFC8032] or
its successors. Data to be signed/verified is run through the EdDSA
algorithmw th no hashing (EADSA will internally run the data through
the "prehash" function PH). The context paraneter for Ed448 MJST be
set to the enpty string

RFC 4492 antici pated the standardi zati on of a mechani smfor

speci fying the required hash function in the certificate, perhaps in
the paraneters field of the subjectPublicKeylnfo. Such

st andardi zati on never took place, and as a result, SHA-1 is used in
TLS 1.1 and earlier (except for EdDSA, which uses identity function).
TLS 1.2 added a Si gnatureAndHashAl gorithm parameter to the
DigitallySigned struct, thus allowing agility in choosing the
signature hash. EdDSA signatures MJST have HashAl gorithm of 8
(I'ntrinsic).

Al RSA signatures nust be generated and verified according to
Section 7.2 of [RFC8017].

Nir, et al. St andards Track [Page 25]

RFC 8422 ECC Ci pher Suites for TLS August 2018

5.11. Public Key Validation

Wth the NI ST curves, each party MJST validate the public key sent by
its peer in the CientKeyExchange and Server KeyExchange messages. A
recei ving party MJST check that the x and y paranmeters fromthe
peer’s public value satisfy the curve equation, y*"2 = x*"3 + ax + b
nod p. See Section 2.3 of [Menezes] for details. Failing to do so
allows attackers to gain information about the private key to the
poi nt that they nmay recover the entire private key in a few requests
if that key is not really epheneral

Wth X25519 and X448, a receiving party MJST check whether the
conputed prenaster secret is the all-zero value and abort the
handshake if so, as described in Section 6 of [RFC7748].

Ed25519 and Ed448 internally do public key validation as part of
signature verification.

6. Cipher Suites

The tabl e bel ow defines ECC ci pher suites that use the key exchange
al gorithms specified in Section 2.

| TLS_ECDHE_ECDSA W TH_NULL_SHA | { b
| TLS_ECDHE_ECDSA W TH_3DES_EDE CBC SHA | { b
| TLS_ECDHE_ECDSA W TH_AES 128 CBC SHA | { b
| TLS_ECDHE_ECDSA W TH_AES 256_CBC_SHA | { b
| TLS_ECDHE_ECDSA W TH_AES 128 GCM SHA256 | { b
TLS_ECDHE_ECDSA W TH_AES 256_GCM SHA384	{ OxCD, 0x2C }
TLS_ECDHE_RSA W TH_NULL_SHA	{ 0xC0, 0x10 }
TLS_ECDHE_RSA W TH_3DES_EDE_CBC_SHA	{ 0xC0, 0x12 }
TLS_ECDHE_RSA W TH_AES_128 CBC SHA	{ 0xC0, 0x13 }
TLS_ECDHE_RSA W TH_AES_256_CBC_SHA	{ 0xC0, Ox14 }
TLS_ECDHE_RSA W TH_AES_128_GCM SHA256	{ OxCD, Ox2F }
TLS_ECDHE_RSA W TH_AES_256_GCM SHA384	{ OxCD, 0x30 }
	{ o
	{ b
	{ o
	{ P

TLS_ECDH_anon_W TH_NULL_SHA
TLS_ECDH_anon_W TH_3DES_EDE_CBC_SHA

TLS_ECDH anon_W TH_AES 128 CBC_SHA
TLS _ECDH anon_W TH_AES 256_CBC_SHA

Table 3: TLS ECC Ci pher Suites

Nir, et al. St andards Track [Page 26]

RFC 8422 ECC Ci pher Suites for TLS August 2018

The key exchange nethod, cipher, and hash al gorithmfor each of these
ci pher suites are easily determ ned by examining the nanme. C phers
(ot her than AES ciphers) and hash algorithnms are defined in [RFC2246]
and [RFC4346]. AES ciphers are defined in [RFC5246], and AES- GCM

ci phersuites are in [RFC5289].

Server inplenentati ons SHOULD support all of the foll ow ng cipher
suites, and client inplenentations SHOULD support at |east one of
t hem

o TLS ECDHE RSA W TH_AES 128 GCM SHA256
o TLS ECDHE RSA W TH_AES 128 CBC_SHA
o TLS_ECDHE _ECDSA W TH_AES 128 GCM SHA256
o TLS ECDHE ECDSA W TH AES 128 CBC_SHA

7. Inplenentation Status

Bot h ECDHE and ECDSA with the NI ST curves are widely inplenmented and
supported in all major browsers and all wi dely used TLS libraries.
ECDHE with Curve25519 is by now i nplemented in several browsers and
several TLS libraries including OpenSSL. Curved448 and EdDSA have
wor ki ng interoperable inplenmentations, but they are not yet as w dely
depl oyed.

8. Security Considerations
Security issues are discussed throughout this neno.

For TLS handshakes usi ng ECC ci pher suites, the security
consi derations in Appendi x D of each of the three TLS base docunents
apply accordingly.

Security discussions specific to ECC can be found in [|EEE. P1363] and
[ANSI . X9-62.2005]. One inmportant issue that inplenmenters and users
must consider is elliptic curve selection. Guidance on selecting an
appropriate elliptic curve size is given in Table 1. Security

consi derations specific to X25519 and X448 are di scussed in Section 7
of [RFC7748].

Beyond el liptic curve size, the main issue is elliptic curve
structure. As a general principle, it is nore conservative to use
elliptic curves with as little algebraic structure as possible.

Thus, random curves are nore conservative than special curves such as
Koblitz curves, and curves over F_ p with p random are nore
conservative than curves over F p with p of a special form and

Nir, et al. St andards Track [Page 27]

RFC 8422 ECC Ci pher Suites for TLS August 2018

curves over F p with p random are consi dered nore conservative than
curves over F 2"mas there is no choice between multiple fields of
simlar size for characteristic 2.

Anot her issue is the potential for catastrophic failures when a
single elliptic curve is widely used. In this case, an attack on the
elliptic curve might result in the conprom se of a |arge nunber of
keys. Again, this concern may need to be bal anced agai nst efficiency
and interoperability inprovements associated with wi dely used curves.
Substantial additional information on elliptic curve choice can be
found in [|EEE P1363], [ANSI.X9-62.2005], and [FIPS. 186-4].

The Introduction of [RFC8032] lists the security, perfornance, and
operational advantages of EdDSA signhatures over ECDSA signatures
using the NI ST curves.

Al'l of the key exchange al gorithns defined in this docunent provide
forward secrecy. Sone of the deprecated key exchange al gorithnms do
not .

9. | ANA Consi derations

[RFC4492], the predecessor of this docunent, defined the | ANA
registries for the follow ng:

0 Supported Groups (Section 5.1)

o EC Point Format (Section 5.1)

o EC Curve Type (Section 5.4)

| ANA has prepended "TLS" to the names of these three registries.

For each name space, this docunment defines the initial value
assignments and defines a range of 256 val ues (NanedCurve) or eight
val ues (ECPoi nt Format and ECCurveType) reserved for Private Use. The
policy for any additional assignments is "Specification Required"
(RFC 4492 required | ETF review.)

Al existing entries in the "ExtensionType Val ues", "TLS
ClientCertificateType Identifiers”, "TLS C pher Suites", "TLS
Supported G oups", "TLS EC Point Format", and "TLS EC Curve Type"
registries that referred to RFC 4492 have been updated to refer to
thi s docunent.

| ANA has assigned the value 29 to x25519 and the value 30 to x448 in
the "TLS Supported G oups" registry.

Nir, et al. St andards Track [Page 28]

RFC 8422 ECC Ci pher Suites for TLS August 2018

10.

10.

| ANA has assigned two values in the "TLS SignatureAl gorithm' registry
for ed25519 (7) and ed448 (8) with this docunent as reference. This
keeps conpatibility with TLS 1. 3.

| ANA has assigned one value fromthe "TLS HashAl gorithm' registry for
Intrinsic (8) with DILS-OK set to true (Y) and this docunment as
reference. This keeps conpatibility with TLS 1. 3.

Ref er ences
1. Nornmtive References

[ANSI . X9-62. 2005]
Ameri can National Standards Institute, "Public Key
Cryptography for the Financial Services Industry: The
Elliptic Curve Digital Signature Al gorithm (ECDSA)",
ANSI X9. 62, Novenber 2005.

[FI PS. 186- 4]
National Institute of Standards and Technol ogy, "Digital
Signature Standard (DSS)", FIPS PUB 186-4,
DO 10. 6028/ NI ST. FI PS. 186-4, July 2013,
<htt p: // nvl pubs. ni st. gov/ ni st pubs/ FI PS/
NI ST. FI PS. 186- 4. pdf >.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renment Level s", BCP 14, RFC 2119,
DA 10.17487/ RFC2119, March 1997,
<https://wwv.rfc-editor.org/info/rfc2119>.

[RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, DO 10.17487/ RFC2246, January 1999,
<https://ww.rfc-editor.org/info/rfc2246>.

[RFC3279] Bassham L., Polk, W, and R Housley, "Algorithns and
Identifiers for the Internet X 509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", RFC 3279, DO 10.17487/ RFC3279, April
2002, <https://wwv.rfc-editor.org/info/rfc3279>.

[RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.1", RFC 4346,
DO 10.17487/ RFC4346, April 2006,
<https://ww.rfc-editor.org/info/rfc4346>.

Nir, et al. St andards Track [Page 29]

RFC 8422

[RFC4366]

[RFC5246]

[RFC5289]

[RFC7748]

[RFC8017]

[RFC3032]

[RFC8174]

[RFC8410]

[SECG SEC?]

[X. 680]

Nir, et al.

ECC Ci pher Suites for TLS August 2018

Bl ake-WIson, S., Nystrom M, Hopwood, D., M kkelsen, J.,
and T. Wight, "Transport Layer Security (TLS)

Ext ensi ons", RFC 4366, DO 10.17487/ RFCA366, April 2006,
<https://ww.rfc-editor.org/info/rfc4366>.

Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246,

DA 10.17487/ RFC5246, August 2008,

<https://ww. rfc-editor.org/info/rfc5246>.

Rescorla, E., "TLS Elliptic Curve Ci pher Suites with SHA-
256/ 384 and AES Gal ois Counter Mdde (GCCM ", RFC 5289,

DO 10. 17487/ RFC5289, August 2008,
<https://ww.rfc-editor.org/info/rfc5289>.

Langl ey, A., Hanburg, M, and S. Turner, "Elliptic Curves
for Security", RFC 7748, DA 10.17487/ RFC7748, January
2016, <https://ww.rfc-editor.org/info/rfc7748>.

Moriarty, K, Ed., Kaliski, B., Jonsson, J., and A Rusch,
"PKCS #1: RSA Cryptography Specifications Version 2.2",
RFC 8017, DA 10.17487/ RFC8017, Novenber 2016,
<https://wwv. rfc-editor.org/info/rfc8017>.

Josefsson, S. and |. Liusvaara, "Edwards-Curve Digital
Signature Al gorithm (EdDSA)", RFC 8032,

DO 10.17487/ RFC8032, January 2017,
<https://wwv.rfc-editor.org/info/rfc8032>.

Leiba, B., "Anbiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DO 10.17487/ RFC8174,
May 2017, <https://ww.rfc-editor.org/info/rfc8174>.

Josefsson, S. and J. Schaad, "Algorithmldentifiers for
Ed25519, Ed448, X25519 and X448 for Use in the Internet
X. 509 Public Key Infrastructure", RFC 8410,

DO 10. 17487/ RFC8410, August 2018,

<https://ww. rfc-editor.org/info/rfc8410>.

Certicom Research, "SEC 2: Recommended Elliptic Curve
Domai n Paraneters", Standards for Efficient Cryptography 2
(SEC 2), Version 2.0, January 2010,

<http://wwmv. secqg. or g/ sec2-v2. pdf >.

| TUT, "Abstract Syntax Notation One (ASN. 1):

Speci fication of basic notation", |ITU T Recomrendati on
X. 680, |1SOIEC 8824-1, August 2015.

St andards Track [Page 30]

RFC 8422 ECC Ci pher Suites for TLS August 2018

[X. 690] I TUT, "Information technol ogy-ASN. 1 encodi ng rul es:
Speci fication of Basic Encoding Rul es (BER), Canoni cal
Encodi ng Rul es (CER) and Distingui shed Encodi ng Rul es
(DER)", I TU- T Recomrendation X. 690, |1SQOIEC 8825-1, August

2015.
10.2. Informmtive References
[FI PS. 180- 4]

Nati onal Institute of Standards and Technol ogy, "Secure
Hash Standard (SHS)", FIPS PUB 180-4, DA

10. 6028/ NI ST. FI PS. 180- 4, August 2015,

<ht t p: // nvl pubs. ni st. gov/ ni st pubs/ FI PS/

NI ST. FI PS. 180- 4. pdf >.

[| EEE. P1363]
| EEE, "Standard Specifications for Public Key
Crypt ography", |EEE Std P1363,
<http://ieeexplore.ieee.org/ docunent/ 891000/ >.

[Menezes] Menezes, A and B. Ustaoglu, "On reusing epheneral keys in
Diffie-Hell man key agreement protocols", International
Journal of Applied Cryptography, Vol. 2, Issue 2,
DO 10.1504/1JACT. 2010. 038308, January 2010.

[RFC4492] Bl ake-Wlson, S., Bolyard, N, Gupta, V., Hawk, C., and B.
Moeller, "Elliptic Curve Cryptography (ECC) Ci pher Suites
for Transport Layer Security (TLS)", RFC 4492,
DA 10.17487/ RFC4492, May 2006,
<https://ww.rfc-editor.org/info/rfc4492>.

[RFC7919] G llnmor, D., "Negotiated Finite Field Diffie-Hellnman
Ephereral Parameters for Transport Layer Security (TLS)",
RFC 7919, DA 10.17487/ RFC7919, August 2016,
<https://wwv.rfc-editor.org/info/rfc7919>.

[TLS1. 3] Rescorla, E., "The Transport Layer Security (TLS) Protocol

Version 1.3", Wbrk in Progress, draft-ietf-tls-tlsl3-28,
March 2018.

Nir, et al. St andards Track [Page 31]

RFC 8422 ECC Ci pher Suites for TLS August 2018

Appendi x A, Equival ent Curves (Infornative)

Al'l of the NI ST curves [FIPS. 186-4] and several of the ANSI curves

[ANSI . X9- 62. 2005] are equivalent to curves listed in Section 5.1.1.
The foll owi ng table displays the curve names chosen by different

st andards organi zations; nultiple nanmes in one row represent aliases
for the same curve

e . . +
| SECG | ANSI X9.62 | N ST
TSR S S +
| sect163kl | | NI ST K-163

| sect163rl | | |
| sect163r2 | | NI ST B-163

| sect193r1 | | |
| sect193r2 | | |
| sect233kl | | NI ST K-233

| sect233r1l | | NI ST B-233

| sect 239kl | | |
| sect 283kl | | NI ST K-283

| sect283rl | | NI ST B-283

| sect409kl | | NI ST K-409

| sect409r1l | | NI ST B-409

| sect571k1 | | NI ST K-571

| sect571r1l | | NI ST B-571

| secpl60kl | | |
| secpl6Orl | |

| secpl60r2 | |

| secpl92kl | | |
| secpl92rl | prinel92vl | NI ST P-192

| secp224kl | | |
| secp224rl | | NI ST P-224

| secp256kl | | |
| secp256r1 | prime256vl | NI ST P-256

| secp384r1 | | NI ST P-384

| secp521rl | | NI ST P-521

S S TRy S TRy +

Tabl e 4: Equival ent Curves Defined by SECG ANSI, and N ST

Nir, et al. St andards Track [Page 32]

RFC 8422 ECC Ci pher Suites for TLS August 2018

Appendi x B. Differences from RFC 4492
o Renaned EllipticCurvelList to NamedCurveli st.
o Added TLS 1.2.
o Merged errata.
o Rempbved the ECDH key exchange al gorithns: ECDH RSA and ECDH ECDSA
o Deprecated a bunch of ciphersuites:
TLS_ECDH ECDSA W TH_NULL_SHA
TLS_ECDH ECDSA W TH RC4_128_SHA
TLS ECDH ECDSA W TH_3DES_EDE_CBC_SHA
TLS_ECDH ECDSA W TH_AES 128 CBC_SHA
TLS_ECDH_ECDSA W TH_AES 256_CBC_SHA
TLS ECDH RSA W TH NULL_SHA
TLS_ECDH RSA W TH RC4_128 SHA
TLS_ECDH _RSA W TH _3DES_EDE_CBC_SHA
TLS ECDH RSA W TH AES 128 CBC_SHA
TLS_ECDH RSA W TH_AES 256 _CBC_SHA
Al the other RC4 ciphersuites
o Rempbved unused curves and all but the unconpressed point format.
0 Added X25519 and X448.
o Deprecated explicit curves.

0 Rempved restriction on signature algorithmin certificate.

Nir, et al. St andards Track [Page 33]

RFC 8422 ECC Ci pher Suites for TLS August 2018

Acknowl edgenent s

Most of the text in this document is taken from [RFC4492], the
predecessor of this docunment. The authors of that docunent were:

Si non Bl ake- W1 son
Nel son Bol yard

Vi pul Gupta

Chri s Hawk

Bodo Mbel | er

OO0OO0OO0OOo

In the predecessor docunent, the authors acknow edged the
contributions of Bill Anderson and Tim Di erKks.

The authors would i ke to thank N kos Mavrogi annopoul os, Martin
Thonmson, and Tanja Lange for contributions to this documnent.

Aut hors’ Addresses
Yoav N r
Check Point Software Technol ogi es Ltd.
5 Hasol elim st.
Tel Aviv 6789735
| srael
Email: ynir.ietf@mail.com
Si non Josef sson
SJD AB
Emai | : sinmon@ osef sson. org
Manuel Pegourie- Gonnard

ARM

Emai | : npg@l zevir.fr

Nir, et al. St andards Track [Page 34]

