
ï»¿

Internet Engineering Task Force (IETF) R. Presta
Request for Comments: 8847 S P. Romano
Category: Experimental University of Napoli
ISSN: 2070-1721 January 2021

 Protocol for Controlling Multiple Streams for Telepresence (CLUE)

Abstract

 The Controlling Multiple Streams for Telepresence (CLUE) protocol is
 an application protocol conceived for the description and negotiation
 of a telepresence session. The design of the CLUE protocol takes
 into account the requirements and the framework defined within the
 IETF CLUE Working Group. A companion document, RFC 8848, delves into
 CLUE signaling details as well as the SIP / Session Description
 Protocol (SDP) session establishment phase. CLUE messages flow over
 the CLUE data channel, based on reliable and ordered SCTP-over-DTLS
 transport. ("SCTP" stands for "Stream Control Transmission
 Protocol".) Message details, together with the behavior of CLUE
 Participants acting as Media Providers and/or Media Consumers, are
 herein discussed.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This document is a product of the Internet Engineering
 Task Force (IETF). It represents the consensus of the IETF
 community. It has received public review and has been approved for
 publication by the Internet Engineering Steering Group (IESG). Not
 all documents approved by the IESG are candidates for any level of
 Internet Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8847.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 2. Terminology
 3. Conventions
 4. Overview of the CLUE Protocol
 5. Protocol Messages
 5.1. ’options’
 5.2. ’optionsResponse’
 5.3. ’advertisement’
 5.4. ’ack’

 5.5. ’configure’
 5.6. ’configureResponse’
 5.7. Response Codes and Reason Strings
 6. Protocol State Machines
 6.1. Media Provider’s State Machine
 6.2. Media Consumer’s State Machine
 7. Versioning
 8. Extensions
 8.1. Extension Example
 9. XML Schema
 10. Call Flow Example
 10.1. CLUE Message No. 1: ’options’
 10.2. CLUE Message No. 2: ’optionsResponse’
 10.3. CLUE Message No. 3: ’advertisement’
 10.4. CLUE Message No. 4: ’configure+ack’
 10.5. CLUE Message No. 5: ’configureResponse’
 10.6. CLUE Message No. 6: ’advertisement’
 10.7. CLUE Message No. 7: ’ack’
 10.8. CLUE Message No. 8: ’configure’
 10.9. CLUE Message No. 9: ’configureResponse’
 11. Security Considerations
 12. IANA Considerations
 12.1. URN Sub-Namespace Registration
 12.2. XML Schema Registration
 12.3. Media Type Registration for "application/clue+xml"
 12.4. CLUE Protocol Registry
 12.4.1. CLUE Message Types
 12.4.2. CLUE Response Codes
 13. References
 13.1. Normative References
 13.2. Informative References
 Acknowledgements
 Authors’ Addresses

1. Introduction

 The Controlling Multiple Streams for Telepresence (CLUE) protocol is
 an application protocol used by two CLUE Participants to enhance the
 experience of a multimedia telepresence session. The main goals of
 the CLUE protocol are as follows:

 1. enabling a Media Provider (MP) to properly announce its current
 telepresence capabilities to a Media Consumer (MC) in terms of
 available media captures, groups of encodings, simultaneity
 constraints, and other information defined in [RFC8845].

 2. enabling an MC to request the desired multimedia streams from the
 offering MP.

 CLUE-capable endpoints are connected by means of the CLUE data
 channel -- an SCTP-over-DTLS channel that is opened and established
 as described in [RFC8848] and [RFC8850]. ("SCTP" stands for "Stream
 Control Transmission Protocol".) CLUE protocol messages flowing over
 such a channel are detailed in this document, both syntactically and
 semantically.

 In Section 4, we provide a general overview of the CLUE protocol.
 CLUE protocol messages are detailed in Section 5. The CLUE protocol
 state machines are introduced in Section 6. Versioning and
 extensions are discussed in Sections 7 and 8, respectively. The XML
 schema [W3C.REC-xml-20081126] defining the CLUE messages is provided
 in Section 9.

2. Terminology

 This document refers to terminology that is also used in [RFC8845]
 and [RFC7262]. For convenience, we list those terms below. The
 definition of "CLUE Participant", as also listed below, originates
 from this document.

 Capture Encoding: A specific encoding of a Media Capture, to be sent

 via RTP [RFC3550].

 CLUE Participant (CP): An entity able to use the CLUE protocol
 within a telepresence session. It can be an endpoint or an MCU
 (Multipoint Control Unit) able to use the CLUE protocol.

 CLUE-capable device: A device that (1) supports the CLUE data
 channel [RFC8850], the CLUE protocol, and the principles of CLUE
 negotiation and (2) seeks CLUE-enabled calls.

 Endpoint: A CLUE-capable device that is the logical point of final
 termination through receiving, decoding, and rendering, and/or
 initiation through the capturing, encoding, and sending of media
 streams. An endpoint consists of one or more physical devices
 that source and sink media streams, and exactly one participant
 (as described in [RFC4353]) that, in turn, includes exactly one
 user agent [RFC3261]. Endpoints can be anything from multiscreen/
 multicamera rooms to handheld devices.

 Multipoint Control Unit (MCU): A CLUE-capable device that connects
 two or more endpoints together into one single multimedia
 conference [RFC7667]. An MCU includes a mixer (as defined in
 [RFC4353]), without the requirement per [RFC4353] to send media to
 each participant.

 Media: Any data that, after suitable encoding, can be conveyed over
 RTP, including audio, video, or timed text.

 Media Capture: A source of media -- for example, from one or more
 Capture Devices or constructed from other Media streams.

 Media Consumer (MC): A CP (i.e., an Endpoint or an MCU) able to
 receive Capture Encodings.

 Media Provider (MP): A CP (i.e., an Endpoint or an MCU) able to send
 Capture Encodings.

 Stream: A Capture Encoding sent from an MP to an MC via RTP
 [RFC3550].

3. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

4. Overview of the CLUE Protocol

 The CLUE protocol is conceived to enable CLUE telepresence sessions.
 It is designed to address Session Description Protocol (SDP)
 limitations in terms of the description of some information about the
 multimedia streams that are involved in a real-time multimedia
 conference. Indeed, by simply using SDP, it is not possible to
 convey information about the features of the flowing multimedia
 streams that are needed to enable a "being there" rendering
 experience. Such information is contained in the CLUE framework
 document [RFC8845] and formally defined and described in the CLUE
 data model document [RFC8846]. The CLUE protocol represents the
 mechanism for the exchange of telepresence information between CPs.
 It mainly provides the messages to enable an MP to advertise its
 telepresence capabilities and to enable an MC to select the desired
 telepresence options.

 The CLUE protocol, as defined in this document and further described
 below, is a stateful client-server XML-based application protocol.
 CLUE protocol messages flow on a reliable and ordered SCTP-over-DTLS
 transport channel connecting two CPs. Messages carry information
 taken from the XML-based CLUE data model [RFC8846]. Three main
 communication phases can be identified:

 Establishment of the CLUE data channel:
 In this phase, the CLUE data channel setup takes place. If it
 completes successfully, the CPs are able to communicate and start
 the initiation phase.

 Negotiation of the CLUE protocol version and extensions
 (initiation phase):
 The CPs connected via the CLUE data channel agree on the protocol
 version and extensions to be used during the telepresence session.
 Special CLUE messages are used for such a task (’options’ and
 ’optionsResponse’). The negotiation of the version and extensions
 can be performed once during the CLUE session and only at this
 stage. At the end of that basic negotiation, each CP starts its
 activity as a CLUE MP and/or CLUE MC.

 Description and negotiation of CLUE telepresence capabilities:
 In this phase, the MP-MC dialogues take place on the data channel
 by means of the CLUE protocol messages.

 As soon as the channel is ready, the CPs must agree on the protocol
 version and extensions to be used within the telepresence session.
 CLUE protocol version numbers are characterized by a major version
 number and a minor version number, both unsigned integers, separated
 by a dot. While minor version numbers denote backward-compatible
 changes in the context of a given major version, different major
 version numbers generally indicate a lack of interoperability between
 the protocol implementations. In order to correctly establish a CLUE
 dialogue, the involved CPs must have in common a major version number
 (see Section 7 for further details). The subset of the extensions
 that are allowed within the CLUE session is also determined in the
 initiation phase. It includes only the extensions that are supported
 by both parties. A mechanism for the negotiation of the CLUE
 protocol version and extensions is part of the initiation phase.
 According to such a solution, the CP that is the CLUE Channel
 Initiator (CI) issues a proper CLUE message (’options’) to the CP
 that is the Channel Receiver (CR), specifying the supported version
 and extensions. The CR then answers by selecting the subset of the
 CI extensions that it is able to support and determines the protocol
 version to be used.

 After the negotiation phase is completed, CPs describe and agree on
 the media flows to be exchanged. In many cases, CPs will seek to
 both transmit and receive media. Hence, in a call between two CPs
 (e.g., CPs A and B), there would be two separate message exchange
 sequences, as follows:

 1. the one needed to describe and set up the media streams sent from
 A to B, i.e., the dialogue between A’s MP side and B’s MC side.

 2. the one needed to describe and set up the media streams sent from
 B to A, i.e., the dialogue between B’s MP side and A’s MC side.

 CLUE messages for the media session description and negotiation are
 designed by considering the MP side to be the server side of the
 protocol, since it produces and provides media streams, and the MC
 side as the client side of the protocol, since it requests and
 receives media streams. The messages that are exchanged to set up
 the telepresence media session are described by focusing on a single
 MP-MC dialogue.

 The MP first advertises its available media captures and encoding
 capabilities to the MC, as well as its simultaneity constraints,
 according to the information model defined in [RFC8845]. The CLUE
 message conveying the MP’s multimedia offer is the ’advertisement’
 message. Such a message leverages the XML data model definitions
 provided in [RFC8846].

 The MC selects the desired streams of the MP by using the ’configure’
 message, which makes reference to the information carried in the
 previously received ’advertisement’.

 Besides ’advertisement’ and ’configure’, other messages have been
 conceived in order to provide all needed mechanisms and operations.
 Such messages are detailed in the following sections.

5. Protocol Messages

 CLUE protocol messages are textual XML-based messages that enable the
 configuration of the telepresence session. The formal definition of
 such messages is provided in the XML schema in Section 9. This
 section includes non-normative excerpts of the schema to aid in
 describing it.

 The XML definitions of the CLUE information provided in [RFC8846] are
 included within some CLUE protocol messages (namely the
 ’advertisement’ and ’configure’ messages), in order to use the
 concepts defined in [RFC8845].

 The CLUE protocol messages are as follows:

 * options

 * optionsResponse

 * advertisement

 * ack

 * configure

 * configureResponse

 While the ’options’ and ’optionsResponse’ messages are exchanged in
 the initiation phase between the CPs, the other messages are involved
 in MP-MC dialogues. Please note that the word "dialogue" as used in
 this document is not related to SIP’s usage of the same term. It
 refers to message exchange sequences between a CLUE MP and a Clue MC.

 Each CLUE message inherits a basic structure, as depicted in the
 following excerpt (Figure 1):

 <xs:complexType name="clueMessageType" abstract="true">
 <xs:sequence>
 <xs:element name="clueId" type="xs:string" minOccurs="0"/>
 <xs:element name="sequenceNr" type="xs:positiveInteger"/>
 </xs:sequence>
 <xs:attribute name="protocol" type="xs:string" fixed="CLUE"
 use="required"/>
 <xs:attribute name="v" type="versionType" use="required"/>
 </xs:complexType>

 <!-- VERSION TYPE -->
 <xs:simpleType name="versionType">
 <xs:restriction base="xs:string">
 <xs:pattern value="[1-9][0-9]*\.[0-9]+" />
 </xs:restriction>
 </xs:simpleType>

 Figure 1: Structure of a CLUE Message

 The information contained in each CLUE message is as follows:

 clueId: An optional XML element containing the identifier (in the
 form of a generic string) of the CP within the telepresence
 system.

 sequenceNr: An XML element containing the local message sequence
 number. The sender MUST increment the sequence number by one for
 each new message sent, and the receiver MUST remember the most
 recent sequence number received and send back a 402 error if it
 receives a message with an unexpected sequence number (e.g.,

 sequence number gap, repeated sequence number, sequence number too
 small). The initial sequence number can be chosen randomly by
 each party.

 protocol: A mandatory attribute set to "CLUE", identifying the
 protocol the messages refer to.

 v: A mandatory attribute carrying the version of the protocol. The
 content of the "v" attribute is composed of the major version
 number followed by a dot and then by the minor version number of
 the CLUE protocol in use. The major number cannot be "0", and if
 it is more than one digit, it cannot start with a "0". Allowed
 values of this kind are "1.3", "2.0", "20.44", etc. This document
 describes version 1.0.

 Each CP is responsible for creating and updating up to three
 independent streams of sequence numbers in messages it sends: (i) one
 for the messages sent in the initiation phase, (ii) one for the
 messages sent as an MP (if it is acting as an MP), and (iii) one for
 the messages sent as an MC (if it is acting as an MC).

 In particular, CLUE response messages (’optionsResponse’, ’ack’,
 ’configureResponse’) derive from a base type, inheriting from the
 clueMessageType, which is defined as follows (Figure 2):

 <xs:complexType name="clueResponseType">
 <xs:complexContent>
 <xs:extension base="clueMessageType">
 <xs:sequence>
 <xs:element name="responseCode" type="responseCodeType"/>
 <xs:element name="reasonString" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 Figure 2: Structure of CLUE Response Messages

 The elements <responseCode> and <reasonString> are populated as
 detailed in Section 5.7.

5.1. ’options’

 The ’options’ message is sent by the CP that is the CI to the CP that
 is the CR as soon as the CLUE data channel is ready. Besides the
 information envisioned in the basic structure, it specifies:

 <mediaProvider>: A mandatory boolean field set to "true" if the CP
 is able to act as an MP.

 <mediaConsumer>: A mandatory boolean field set to "true" if the CP
 is able to act as an MC.

 <supportedVersions>: The list of supported versions.

 <supportedExtensions>: The list of supported extensions.

 The XML schema of such a message is shown below (Figure 3):

 <!-- CLUE OPTIONS -->
 <xs:complexType name="optionsMessageType">
 <xs:complexContent>
 <xs:extension base="clueMessageType">
 <xs:sequence>
 <xs:element name="mediaProvider" type="xs:boolean" />
 <xs:element name="mediaConsumer" type="xs:boolean" />
 <xs:element name="supportedVersions" type="versionsListType"
 minOccurs="0"/>
 <xs:element name="supportedExtensions"
 type="extensionsListType"
 minOccurs="0"/>

 <xs:any namespace="##other" processContents="lax"
 minOccurs="0"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- VERSIONS LIST TYPE -->
 <xs:complexType name="versionsListType">
 <xs:sequence>
 <xs:element name="version" type="versionType" minOccurs="1"
 maxOccurs="unbounded"/>
 <xs:any namespace="##other" processContents="lax" minOccurs="0"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:complexType>

 <!-- EXTENSIONS LIST TYPE -->
 <xs:complexType name="extensionsListType">
 <xs:sequence>
 <xs:element name="extension" type="extensionType" minOccurs="1"
 maxOccurs="unbounded"/>
 <xs:any namespace="##other" processContents="lax" minOccurs="0"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:complexType>

 <!-- EXTENSION TYPE -->
 <xs:complexType name="extensionType">
 <xs:sequence>
 <xs:element name="name" type="xs:string" />
 <xs:element name="schemaRef" type="xs:anyURI" />
 <xs:element name="version" type="versionType" />
 <xs:any namespace="##other" processContents="lax" minOccurs="0"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:complexType>

 Figure 3: Structure of a CLUE ’options’ Message

 <supportedVersions> contains the list of versions that are supported
 by the CI, each one represented in a child <version> element. The
 content of each <version> element is a string made of the major
 version number followed by a dot and then by the minor version number
 (e.g., 1.3 or 2.4). Exactly one <version> element MUST be provided
 for each major version supported, containing the maximum minor
 version number of such a version, since all minor versions are
 backward compatible. If no <supportedVersions> is carried within the
 ’options’ message, the CI supports only the version declared in the
 "v" attribute and all the versions having the same major version
 number and lower minor version number. For example, if the "v"
 attribute has a value of "3.4" and there is no <supportedVersions>
 element in the ’options’ message, it means the CI supports only major
 version 3 with all minor versions from 3.0 through 3.4. If
 <supportedVersions> is provided, at least one <version> element MUST
 be included. In this case, the "v" attribute SHOULD be set to the
 largest minor version of the smallest major version advertised in the
 <supportedVersions> list. Indeed, the intention behind the "v"
 attribute is that some implementation that receives a version number
 in the "v" field with a major number higher than it understands is
 supposed to close the connection, since it runs a risk of
 misinterpreting the contents of messages. The minor version is less
 useful in this context, since minor versions are defined to be both
 backward and forward compatible and the value can in any case be
 parsed out of the <version> list. It is more useful to know the
 highest minor version supported than some random minor version, as it
 indicates the full feature set that is supported.

 The <supportedExtensions> element specifies the list of extensions
 supported by the CI. If there is no <supportedExtensions> in the

 ’options’ message, the CI does not support anything other than what
 is envisioned in the versions it supports. For each extension, an
 <extension> element is provided. An extension is characterized by a
 name, an XML schema of reference where the extension is defined, and
 the version of the protocol that the extension refers to.

5.2. ’optionsResponse’

 The ’optionsResponse’ (Figure 4) is sent by a CR to a CI as a reply
 to the ’options’ message. The ’optionsResponse’ contains a mandatory
 response code and a reason string indicating the processing result of
 the ’options’ message. If the responseCode is between 200 and 299
 inclusive, the response MUST also include <mediaProvider>,
 <mediaConsumer>, <version>, and <commonExtensions> elements; it MAY
 include them for any other response code. <mediaProvider> and
 <mediaConsumer> elements (which are of a boolean nature) are
 associated with the supported roles (in terms of the MP and the MC,
 respectively), similarly to what the CI does in the ’options’
 message. The <version> element indicates the highest commonly
 supported version number. The content of the <version> element MUST
 be a string made of the major version number followed by a dot and
 then by the minor version number (e.g., 1.3 or 2.4). Finally, the
 commonly supported extensions are copied in the <commonExtensions>
 element.

 <!-- CLUE ’optionsResponse’ -->
 <xs:complexType name="optionsResponseMessageType">
 <xs:complexContent>
 <xs:extension base="clueResponseType">
 <xs:sequence>
 <xs:element name="mediaProvider" type="xs:boolean"
 minOccurs="0"/>
 <xs:element name="mediaConsumer" type="xs:boolean"
 minOccurs="0"/>
 <xs:element name="version" type="versionType" minOccurs="0"/>
 <xs:element name="commonExtensions" type="extensionsListType"
 minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 Figure 4: Structure of a CLUE ’optionsResponse’ Message

 Upon reception of the ’optionsResponse’, the version to be used is
 the one provided in the <version> element of the message. The
 subsequent CLUE messages MUST use such a version number in the "v"
 attribute. The allowed extensions in the CLUE dialogue are those
 indicated in the <commonExtensions> element of the ’optionsResponse’
 message.

5.3. ’advertisement’

 The ’advertisement’ message is used by each MP to advertise the
 available media captures and related information to the corresponding
 MC. The MP sends an ’advertisement’ to the MC as soon as it is ready
 after the successful completion of the initiation phase, i.e., as
 soon as the CPs have agreed on the version and extensions of the CLUE
 protocol. During a single CLUE session, an MP may send new
 ’advertisement’ messages to replace the previous advertisement if,
 for instance, its CLUE telepresence media capabilities change
 mid-call. A new ’advertisement’ completely replaces the previous
 ’advertisement’.

 The ’advertisement’ structure is defined in the schema excerpt below
 (Figure 5). The ’advertisement’ contains elements compliant with the
 CLUE data model that characterize the MP’s telepresence offer.
 Namely, such elements are the list of

 * media captures (<mediaCaptures>),

 * encoding groups (<encodingGroups>),

 * capture scenes (<captureScenes>),

 * simultaneous sets (<simultaneousSets>),

 * global views (<globalViews>), and

 * represented participants (<people>).

 Each of them is fully described in the CLUE framework document
 [RFC8845] and formally defined in the CLUE data model document
 [RFC8846].

 <!-- CLUE ADVERTISEMENT MESSAGE TYPE -->
 <xs:complexType name="advertisementMessageType">
 <xs:complexContent>
 <xs:extension base="clueMessageType">
 <xs:sequence>
 <!-- mandatory -->
 <xs:element name="mediaCaptures"
 type="dm:mediaCapturesType"/>
 <xs:element name="encodingGroups"
 type="dm:encodingGroupsType"/>
 <xs:element name="captureScenes"
 type="dm:captureScenesType"/>
 <!-- optional -->
 <xs:element name="simultaneousSets"
 type="dm:simultaneousSetsType" minOccurs="0"/>
 <xs:element name="globalViews" type="dm:globalViewsType"
 minOccurs="0"/>
 <xs:element name="people"
 type="dm:peopleType" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 Figure 5: Structure of a CLUE ’advertisement’ Message

5.4. ’ack’

 The ’ack’ message is sent by an MC to an MP to acknowledge an
 ’advertisement’ message. As can be seen from the message schema
 provided in the following excerpt (Figure 6), the ’ack’ contains a
 response code and may contain a reason string for describing the
 processing result of the ’advertisement’. The <advSequenceNr>
 element carries the sequence number of the ’advertisement’ message
 the ’ack’ refers to.

 <!-- ’ack’ MESSAGE TYPE -->
 <xs:complexType name="advAcknowledgementMessageType">
 <xs:complexContent>
 <xs:extension base="clueResponseType">
 <xs:sequence>
 <xs:element name="advSequenceNr" type="xs:positiveInteger"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 Figure 6: Structure of a CLUE ’ack’ Message

5.5. ’configure’

 The ’configure’ message is sent from an MC to an MP to list the
 advertised captures the MC wants to receive. The MC MUST send a
 ’configure’ after the reception of an ’advertisement’, as well as
 each time it wants to request other captures that have been
 previously advertised by the MP. The content of the ’configure’
 message is shown below (Figure 7).

 <!-- CLUE ’configure’ MESSAGE TYPE -->
 <xs:complexType name="configureMessageType">
 <xs:complexContent>
 <xs:extension base="clueMessageType">
 <xs:sequence>
 <!-- mandatory fields -->
 <xs:element name="advSequenceNr" type="xs:positiveInteger"/>
 <xs:element name="ack" type="successResponseCodeType"
 minOccurs="0"/>
 <xs:element name="captureEncodings"
 type="dm:captureEncodingsType" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 Figure 7: Structure of a CLUE ’configure’ Message

 The <advSequenceNr> element contains the sequence number of the
 ’advertisement’ message the ’configure’ refers to.

 The optional <ack> element, when present, contains a success response
 code, as defined in Section 5.7. It indicates that the ’configure’
 message also acknowledges with success the referred advertisement
 (’configure+ack’ message). The <ack> element MUST NOT be present if
 an ’ack’ message (associated with the advertisement carrying that
 specific sequence number) has already been sent back to the MP.

 The most important content of the ’configure’ message is the list of
 capture encodings provided in the <captureEncodings> element (see
 [RFC8846] for the definition of <captureEncodings>). Such an element
 contains a sequence of capture encodings, representing the streams to
 be instantiated.

5.6. ’configureResponse’

 The ’configureResponse’ message is sent from the MP to the MC to
 communicate the processing result of requests carried in the
 previously received ’configure’ message. As shown in Figure 8, it
 contains a response code (and, optionally, a reason string)
 indicating either the success or failure (along with failure details)
 of the ’configure’ request processing. The <confSequenceNr> element
 that follows contains the sequence number of the ’configure’ message
 the response refers to. There is no partial execution of commands.
 As an example, if an MP is able to understand all the selected
 capture encodings except one, then the whole command fails and
 nothing is instantiated.

 <!-- ’configureResponse’ MESSAGE TYPE -->
 <xs:complexType name="configureResponseMessageType">
 <xs:complexContent>
 <xs:extension base="clueResponseType">
 <xs:sequence>
 <xs:element name="confSequenceNr"
 type="xs:positiveInteger" />
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0"/>
 </xs:sequence>

 <xs:anyAttribute namespace="##other" processContents="lax" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 Figure 8: Structure of a CLUE ’configureResponse’ Message

5.7. Response Codes and Reason Strings

 Response codes are defined as a sequence of three digits. A well-
 defined meaning is associated with the first digit. Response codes
 beginning with "2" are associated with successful responses.
 Response codes that do not begin with either "2" or "1" indicate an
 error response, i.e., that an error occurred while processing a CLUE
 request. In particular, response codes beginning with "3" indicate
 problems with the XML content of the message ("Bad syntax", "Invalid
 value", etc.), while response codes beginning with "4" refer to
 problems related to CLUE protocol semantics ("Invalid sequencing",
 "Version not supported", etc.). 200, 300, and 400 codes are the most
 generic codes in their respective categories. Further response codes
 can be defined either in future versions of the protocol or by
 leveraging the extension mechanism. In both cases, the new response
 codes MUST be registered with IANA. Such new response codes MUST NOT
 override the codes defined in this document, and they MUST respect
 the semantics of the first code digit.

 This document does not define response codes starting with "1", and
 such response codes are not allowed to appear in major version 1 of
 the CLUE protocol. The range from 100 to 199 inclusive is reserved
 for future major versions of the protocol to define response codes
 for delayed or incomplete operations, if necessary. Response codes
 starting with "5" through "9" are reserved for future major versions
 of the protocol to define new classes of responses and are not
 allowed in major version 1 of the CLUE protocol. Response codes
 starting with "0" are not allowed.

 The response codes and reason strings defined for use with version 1
 of the CLUE protocol are listed in Table 1. The "Description" text
 contained in the table can be sent in the <reasonString> element of a
 response message. Implementations can (and are encouraged to)
 include descriptions of the error condition that are more specific,
 if possible.

 +==========+===============+==+
 | Response | Reason String | Description |
 | Code | | |
 +==========+===============+==+
 | 200 | Success | The request has been |
 | | | successfully processed. |
 +----------+---------------+--+
 | 300 | Low-level | A generic low-level request |
 | | request error | error has occurred. |
 +----------+---------------+--+
 | 301 | Bad syntax | The XML syntax of the message |
 | | | is not correct. |
 +----------+---------------+--+
 | 302 | Invalid value | The message contains an |
 | | | invalid parameter value. |
 +----------+---------------+--+
 | 303 | Conflicting | The message contains values |
 | | values | that cannot be used together. |
 +----------+---------------+--+
400	Semantic	The received CLUE protocol
	errors	message contains semantic
		errors.
+----------+---------------+--+		
401	Version not	The protocol version used in
	supported	the message is not supported.
+----------+---------------+--+		
402	Invalid	The received message contains
	sequencing	an unexpected sequence number

		(e.g., sequence number gap,
		repeated sequence number, or
		sequence number outdated).
+----------+---------------+--+		
403	Invalid	The clueId used in the
	identifier	message is invalid or
		unknown.
+----------+---------------+--+		
404	Advertisement	The sequence number of the
	expired	advertisement the ’configure’
		message refers to is out of
		date.
+----------+---------------+--+		
405	Subset choice	The subset choice is not
	not allowed	allowed for the specified
		Multiple Content Capture.
 +----------+---------------+--+

 Table 1: CLUE Response Codes

6. Protocol State Machines

 The CLUE protocol is an application protocol used between two CPs in
 order to properly configure a multimedia telepresence session. CLUE
 protocol messages flow over the CLUE data channel, an SCTP-over-DTLS
 channel established as depicted in [RFC8850]. We herein discuss the
 state machines associated with the CP (Figure 9), the MP role
 (Figure 10 in Section 6.1), and the MC role (Figure 11 in
 Section 6.2), respectively. Endpoints often wish to both send and
 receive media, i.e., act as both an MP and an MC. As such, there
 will often be two sets of messages flowing in opposite directions;
 the state machines of these two flows do not interact with each
 other. Only the CLUE application logic is considered. The
 interaction of CLUE protocol and SDP negotiations for the media
 streams exchanged is discussed in [RFC8848].

 +----+
 +---------------------->|IDLE|<----------------------------+
 | +-+--+ |
 | | |
 | | start |
 | | channel |
 | v |
 | channel error / +--------+ |
 | session ends | CHANNEL| |
 +----------------------+ SETUP | |
 | +--+-----+ |
 | | |
 | | channel |
 | | established |
 | channel error / v OPTIONS phase |
 | session ends +-------+ failure |
 +-----------------------+OPTIONS+--------------------------+
 | +-+-----+
 | |
 | | OPTIONS phase
 | | success
 | v
 | channel error / +---------+
 | session ends | ACTIVE |
 +----------------------+ |
 | +----+ +------------------+
 | | MP | | send/receive |
 | +----+ | CLUE messages |
 | |<-----------------+
 | +----+ |
 | | MC | |
 | +----+ |
 | |
 +---------+

 Figure 9: CLUE Participant State Machine

 The main state machines focus on the behavior of the CP acting as a
 CLUE CI/CR.

 The initial state is the IDLE state. When in the IDLE state, the
 CLUE data channel is not established and no CLUE-controlled media are
 exchanged between the two CLUE-capable devices in question (if there
 is an ongoing exchange of media streams, such media streams are not
 currently CLUE controlled).

 When the CLUE data channel is set up ("start channel"), the CP moves
 from the IDLE state to the CHANNEL SETUP state.

 If the CLUE data channel is successfully set up ("channel
 established"), the CP moves from the CHANNEL SETUP state to the
 OPTIONS state. Otherwise, if a "channel error" occurs, it moves back
 to the IDLE state. The same transition happens if the CLUE-enabled
 telepresence session ends ("session ends"), i.e., when an SDP
 negotiation for removing the CLUE data channel is performed.

 When in the OPTIONS state, the CP addresses the initiation phase
 where both parts agree on the version and extensions to be used in
 the subsequent CLUE message exchange phase. If the CP is the CI, it
 sends an ’options’ message and waits for the ’optionsResponse’
 message. If the CP is the CR, it waits for the ’options’ message
 and, as soon as it arrives, replies with the ’optionsResponse’
 message. If the negotiation is successfully completed ("OPTIONS
 phase success"), the CP moves from the OPTIONS state to the ACTIVE
 state. If the initiation phase fails ("OPTIONS phase failure"), the
 CP moves from the OPTIONS state to the IDLE state. The initiation
 phase might fail for one of the following reasons:

 1. The CI receives an ’optionsResponse’ with an error response code.

 2. The CI does not receive any ’optionsResponse’, and a timeout
 error is raised.

 3. The CR does not receive any ’options’, and a timeout error is
 raised.

 When in the ACTIVE state, the CP starts the envisioned sub-state
 machines (i.e., the MP state machine and the MC state machine)
 according to the roles it plays in the telepresence sessions. Such
 roles have been previously declared in the ’options’ and
 ’optionsResponse’ messages involved in the initiation phase (see
 Sections 5.1 and 5.2 for details). When in the ACTIVE state, the CP
 delegates the sending and processing of the CLUE messages to the
 appropriate MP/MC sub-state machines. If the CP receives a further
 ’options’/’optionsResponse’ message, it MUST ignore the message and
 stay in the ACTIVE state.

6.1. Media Provider’s State Machine

 As soon as the sub-state machine of the MP (Figure 10) is activated,
 it is in the ADV state. In the ADV state, the MP prepares the
 ’advertisement’ message reflecting its actual telepresence
 capabilities.

 +-----+
 +------------>| ADV |<-------------------+
 | +-+---+ |
 | advertisement| NACK received |
 | sent| |
 | v |
 changed| +--------+ |
 telepresence+-------------+WAIT FOR+-----------------+
 settings| +----------+ ACK |
 | |configure +-+------+
 | | +ack |
 | |received |ack received

 | | v
 | | +--------+
 +-------------+WAIT FOR|
 | | | CONF |
 | | +-+------+<-----------------------------+
 | | | |
 | | |configure received |
 | | v |
 | +--------->+---------+ error configureResponse sent|
 +-------------+CONF |-----------------------------+
 | +--------->|RESPONSE +
 | | +---------+
 | | |
 | | |successful
 | | |configureResponse
 | | |sent
 | | |
 | | |
 | |configure |
 | |received v
 | | +-----------+
 | +----------+ESTABLISHED|
 +-------------+-----------+

 Figure 10: Media Provider’s State Machine

 After the ’advertisement’ has been sent ("advertisement sent"), the
 MP moves from the ADV state to the WAIT FOR ACK state. If an ’ack’
 message with a successful response code arrives ("ack received"), the
 MP moves to the WAIT FOR CONF state. If a NACK arrives (i.e., an
 ’ack’ message with an error response code), the MP moves back to the
 ADV state for preparation of a new ’advertisement’. When in the WAIT
 FOR ACK state, if a ’configure’ message with the <ack> element set to
 "200" arrives ("configure+ack received"), the MP goes directly to the
 CONF RESPONSE state. ’configure+ack’ messages referring to out-of-
 date (i.e., having a sequence number less than the highest generated
 so far) advertisements MUST be ignored, i.e., they do not trigger any
 state transition. If the telepresence settings of the MP change
 while in the WAIT FOR ACK state ("changed telepresence settings"),
 the MP switches from the WAIT FOR ACK state to the ADV state to
 create a new ’advertisement’.

 When in the WAIT FOR CONF state, the MP listens to the channel for a
 ’configure’ request coming from the MC. When a ’configure’ arrives
 ("configure received"), the MP switches to the CONF RESPONSE state.
 If the telepresence settings change in the meantime ("changed
 telepresence settings"), the MP moves from the WAIT FOR CONF state
 back to the ADV state to create the new ’advertisement’ to be sent to
 the MC.

 The MP in the CONF RESPONSE state processes the received ’configure’
 in order to produce a ’configureResponse’ message. If the MP
 successfully processes the MC’s configuration, then it sends a 200
 ’configureResponse’ ("successful configureResponse sent") and moves
 to the ESTABLISHED state. If there are errors in the ’configure’
 processing, then the MP issues a ’configureResponse’ carrying an
 error response code and goes back to the WAIT FOR CONF state to wait
 for a new configuration request. Finally, if there are changes in
 the MP’s telepresence settings ("changed telepresence settings"), the
 MP switches to the ADV state.

 The MP in the ESTABLISHED state has successfully negotiated the media
 streams with the MC by means of the CLUE messages. If there are
 changes in the MP’s telepresence settings ("changed telepresence
 settings"), the MP moves back to the ADV state. In the ESTABLISHED
 state, the CLUE-controlled media streams of the session are those
 described in the last successfully processed ’configure’ message.

 Messages not shown for a state do not cause the state to change.

6.2. Media Consumer’s State Machine

 As soon as the sub-state machine of the MC (Figure 11) is activated,
 it is in the WAIT FOR ADV state. An MC in the WAIT FOR ADV state is
 waiting for an ’advertisement’ coming from the MP. If the
 ’advertisement’ arrives ("ADV received"), the MC moves to the ADV
 PROCESSING state. Otherwise, the MC stays in the WAIT FOR ADV state.

 +----------+
 | WAIT FOR |
 | ADV |
 +----+-----+<--------+
 | |
 advertisement| NACK sent|
 received| |
 v |
 +-----------+--------+
 | ADV +
 | PROCESSING|<-----------------------+
 +-+-----+---+ |
 | | |
 configure+ack | | ack |
 sent | | sent |
 | v |
 | +-----+ |
 | |CONF | advertisement received |
 +----------------------->| +-------------------------+
 |error | +--+--+ | |
 |configureResponse | | |
 |received | |configure |
 | | |sent |
 | | | |
 | v v advertisement |
 +------------------+---------------+ received |
 +--------->| WAIT FOR +---------------------+
 | | CONF RESPONSE+ |
 | +-------+-------+ |
 | | |
 | | |
 | |successful |
 | |configureResponse |
 | |received |
 |configure v |
 |sent +-----------+ advertisement received|
 +------------+ESTABLISHED+-----------------------+
 +-----------+

 Figure 11: Media Consumer’s State Machine

 In the ADV PROCESSING state, the ’advertisement’ is parsed by the MC.
 If the ’advertisement’ is successfully processed, two scenarios are
 possible. In the first case, the MC issues a successful ’ack’
 message to the MP ("ack sent") and moves to the CONF state. This
 typically happens when the MC needs some more time to produce the
 ’configure’ message associated with the received ’advertisement’. In
 the latter case, the MC is able to immediately prepare and send back
 to the MP a ’configure’ message. Such a message will have the <ack>
 element set to "200" ("configure+ack sent") and will allow the MC to
 move directly to the WAIT FOR CONF RESPONSE state.

 If the processing of the ’advertisement’ is unsuccessful (bad syntax,
 missing XML elements, etc.), the MC sends a NACK message (i.e., an
 ’ack’ with an error response code) to the MP and, optionally, further
 describes the problem via a proper reason phrase. In this scenario
 ("NACK sent"), the MC switches back to the WAIT FOR ADV state and
 waits for a new ’advertisement’.

 When in the CONF state, the MC prepares the ’configure’ request to be
 issued to the MP on the basis of the previously acked
 ’advertisement’. When the ’configure’ has been sent ("configure
 sent"), the MC moves to the WAIT FOR CONF RESPONSE state. If a new
 ’advertisement’ arrives in the meantime ("advertisement received"),

 the MC goes back to the ADV PROCESSING state.

 In the WAIT FOR CONF RESPONSE state, the MC waits for the MP’s
 response to the issued ’configure’ or ’configure+ack’. If a 200
 ’configureResponse’ message is received ("successful
 configureResponse received"), it means that the MP and the MC have
 successfully agreed on the media streams to be shared. Then, the MC
 can move to the ESTABLISHED state. On the other hand, if an error
 response is received ("error configureResponse received"), the MC
 moves back to the CONF state to prepare a new ’configure’ request.
 If a new ’advertisement’ is received in the WAIT FOR CONF RESPONSE
 state, the MC switches to the ADV PROCESSING state.

 When the MC is in the ESTABLISHED state, the telepresence session
 configuration has been set up at the CLUE application level according
 to the MC’s preferences. Both the MP and the MC have agreed on (and
 are aware of) the CLUE-controlled media streams to be exchanged
 within the call. While in the ESTABLISHED state, the MC might decide
 to change something in the call settings; in this case, the MC then
 issues a new ’configure’ ("configure sent") and moves to the WAIT FOR
 CONF RESPONSE state to wait for the new ’configureResponse’. On the
 other hand, if the MC is in the ESTABLISHED state and a new
 ’advertisement’ ("advertisement received") arrives from the MP, it
 means that something has changed on the MP’s side; the MC then moves
 to the ADV PROCESSING state.

 Messages not shown for a state do not cause the state to change.

7. Versioning

 CLUE protocol messages are XML messages compliant to the CLUE
 protocol XML schema [RFC8846]. The version of the protocol
 corresponds to the version of the schema. Both the client and the
 server have to test the compliance of the received messages with the
 XML schema of the CLUE protocol. If the compliance is not verified,
 the message cannot be processed further.

 The client and server cannot communicate if they do not share exactly
 the same XML schema. Such a schema is associated with the CLUE URN
 "urn:ietf:params:xml:ns:clue-protocol". If all CLUE-enabled devices
 use that schema, there will be no interoperability problems due to
 schema issues.

 This document defines version 1.0 of the CLUE protocol schema, using
 XML schema version 1.0 [W3C.REC-xml-20081126]. The version usage is
 similar in philosophy to the Extensible Messaging and Presence
 Protocol (XMPP) [RFC6120]. A version number has major and minor
 components, each a non-negative integer. Changes to the major
 version denote non-interoperable changes. Changes to the minor
 version denote schema changes that are backward compatible by
 ignoring unknown XML elements or other backward-compatible changes.

 The minor versions of the XML schema MUST be backward compatible, not
 only in terms of the schema but semantically and procedurally as
 well. This means that they should define further features and
 functionality besides those defined in the previous versions, in an
 incremental way, without impacting the basic rules defined in the
 previous version of the schema. In this way, if an MP is able to
 "speak", for example, version 1.5 of the protocol while the MC only
 understands version 1.4, the MP should have no problem in reverting
 the dialogue back to version 1.4 without exploiting 1.5 features and
 functionality. Version 1.4 is the one to be spoken and has to appear
 in the "v" attribute of the subsequent CLUE messages. In other
 words, in this example, the MP MUST use version 1.4. That said, and
 in keeping with the general IETF protocol "robustness principle"
 stating that an implementation must be conservative in its sending
 behavior and liberal in its receiving behavior [RFC1122], CPs MUST
 ignore unknown elements or attributes that are not envisioned in the
 negotiated protocol version and related extensions.

8. Extensions

 Although the standard version of the CLUE protocol XML schema is
 designed to thoroughly cope with the requirements emerging from the
 application domain, new needs might arise, and new extensions can
 then be designed. Extensions specify information and behaviors that
 are not described in a certain version of the protocol and specified
 in the related RFC document. Such information and behaviors can be
 optionally used in a CLUE dialogue and MUST be negotiated in the CLUE
 initiation phase. They can relate to:

 1. new information, to be carried in the existing messages. For
 example, more fields may be added within an existing message.

 2. new messages. This is the case if there is no proper message for
 a certain task, so a brand new CLUE message needs to be defined.

 As to the first category of extensions, it is possible to distinguish
 between protocol-specific and data model information. Indeed, CLUE
 messages are envelopes carrying both of the following:

 1. XML elements defined within the CLUE protocol XML schema itself
 (protocol-specific information).

 2. other XML elements compliant to the CLUE data model schema (data
 model information).

 When new protocol-specific information is needed somewhere in the
 protocol messages, it can be added in place of the <any> elements and
 <anyAttribute> elements envisioned by the protocol schema. The
 policy currently defined in the protocol schema for handling <any>
 and <anyAttribute> elements is as follows:

 * elementFormDefault="qualified"

 * attributeFormDefault="unqualified"

 The new information must be qualified by namespaces other than
 "urn:ietf:params:xml:ns:clue-protocol" (the protocol URN) and
 "urn:ietf:params:xml:ns:clue-info" (the data model URN). Elements or
 attributes from unknown namespaces MUST be ignored.

 The other matter concerns data model information. Data model
 information is defined by the XML schema associated with the URN
 "urn:ietf:params:xml:ns:clue-info". Note that there are also
 extensibility issues for the XML elements defined in such a schema.
 Those issues are overcome by using <any> and <anyAttribute>
 placeholders. New information within data model elements can be
 added in place of <any> and <anyAttribute> schema elements, as long
 as they are properly namespace qualified.

 On the other hand (the second category of extensions), "extra" CLUE
 protocol messages, i.e., messages not envisioned in the latest
 standard version of the schema, might be needed. In that case, the
 messages and the associated behavior should be defined in external
 documents that both communication parties must be aware of.

 As shown in Figure 12, the fields of the <extension> element (either
 new information or new messages) take the following values:

 * a name.

 * an external XML schema defining the XML information and/or the XML
 messages representing the extension.

 * the major standard version of the protocol that the extension
 refers to.

 <xs:complexType name="extensionType">
 <xs:sequence>
 <xs:element name="name" type="xs:string" />
 <xs:element name="schemaRef" type="xs:anyURI"/>

 <xs:element name="version" type="versionType"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:complexType>

 Figure 12: The <extension> Element

 The above-described <extension> element is carried within the
 ’options’ and ’optionsResponse’ messages to represent the extensions
 supported by both the CI and the CR.

 Extensions MUST be defined in a separate XML schema file and MUST be
 provided with a companion document describing their semantics and
 use.

8.1. Extension Example

 An example of an extension might be a "new" capture attribute (i.e.,
 a capture attribute that is not envisioned in the current standard
 defining the CLUE data model in [RFC8846]) needed to further describe
 a video capture.

 The CLUE data model document [RFC8846] envisions the possibility of
 adding this kind of "extra" information in the description of a video
 capture. For convenience, the XML definition of a video capture
 taken from [RFC8846] is shown in Figure 13 below.

 <!-- VIDEO CAPTURE TYPE -->
 <xs:complexType name="videoCaptureType">
 <xs:complexContent>
 <xs:extension base="tns:mediaCaptureType">
 <xs:sequence>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 Figure 13: XML Definition of a CLUE Video Capture

 According to such a definition, a video capture might have, after the
 set of generic media capture attributes, a set of new attributes
 defined elsewhere, i.e., in an XML schema defining an extension. The
 XML schema defining the extension might look like the following
 (Figure 14):

 <?xml version="1.0" encoding="UTF-8" ?>
 <xs:schema version="1.0"
 targetNamespace="https://example.extensions.com/myVideoExtensions"
 xmlns:xs="https://www.w3.org/2001/XMLSchema"
 xmlns="https://example.extensions.com/myVideoExtensions"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <!--
 This is the new element to be put in place of the <any>
 element in the video capture definition
 of the CLUE data model schema
 -->

 <xs:element name="myVideoExtension">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="newVideoAttribute1"/>
 <xs:element ref="newVideoAttribute2"/>
 </xs:sequence>

 </xs:complexType>
 </xs:element>

 <xs:element name="newVideoAttribute1" type="xs:string"/>

 <xs:element name = "newVideoAttribute2" type = "xs:boolean"/>
 </xs:schema>

 Figure 14: XML Schema Defining an Extension

 By using the extension above, a video capture can be further
 described in the advertisement using the <myVideoExtension> element
 containing two extra pieces of information (<newVideoAttribute1> and
 <newVideoAttribute2>), besides using the attributes envisioned for a
 generic media capture. As stated in this document, both participants
 must be aware of the extension schema and related semantics to use
 such an extension and must negotiate it via the ’options’ and
 ’optionsResponse’ messages.

9. XML Schema

 The XML schema defining the CLUE messages is provided below
 (Figure 15).

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema xmlns:xs="https://www.w3.org/2001/XMLSchema"
 xmlns="urn:ietf:params:xml:ns:clue-protocol"
 xmlns:dm="urn:ietf:params:xml:ns:clue-info"
 version="1.0"
 targetNamespace="urn:ietf:params:xml:ns:clue-protocol"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <!-- Import data model schema -->
 <xs:import namespace="urn:ietf:params:xml:ns:clue-info"/>
 <!-- ELEMENT DEFINITIONS -->
 <xs:element name="options" type="optionsMessageType" />
 <xs:element name="optionsResponse"
 type="optionsResponseMessageType"/>
 <xs:element name="advertisement" type="advertisementMessageType"/>
 <xs:element name="ack" type="advAcknowledgementMessageType"/>
 <xs:element name="configure" type="configureMessageType"/>
 <xs:element name="configureResponse"
 type="configureResponseMessageType"/>
 <!-- CLUE MESSAGE TYPE -->
 <xs:complexType name="clueMessageType" abstract="true">
 <xs:sequence>
 <xs:element name="clueId" type="xs:string" minOccurs="0" />
 <xs:element name="sequenceNr" type="xs:positiveInteger" />
 </xs:sequence>
 <xs:attribute name="protocol" type="xs:string" fixed="CLUE"
 use="required" />
 <xs:attribute name="v" type="versionType" use="required" />
 </xs:complexType>
 <!-- CLUE RESPONSE TYPE -->
 <xs:complexType name="clueResponseType">
 <xs:complexContent>
 <xs:extension base="clueMessageType">
 <xs:sequence>
 <xs:element name="responseCode" type="responseCodeType" />
 <xs:element name="reasonString" type="xs:string"
 minOccurs="0"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <!-- VERSION TYPE -->
 <xs:simpleType name="versionType">
 <xs:restriction base="xs:string">
 <xs:pattern value="[1-9][0-9]*\.[0-9]+" />
 </xs:restriction>
 </xs:simpleType>

 <!-- RESPONSE CODE TYPE -->
 <xs:simpleType name="responseCodeType">
 <xs:restriction base="xs:integer">
 <xs:pattern value="[1-9][0-9][0-9]" />
 </xs:restriction>
 </xs:simpleType>
 <!-- SUCCESS RESPONSE CODE TYPE -->
 <xs:simpleType name="successResponseCodeType">
 <xs:restriction base="xs:integer">
 <xs:pattern value="2[0-9][0-9]" />
 </xs:restriction>
 </xs:simpleType>
 <!-- CLUE OPTIONS -->
 <xs:complexType name="optionsMessageType">
 <xs:complexContent>
 <xs:extension base="clueMessageType">
 <xs:sequence>
 <xs:element name="mediaProvider" type="xs:boolean"/>
 <xs:element name="mediaConsumer" type="xs:boolean"/>
 <xs:element name="supportedVersions"
 type="versionsListType"
 minOccurs="0" />
 <xs:element name="supportedExtensions"
 type="extensionsListType" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <!-- VERSIONS LIST TYPE -->
 <xs:complexType name="versionsListType">
 <xs:sequence>
 <xs:element name="version" type="versionType" minOccurs="1"
 maxOccurs="unbounded"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax" />
 </xs:complexType>
 <!-- EXTENSIONS LIST TYPE -->
 <xs:complexType name="extensionsListType">
 <xs:sequence>
 <xs:element name="extension" type="extensionType"
 minOccurs="1"
 maxOccurs="unbounded"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax" />
 </xs:complexType>
 <!-- EXTENSION TYPE -->
 <xs:complexType name="extensionType">
 <xs:sequence>
 <xs:element name="name" type="xs:string" />
 <xs:element name="schemaRef" type="xs:anyURI" />
 <xs:element name="version" type="versionType" />
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:complexType>
 <!-- CLUE ’optionsResponse’ -->
 <xs:complexType name="optionsResponseMessageType">
 <xs:complexContent>
 <xs:extension base="clueResponseType">
 <xs:sequence>
 <xs:element name="mediaProvider" type="xs:boolean"
 minOccurs="0"/>
 <xs:element name="mediaConsumer" type="xs:boolean"

 minOccurs="0"/>
 <xs:element name="version" type="versionType"
 minOccurs="0"/>
 <xs:element name="commonExtensions"
 type="extensionsListType" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <!-- CLUE ADVERTISEMENT MESSAGE TYPE -->
 <xs:complexType name="advertisementMessageType">
 <xs:complexContent>
 <xs:extension base="clueMessageType">
 <xs:sequence>
 <!-- mandatory -->
 <xs:element name="mediaCaptures"
 type="dm:mediaCapturesType"/>
 <xs:element name="encodingGroups"
 type="dm:encodingGroupsType"/>
 <xs:element name="captureScenes"
 type="dm:captureScenesType"/>
 <!-- optional -->
 <xs:element name="simultaneousSets"
 type="dm:simultaneousSetsType" minOccurs="0"/>
 <xs:element name="globalViews" type="dm:globalViewsType"
 minOccurs="0"/>
 <xs:element name="people"
 type="dm:peopleType" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <!-- ’ack’ MESSAGE TYPE -->
 <xs:complexType name="advAcknowledgementMessageType">
 <xs:complexContent>
 <xs:extension base="clueResponseType">
 <xs:sequence>
 <xs:element name="advSequenceNr"
 type="xs:positiveInteger"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <!-- CLUE ’configure’ MESSAGE TYPE -->
 <xs:complexType name="configureMessageType">
 <xs:complexContent>
 <xs:extension base="clueMessageType">
 <xs:sequence>
 <!-- mandatory fields -->
 <xs:element name="advSequenceNr"
 type="xs:positiveInteger"/>
 <xs:element name="ack" type="successResponseCodeType"
 minOccurs="0"/>
 <xs:element name="captureEncodings"
 type="dm:captureEncodingsType" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- ’configureResponse’ MESSAGE TYPE -->
 <xs:complexType name="configureResponseMessageType">
 <xs:complexContent>
 <xs:extension base="clueResponseType">
 <xs:sequence>
 <xs:element name="confSequenceNr"
 type="xs:positiveInteger"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:schema>

 Figure 15: Schema Defining CLUE Messages

10. Call Flow Example

 This section describes the CLUE protocol messages exchanged in the
 following call flow. For simplicity, only one direction of media is
 shown, as the other direction is precisely symmetric.

 +-----+ +-----+
 | | | |
 | CP1 | | CP2 |
 | | | |
 +--+--+ +--+--+
 | |
 | 1. options |
 +-------------------->|
 | |
 | |
 |2. optionsResponse |
 |<--------------------+
 | |
 | |
 |3. advertisement |
 +-------------------->|
 | |
 | |
 |4. configure+ack |
 |<--------------------+
 | |
 | |
 |5. configureResponse |
 +-------------------->|
 | |
 | |
 |6. advertisement |
 +-------------------->|
 | |
 | |
 | 7. ack |
 |<--------------------+
 | |
 | |
 |8. configure |
 |<--------------------+
 | |
 | |
 |9. configureResponse |
 +-------------------->|
 | |
 | |
 . .
 . .
 . .

 Two CPs, CP1 and CP2, have successfully set up the CLUE channel

 according to [RFC8850]. CP1 is the CI, and CP2 is the CR.

 * The initiation phase starts (negotiation of the CLUE protocol
 version and extensions). CP1, as the CI, sends to CP2 an
 ’options’ message specifying the supported versions and extensions
 (Section 10.1). CP1 supports (i) version 1.4 with extensions E1,
 E2, and E3 and (ii) version 2.7 with extensions E4 and E5.
 Because of such capabilities, CP1 sends an ’options’ message with
 the "v" attribute set to "1.4" and explicitly specifies all the
 supported versions and extensions in the corresponding fields of
 the ’options’ message. In the ’options’ message, CP1 also
 specifies that it intends to act as both an MP and an MC.

 * CP2 supports versions 3.0, 2.9, and 1.9 of the CLUE protocol, each
 version without any extensions. Version 2.7 is the best common
 choice. Given the received ’options’ message, CP2 answers with an
 ’optionsResponse’ message in which it specifies only version 2.7
 as the agreed-upon version of the CLUE protocol to be used,
 leaving blank the extensions part of the message to say that no
 extensions will be used in the CLUE session (Section 10.2). In
 the ’optionsResponse’ message, CP2 also specifies that it intends
 to act as both an MP and an MC.

 After the initiation phase is completed, CP1 and CP2 start their
 activity as the MP and the MC, respectively. For the sake of
 simplicity, the rest of the call flow focuses only on the dialogue
 between MP CP1 and MC CP2.

 * CP1 advertises a telepresence configuration like the one described
 in [RFC8846], Section 27, where there are (i) three main video
 streams captured by three cameras, with the central camera capable
 of capturing a zoomed-out view of the overall telepresence room,
 (ii) a multicontent capture of the loudest segment of the room,
 and (iii) one audio capture for the audio of the whole room
 (Section 10.3).

 * CP2 receives CP1’s ’advertisement’ message and, after processing
 it, sends back to CP1 a ’configure+ack’ message in which it
 declares its interest in the multicontent capture and the audio
 capture only (Section 10.4).

 * CP1 answers CP2’s ’configure+ack’ message with a
 ’configureResponse’ message that includes a 200 (Success) response
 code to accept all of CP2’s requests (Section 10.5).

 * To reflect the changes in its telepresence offer, CP1 issues a new
 ’advertisement’ message to CP2 (Section 10.6), this time also
 adding a composed capture made of a big picture representing the
 current speaker and two picture-in-picture boxes representing the
 previous speakers (see [RFC8846], Section 28 for more details
 regarding the telepresence description).

 * CP2 acknowledges the second ’advertisement’ message with an ’ack’
 message (Section 10.7).

 * Later in the session, CP2 changes the requested media streams from
 CP1 by sending to CP1 a ’configure’ message replacing the
 previously selected video streams with the new composed media
 streams advertised by CP1 (Section 10.8). Media streams from the
 previous configuration continue to flow during the reconfiguration
 process.

 * Finally, CP1 accepts CP2’s latest request with a
 ’configureResponse’ message (Section 10.9).

 We would also like to point out that in the depicted flow three
 distinct sequence number spaces per sender are involved (two of which
 appear in the snippets, since we only show one direction of media).
 The discontinuity between the sequence number values in Sections 10.2
 and 10.3 is hence correct.

10.1. CLUE Message No. 1: ’options’

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <options xmlns="urn:ietf:params:xml:ns:clue-protocol"
 xmlns:ns2="urn:ietf:params:xml:ns:clue-info"
 xmlns:ns3="urn:ietf:params:xml:ns:vcard-4.0"
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 protocol="CLUE" v="1.4">
 <clueId>CP1</clueId>
 <sequenceNr>51</sequenceNr>
 <mediaProvider>true</mediaProvider>
 <mediaConsumer>true</mediaConsumer>
 <supportedVersions>
 <version>1.4</version>
 <version>2.7</version>
 </supportedVersions>
 <supportedExtensions>
 <extension>
 <name>E1</name>
 <schemaRef>URL_E1</schemaRef>
 <version>1.4</version>
 </extension>
 <extension>
 <name>E2</name>
 <schemaRef>URL_E2</schemaRef>
 <version>1.4</version>
 </extension>
 <extension>
 <name>E3</name>
 <schemaRef>URL_E3</schemaRef>
 <version>1.4</version>
 </extension>
 <extension>
 <name>E4</name>
 <schemaRef>URL_E4</schemaRef>
 <version>2.7</version>
 </extension>
 <extension>
 <name>E5</name>
 <schemaRef>URL_E5</schemaRef>
 <version>2.7</version>
 </extension>
 </supportedExtensions>
 </options>

10.2. CLUE Message No. 2: ’optionsResponse’

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <optionsResponse xmlns="urn:ietf:params:xml:ns:clue-protocol"
 xmlns:ns2="urn:ietf:params:xml:ns:clue-info"
 xmlns:ns3="urn:ietf:params:xml:ns:vcard-4.0"
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 protocol="CLUE" v="1.4">
 <clueId>CP2</clueId>
 <sequenceNr>62</sequenceNr>
 <responseCode>200</responseCode>
 <reasonString>Success</reasonString>
 <mediaProvider>true</mediaProvider>
 <mediaConsumer>true</mediaConsumer>
 <version>2.7</version>
 </optionsResponse>

10.3. CLUE Message No. 3: ’advertisement’

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <ns2:advertisement xmlns="urn:ietf:params:xml:ns:clue-info"
 xmlns:ns2="urn:ietf:params:xml:ns:clue-protocol"
 xmlns:ns3="urn:ietf:params:xml:ns:vcard-4.0"
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 protocol="CLUE" v="2.7">
 <ns2:clueId>CP1</ns2:clueId>

 <ns2:sequenceNr>11</ns2:sequenceNr>
 <ns2:mediaCaptures>
 <mediaCapture
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:type="audioCaptureType" captureID="AC0"
 mediaType="audio">
 <captureSceneIDREF>CS1</captureSceneIDREF>
 <spatialInformation>
 <captureOrigin>
 <capturePoint>
 <x>0.0</x>
 <y>0.0</y>
 <z>10.0</z>
 </capturePoint>
 <lineOfCapturePoint>
 <x>0.0</x>
 <y>1.0</y>
 <z>10.0</z>
 </lineOfCapturePoint>
 </captureOrigin>
 </spatialInformation>
 <individual>true</individual>
 <encGroupIDREF>EG1</encGroupIDREF>
 <description lang="en">main audio from the room
 </description>
 <priority>1</priority>
 <lang>it</lang>
 <mobility>static</mobility>
 <view>room</view>
 <capturedPeople>
 <personIDREF>alice</personIDREF>
 <personIDREF>bob</personIDREF>
 <personIDREF>ciccio</personIDREF>
 </capturedPeople>
 </mediaCapture>
 <mediaCapture
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:type="videoCaptureType" captureID="VC0"
 mediaType="video">
 <captureSceneIDREF>CS1</captureSceneIDREF>
 <spatialInformation>
 <captureOrigin>
 <capturePoint>
 <x>-2.0</x>
 <y>0.0</y>
 <z>10.0</z>
 </capturePoint>
 </captureOrigin>
 <captureArea>
 <bottomLeft>
 <x>-3.0</x>
 <y>20.0</y>
 <z>9.0</z>
 </bottomLeft>
 <bottomRight>
 <x>-1.0</x>
 <y>20.0</y>
 <z>9.0</z>
 </bottomRight>
 <topLeft>
 <x>-3.0</x>
 <y>20.0</y>
 <z>11.0</z>
 </topLeft>
 <topRight>
 <x>-1.0</x>
 <y>20.0</y>
 <z>11.0</z>
 </topRight>
 </captureArea>
 </spatialInformation>

 <individual>true</individual>
 <encGroupIDREF>EG0</encGroupIDREF>
 <description lang="en">left camera video capture
 </description>
 <priority>1</priority>
 <lang>it</lang>
 <mobility>static</mobility>
 <view>individual</view>
 <capturedPeople>
 <personIDREF>ciccio</personIDREF>
 </capturedPeople>
 </mediaCapture>
 <mediaCapture
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:type="videoCaptureType" captureID="VC1"
 mediaType="video">
 <captureSceneIDREF>CS1</captureSceneIDREF>
 <spatialInformation>
 <captureOrigin>
 <capturePoint>
 <x>0.0</x>
 <y>0.0</y>
 <z>10.0</z>
 </capturePoint>
 </captureOrigin>
 <captureArea>
 <bottomLeft>
 <x>-1.0</x>
 <y>20.0</y>
 <z>9.0</z>
 </bottomLeft>
 <bottomRight>
 <x>1.0</x>
 <y>20.0</y>
 <z>9.0</z>
 </bottomRight>
 <topLeft>
 <x>-1.0</x>
 <y>20.0</y>
 <z>11.0</z>
 </topLeft>
 <topRight>
 <x>1.0</x>
 <y>20.0</y>
 <z>11.0</z>
 </topRight>
 </captureArea>
 </spatialInformation>
 <individual>true</individual>
 <encGroupIDREF>EG0</encGroupIDREF>
 <description lang="en">central camera video capture
 </description>
 <priority>1</priority>
 <lang>it</lang>
 <mobility>static</mobility>
 <view>individual</view>
 <capturedPeople>
 <personIDREF>alice</personIDREF>
 </capturedPeople>
 </mediaCapture>
 <mediaCapture
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:type="videoCaptureType" captureID="VC2"
 mediaType="video">
 <captureSceneIDREF>CS1</captureSceneIDREF>
 <spatialInformation>
 <captureOrigin>
 <capturePoint>
 <x>2.0</x>
 <y>0.0</y>
 <z>10.0</z>

 </capturePoint>
 </captureOrigin>
 <captureArea>
 <bottomLeft>
 <x>1.0</x>
 <y>20.0</y>
 <z>9.0</z>
 </bottomLeft>
 <bottomRight>
 <x>3.0</x>
 <y>20.0</y>
 <z>9.0</z>
 </bottomRight>
 <topLeft>
 <x>1.0</x>
 <y>20.0</y>
 <z>11.0</z>
 </topLeft>
 <topRight>
 <x>3.0</x>
 <y>20.0</y>
 <z>11.0</z>
 </topRight>
 </captureArea>
 </spatialInformation>
 <individual>true</individual>
 <encGroupIDREF>EG0</encGroupIDREF>
 <description lang="en">right camera video capture
 </description>
 <priority>1</priority>
 <lang>it</lang>
 <mobility>static</mobility>
 <view>individual</view>
 <capturedPeople>
 <personIDREF>bob</personIDREF>
 </capturedPeople>
 </mediaCapture>
 <mediaCapture
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:type="videoCaptureType" captureID="VC3"
 mediaType="video">
 <captureSceneIDREF>CS1</captureSceneIDREF>
 <spatialInformation>
 <captureArea>
 <bottomLeft>
 <x>-3.0</x>
 <y>20.0</y>
 <z>9.0</z>
 </bottomLeft>
 <bottomRight>
 <x>3.0</x>
 <y>20.0</y>
 <z>9.0</z>
 </bottomRight>
 <topLeft>
 <x>-3.0</x>
 <y>20.0</y>
 <z>11.0</z>
 </topLeft>
 <topRight>
 <x>3.0</x>
 <y>20.0</y>
 <z>11.0</z>
 </topRight>
 </captureArea>
 </spatialInformation>
 <content>
 <sceneViewIDREF>SE1</sceneViewIDREF>
 </content>
 <policy>SoundLevel:0</policy>
 <encGroupIDREF>EG0</encGroupIDREF>

 <description lang="en">loudest room segment
 </description>
 <priority>2</priority>
 <lang>it</lang>
 <mobility>static</mobility>
 <view>individual</view>
 </mediaCapture>
 <mediaCapture
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:type="videoCaptureType" captureID="VC4"
 mediaType="video">
 <captureSceneIDREF>CS1</captureSceneIDREF>
 <spatialInformation>
 <captureOrigin>
 <capturePoint>
 <x>0.0</x>
 <y>0.0</y>
 <z>10.0</z>
 </capturePoint>
 </captureOrigin>
 <captureArea>
 <bottomLeft>
 <x>-3.0</x>
 <y>20.0</y>
 <z>7.0</z>
 </bottomLeft>
 <bottomRight>
 <x>3.0</x>
 <y>20.0</y>
 <z>7.0</z>
 </bottomRight>
 <topLeft>
 <x>-3.0</x>
 <y>20.0</y>
 <z>13.0</z>
 </topLeft>
 <topRight>
 <x>3.0</x>
 <y>20.0</y>
 <z>13.0</z>
 </topRight>
 </captureArea>
 </spatialInformation>
 <individual>true</individual>
 <encGroupIDREF>EG0</encGroupIDREF>
 <description lang="en">zoomed-out view of all people in
 the room</description>
 <priority>2</priority>
 <lang>it</lang>
 <mobility>static</mobility>
 <view>room</view>
 <capturedPeople>
 <personIDREF>alice</personIDREF>
 <personIDREF>bob</personIDREF>
 <personIDREF>ciccio</personIDREF>
 </capturedPeople>
 </mediaCapture>
 </ns2:mediaCaptures>
 <ns2:encodingGroups>
 <encodingGroup encodingGroupID="EG0">
 <maxGroupBandwidth>600000</maxGroupBandwidth>
 <encodingIDList>
 <encodingID>ENC1</encodingID>
 <encodingID>ENC2</encodingID>
 <encodingID>ENC3</encodingID>
 </encodingIDList>
 </encodingGroup>
 <encodingGroup encodingGroupID="EG1">
 <maxGroupBandwidth>300000</maxGroupBandwidth>
 <encodingIDList>
 <encodingID>ENC4</encodingID>

 <encodingID>ENC5</encodingID>
 </encodingIDList>
 </encodingGroup>
 </ns2:encodingGroups>
 <ns2:captureScenes>
 <captureScene scale="unknown" sceneID="CS1">
 <sceneViews>
 <sceneView sceneViewID="SE1">
 <mediaCaptureIDs>
 <mediaCaptureIDREF>VC0</mediaCaptureIDREF>
 <mediaCaptureIDREF>VC1</mediaCaptureIDREF>
 <mediaCaptureIDREF>VC2</mediaCaptureIDREF>
 </mediaCaptureIDs>
 </sceneView>
 <sceneView sceneViewID="SE2">
 <mediaCaptureIDs>
 <mediaCaptureIDREF>VC3</mediaCaptureIDREF>
 </mediaCaptureIDs>
 </sceneView>
 <sceneView sceneViewID="SE3">
 <mediaCaptureIDs>
 <mediaCaptureIDREF>VC4</mediaCaptureIDREF>
 </mediaCaptureIDs>
 </sceneView>
 <sceneView sceneViewID="SE4">
 <mediaCaptureIDs>
 <mediaCaptureIDREF>AC0</mediaCaptureIDREF>
 </mediaCaptureIDs>
 </sceneView>
 </sceneViews>
 </captureScene>
 </ns2:captureScenes>
 <ns2:simultaneousSets>
 <simultaneousSet setID="SS1">
 <mediaCaptureIDREF>VC3</mediaCaptureIDREF>
 <sceneViewIDREF>SE1</sceneViewIDREF>
 </simultaneousSet>
 <simultaneousSet setID="SS2">
 <mediaCaptureIDREF>VC0</mediaCaptureIDREF>
 <mediaCaptureIDREF>VC2</mediaCaptureIDREF>
 <mediaCaptureIDREF>VC4</mediaCaptureIDREF>
 </simultaneousSet>
 </ns2:simultaneousSets>
 <ns2:people>
 <person personID="bob">
 <personInfo>
 <ns3:fn>
 <ns3:text>Bob</ns3:text>
 </ns3:fn>
 </personInfo>
 <personType>minute taker</personType>
 </person>
 <person personID="alice">
 <personInfo>
 <ns3:fn>
 <ns3:text>Alice</ns3:text>
 </ns3:fn>
 </personInfo>
 <personType>presenter</personType>
 </person>
 <person personID="ciccio">
 <personInfo>
 <ns3:fn>
 <ns3:text>Ciccio</ns3:text>
 </ns3:fn>
 </personInfo>
 <personType>chairman</personType>
 <personType>timekeeper</personType>
 </person>
 </ns2:people>
 </ns2:advertisement>

10.4. CLUE Message No. 4: ’configure+ack’

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <ns2:configure xmlns="urn:ietf:params:xml:ns:clue-info"
 xmlns:ns2="urn:ietf:params:xml:ns:clue-protocol"
 xmlns:ns3="urn:ietf:params:xml:ns:vcard-4.0"
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 protocol="CLUE" v="2.7">
 <ns2:clueId>CP2</ns2:clueId>
 <ns2:sequenceNr>22</ns2:sequenceNr>
 <ns2:advSequenceNr>11</ns2:advSequenceNr>
 <ns2:ack>200</ns2:ack>
 <ns2:captureEncodings>
 <captureEncoding ID="ce123">
 <captureID>AC0</captureID>
 <encodingID>ENC4</encodingID>
 </captureEncoding>
 <captureEncoding ID="ce223">
 <captureID>VC3</captureID>
 <encodingID>ENC1</encodingID>
 <configuredContent>
 <sceneViewIDREF>SE1</sceneViewIDREF>
 </configuredContent>
 </captureEncoding>
 </ns2:captureEncodings>
 </ns2:configure>

10.5. CLUE Message No. 5: ’configureResponse’

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <ns2:configureResponse xmlns="urn:ietf:params:xml:ns:clue-info"
 xmlns:ns2="urn:ietf:params:xml:ns:clue-protocol"
 xmlns:ns3="urn:ietf:params:xml:ns:vcard-4.0"
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 protocol="CLUE" v="2.7">
 <ns2:clueId>CP1</ns2:clueId>
 <ns2:sequenceNr>12</ns2:sequenceNr>
 <ns2:responseCode>200</ns2:responseCode>
 <ns2:reasonString>Success</ns2:reasonString>
 <ns2:confSequenceNr>22</ns2:confSequenceNr>
 </ns2:configureResponse>

10.6. CLUE Message No. 6: ’advertisement’

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <ns2:advertisement xmlns="urn:ietf:params:xml:ns:clue-info"
 xmlns:ns2="urn:ietf:params:xml:ns:clue-protocol"
 xmlns:ns3="urn:ietf:params:xml:ns:vcard-4.0"
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 protocol="CLUE" v="2.7">
 <ns2:clueId>CP1</ns2:clueId>
 <ns2:sequenceNr>13</ns2:sequenceNr>
 <ns2:mediaCaptures>
 <mediaCapture
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:type="audioCaptureType" captureID="AC0"
 mediaType="audio">
 <captureSceneIDREF>CS1</captureSceneIDREF>
 <spatialInformation>
 <captureOrigin>
 <capturePoint>
 <x>0.0</x>
 <y>0.0</y>
 <z>10.0</z>
 </capturePoint>
 <lineOfCapturePoint>
 <x>0.0</x>
 <y>1.0</y>
 <z>10.0</z>
 </lineOfCapturePoint>

 </captureOrigin>
 </spatialInformation>
 <individual>true</individual>
 <encGroupIDREF>EG1</encGroupIDREF>
 <description lang="en">main audio from the room
 </description>
 <priority>1</priority>
 <lang>it</lang>
 <mobility>static</mobility>
 <view>room</view>
 <capturedPeople>
 <personIDREF>alice</personIDREF>
 <personIDREF>bob</personIDREF>
 <personIDREF>ciccio</personIDREF>
 </capturedPeople>
 </mediaCapture>
 <mediaCapture
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:type="videoCaptureType" captureID="VC0"
 mediaType="video">
 <captureSceneIDREF>CS1</captureSceneIDREF>
 <spatialInformation>
 <captureOrigin>
 <capturePoint>
 <x>0.5</x>
 <y>1.0</y>
 <z>0.5</z>
 </capturePoint>
 <lineOfCapturePoint>
 <x>0.5</x>
 <y>0.0</y>
 <z>0.5</z>
 </lineOfCapturePoint>
 </captureOrigin>
 </spatialInformation>
 <individual>true</individual>
 <encGroupIDREF>EG0</encGroupIDREF>
 <description lang="en">left camera video capture
 </description>
 <priority>1</priority>
 <lang>it</lang>
 <mobility>static</mobility>
 <view>individual</view>
 <capturedPeople>
 <personIDREF>ciccio</personIDREF>
 </capturedPeople>
 </mediaCapture>
 <mediaCapture
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:type="videoCaptureType" captureID="VC1"
 mediaType="video">
 <captureSceneIDREF>CS1</captureSceneIDREF>
 <spatialInformation>
 <captureOrigin>
 <capturePoint>
 <x>0.0</x>
 <y>0.0</y>
 <z>10.0</z>
 </capturePoint>
 </captureOrigin>
 <captureArea>
 <bottomLeft>
 <x>-1.0</x>
 <y>20.0</y>
 <z>9.0</z>
 </bottomLeft>
 <bottomRight>
 <x>1.0</x>
 <y>20.0</y>
 <z>9.0</z>
 </bottomRight>

 <topLeft>
 <x>-1.0</x>
 <y>20.0</y>
 <z>11.0</z>
 </topLeft>
 <topRight>
 <x>1.0</x>
 <y>20.0</y>
 <z>11.0</z>
 </topRight>
 </captureArea>
 </spatialInformation>
 <individual>true</individual>
 <encGroupIDREF>EG0</encGroupIDREF>
 <description lang="en">central camera video capture
 </description>
 <priority>1</priority>
 <lang>it</lang>
 <mobility>static</mobility>
 <view>individual</view>
 <capturedPeople>
 <personIDREF>alice</personIDREF>
 </capturedPeople>
 </mediaCapture>
 <mediaCapture
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:type="videoCaptureType" captureID="VC2"
 mediaType="video">
 <captureSceneIDREF>CS1</captureSceneIDREF>
 <spatialInformation>
 <captureOrigin>
 <capturePoint>
 <x>2.0</x>
 <y>0.0</y>
 <z>10.0</z>
 </capturePoint>
 </captureOrigin>
 <captureArea>
 <bottomLeft>
 <x>1.0</x>
 <y>20.0</y>
 <z>9.0</z>
 </bottomLeft>
 <bottomRight>
 <x>3.0</x>
 <y>20.0</y>
 <z>9.0</z>
 </bottomRight>
 <topLeft>
 <x>1.0</x>
 <y>20.0</y>
 <z>11.0</z>
 </topLeft>
 <topRight>
 <x>3.0</x>
 <y>20.0</y>
 <z>11.0</z>
 </topRight>
 </captureArea>
 </spatialInformation>
 <individual>true</individual>
 <encGroupIDREF>EG0</encGroupIDREF>
 <description lang="en">right camera video capture
 </description>
 <priority>1</priority>
 <lang>it</lang>
 <mobility>static</mobility>
 <view>individual</view>
 <capturedPeople>
 <personIDREF>bob</personIDREF>
 </capturedPeople>

 </mediaCapture>
 <mediaCapture
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:type="videoCaptureType" captureID="VC3"
 mediaType="video">
 <captureSceneIDREF>CS1</captureSceneIDREF>
 <spatialInformation>
 <captureArea>
 <bottomLeft>
 <x>-3.0</x>
 <y>20.0</y>
 <z>9.0</z>
 </bottomLeft>
 <bottomRight>
 <x>3.0</x>
 <y>20.0</y>
 <z>9.0</z>
 </bottomRight>
 <topLeft>
 <x>-3.0</x>
 <y>20.0</y>
 <z>11.0</z>
 </topLeft>
 <topRight>
 <x>3.0</x>
 <y>20.0</y>
 <z>11.0</z>
 </topRight>
 </captureArea>
 </spatialInformation>
 <content>
 <sceneViewIDREF>SE1</sceneViewIDREF>
 </content>
 <policy>SoundLevel:0</policy>
 <encGroupIDREF>EG0</encGroupIDREF>
 <description lang="en">loudest room segment
 </description>
 <priority>2</priority>
 <lang>it</lang>
 <mobility>static</mobility>
 <view>individual</view>
 </mediaCapture>
 <mediaCapture
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:type="videoCaptureType" captureID="VC4"
 mediaType="video">
 <captureSceneIDREF>CS1</captureSceneIDREF>
 <spatialInformation>
 <captureOrigin>
 <capturePoint>
 <x>0.0</x>
 <y>0.0</y>
 <z>10.0</z>
 </capturePoint>
 </captureOrigin>
 <captureArea>
 <bottomLeft>
 <x>-3.0</x>
 <y>20.0</y>
 <z>7.0</z>
 </bottomLeft>
 <bottomRight>
 <x>3.0</x>
 <y>20.0</y>
 <z>7.0</z>
 </bottomRight>
 <topLeft>
 <x>-3.0</x>
 <y>20.0</y>
 <z>13.0</z>
 </topLeft>

 <topRight>
 <x>3.0</x>
 <y>20.0</y>
 <z>13.0</z>
 </topRight>
 </captureArea>
 </spatialInformation>
 <individual>true</individual>
 <encGroupIDREF>EG0</encGroupIDREF>
 <description lang="en">
 zoomed-out view of all people in the room
 </description>
 <priority>2</priority>
 <lang>it</lang>
 <mobility>static</mobility>
 <view>room</view>
 <capturedPeople>
 <personIDREF>alice</personIDREF>
 <personIDREF>bob</personIDREF>
 <personIDREF>ciccio</personIDREF>
 </capturedPeople>
 </mediaCapture>
 <mediaCapture
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:type="videoCaptureType" captureID="VC5"
 mediaType="video">
 <captureSceneIDREF>CS1</captureSceneIDREF>
 <spatialInformation>
 <captureArea>
 <bottomLeft>
 <x>-3.0</x>
 <y>20.0</y>
 <z>9.0</z>
 </bottomLeft>
 <bottomRight>
 <x>3.0</x>
 <y>20.0</y>
 <z>9.0</z>
 </bottomRight>
 <topLeft>
 <x>-3.0</x>
 <y>20.0</y>
 <z>11.0</z>
 </topLeft>
 <topRight>
 <x>3.0</x>
 <y>20.0</y>
 <z>11.0</z>
 </topRight>
 </captureArea>
 </spatialInformation>
 <content>
 <sceneViewIDREF>SE1</sceneViewIDREF>
 </content>
 <policy>SoundLevel:1</policy>
 <description lang="en">penultimate loudest room segment
 </description>
 <lang>it</lang>
 <mobility>static</mobility>
 <view>individual</view>
 </mediaCapture>
 <mediaCapture
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:type="videoCaptureType" captureID="VC6"
 mediaType="video">
 <captureSceneIDREF>CS1</captureSceneIDREF>
 <spatialInformation>
 <captureArea>
 <bottomLeft>
 <x>-3.0</x>
 <y>20.0</y>

 <z>9.0</z>
 </bottomLeft>
 <bottomRight>
 <x>3.0</x>
 <y>20.0</y>
 <z>9.0</z>
 </bottomRight>
 <topLeft>
 <x>-3.0</x>
 <y>20.0</y>
 <z>11.0</z>
 </topLeft>
 <topRight>
 <x>3.0</x>
 <y>20.0</y>
 <z>11.0</z>
 </topRight>
 </captureArea>
 </spatialInformation>
 <content>
 <sceneViewIDREF>SE1</sceneViewIDREF>
 </content>
 <policy>SoundLevel:2</policy>
 <description lang="en">last but two loudest room segment
 </description>
 <lang>it</lang>
 <mobility>static</mobility>
 <view>individual</view>
 </mediaCapture>
 <mediaCapture
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 xsi:type="videoCaptureType" captureID="VC7"
 mediaType="video">
 <captureSceneIDREF>CS1</captureSceneIDREF>
 <spatialInformation>
 <captureArea>
 <bottomLeft>
 <x>-3.0</x>
 <y>20.0</y>
 <z>9.0</z>
 </bottomLeft>
 <bottomRight>
 <x>3.0</x>
 <y>20.0</y>
 <z>9.0</z>
 </bottomRight>
 <topLeft>
 <x>-3.0</x>
 <y>20.0</y>
 <z>11.0</z>
 </topLeft>
 <topRight>
 <x>3.0</x>
 <y>20.0</y>
 <z>11.0</z>
 </topRight>
 </captureArea>
 </spatialInformation>
 <content>
 <mediaCaptureIDREF>VC3</mediaCaptureIDREF>
 <mediaCaptureIDREF>VC5</mediaCaptureIDREF>
 <mediaCaptureIDREF>VC6</mediaCaptureIDREF>
 </content>
 <maxCaptures exactNumber="true">3</maxCaptures>
 <encGroupIDREF>EG0</encGroupIDREF>
 <description lang="en">big picture of the current
 speaker + pips about previous speakers</description>
 <priority>3</priority>
 <lang>it</lang>
 <mobility>static</mobility>
 <view>individual</view>

 </mediaCapture>
 </ns2:mediaCaptures>
 <ns2:encodingGroups>
 <encodingGroup encodingGroupID="EG0">
 <maxGroupBandwidth>600000</maxGroupBandwidth>
 <encodingIDList>
 <encodingID>ENC1</encodingID>
 <encodingID>ENC2</encodingID>
 <encodingID>ENC3</encodingID>
 </encodingIDList>
 </encodingGroup>
 <encodingGroup encodingGroupID="EG1">
 <maxGroupBandwidth>300000</maxGroupBandwidth>
 <encodingIDList>
 <encodingID>ENC4</encodingID>
 <encodingID>ENC5</encodingID>
 </encodingIDList>
 </encodingGroup>
 </ns2:encodingGroups>
 <ns2:captureScenes>
 <captureScene scale="unknown" sceneID="CS1">
 <sceneViews>
 <sceneView sceneViewID="SE1">
 <description lang="en">participants’ individual
 videos</description>
 <mediaCaptureIDs>
 <mediaCaptureIDREF>VC0</mediaCaptureIDREF>
 <mediaCaptureIDREF>VC1</mediaCaptureIDREF>
 <mediaCaptureIDREF>VC2</mediaCaptureIDREF>
 </mediaCaptureIDs>
 </sceneView>
 <sceneView sceneViewID="SE2">
 <description lang="en">loudest segment of the
 room</description>
 <mediaCaptureIDs>
 <mediaCaptureIDREF>VC3</mediaCaptureIDREF>
 </mediaCaptureIDs>
 </sceneView>
 <sceneView sceneViewID="SE5">
 <description lang="en">loudest segment of the
 room + pips</description>
 <mediaCaptureIDs>
 <mediaCaptureIDREF>VC7</mediaCaptureIDREF>
 </mediaCaptureIDs>
 </sceneView>
 <sceneView sceneViewID="SE4">
 <description lang="en">room audio</description>
 <mediaCaptureIDs>
 <mediaCaptureIDREF>AC0</mediaCaptureIDREF>
 </mediaCaptureIDs>
 </sceneView>
 <sceneView sceneViewID="SE3">
 <description lang="en">room video</description>
 <mediaCaptureIDs>
 <mediaCaptureIDREF>VC4</mediaCaptureIDREF>
 </mediaCaptureIDs>
 </sceneView>
 </sceneViews>
 </captureScene>
 </ns2:captureScenes>
 <ns2:simultaneousSets>
 <simultaneousSet setID="SS1">
 <mediaCaptureIDREF>VC3</mediaCaptureIDREF>
 <mediaCaptureIDREF>VC7</mediaCaptureIDREF>
 <sceneViewIDREF>SE1</sceneViewIDREF>
 </simultaneousSet>
 <simultaneousSet setID="SS2">
 <mediaCaptureIDREF>VC0</mediaCaptureIDREF>
 <mediaCaptureIDREF>VC2</mediaCaptureIDREF>
 <mediaCaptureIDREF>VC4</mediaCaptureIDREF>
 </simultaneousSet>

 </ns2:simultaneousSets>
 <ns2:people>
 <person personID="bob">
 <personInfo>
 <ns3:fn>
 <ns3:text>Bob</ns3:text>
 </ns3:fn>
 </personInfo>
 <personType>minute taker</personType>
 </person>
 <person personID="alice">
 <personInfo>
 <ns3:fn>
 <ns3:text>Alice</ns3:text>
 </ns3:fn>
 </personInfo>
 <personType>presenter</personType>
 </person>
 <person personID="ciccio">
 <personInfo>
 <ns3:fn>
 <ns3:text>Ciccio</ns3:text>
 </ns3:fn>
 </personInfo>
 <personType>chairman</personType>
 <personType>timekeeper</personType>
 </person>
 </ns2:people>
 </ns2:advertisement>

10.7. CLUE Message No. 7: ’ack’

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <ack xmlns="urn:ietf:params:xml:ns:clue-protocol"
 xmlns:ns2="urn:ietf:params:xml:ns:clue-info"
 xmlns:ns3="urn:ietf:params:xml:ns:vcard-4.0"
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 protocol="CLUE" v="2.7">
 <clueId>CP2</clueId>
 <sequenceNr>23</sequenceNr>
 <responseCode>200</responseCode>
 <reasonString>Success</reasonString>
 <advSequenceNr>13</advSequenceNr>
 </ack>

10.8. CLUE Message No. 8: ’configure’

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <ns2:configure xmlns="urn:ietf:params:xml:ns:clue-info"
 xmlns:ns2="urn:ietf:params:xml:ns:clue-protocol"
 xmlns:ns3="urn:ietf:params:xml:ns:vcard-4.0"
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 protocol="CLUE" v="2.7">
 <ns2:clueId>CP2</ns2:clueId>
 <ns2:sequenceNr>24</ns2:sequenceNr>
 <ns2:advSequenceNr>13</ns2:advSequenceNr>
 <ns2:captureEncodings>
 <captureEncoding ID="ce123">
 <captureID>AC0</captureID>
 <encodingID>ENC4</encodingID>
 </captureEncoding>
 <captureEncoding ID="ce456">
 <captureID>VC7</captureID>
 <encodingID>ENC1</encodingID>
 <configuredContent>
 <sceneViewIDREF>SE5</sceneViewIDREF>
 </configuredContent>
 </captureEncoding>
 </ns2:captureEncodings>
 </ns2:configure>

10.9. CLUE Message No. 9: ’configureResponse’

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <ns2:configureResponse xmlns="urn:ietf:params:xml:ns:clue-info"
 xmlns:ns2="urn:ietf:params:xml:ns:clue-protocol"
 xmlns:ns3="urn:ietf:params:xml:ns:vcard-4.0"
 xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"
 protocol="CLUE" v="2.7">
 <ns2:clueId>CP1</ns2:clueId>
 <ns2:sequenceNr>14</ns2:sequenceNr>
 <ns2:responseCode>200</ns2:responseCode>
 <ns2:reasonString>Success</ns2:reasonString>
 <ns2:confSequenceNr>24</ns2:confSequenceNr>
 </ns2:configureResponse>

11. Security Considerations

 As a general consideration, we would like to point out that the CLUE
 framework (and related protocol) has been conceived from the outset
 by embracing the security-by-design paradigm. As a result, a number
 of requirements have been identified and properly standardized as
 mandatory within the entire set of documents associated with the CLUE
 architecture. Requirements include (i) the use of cryptography and
 authentication, (ii) protection of all sensitive fields, (iii) mutual
 authentication between CLUE endpoints, (iv) the presence of
 authorization mechanisms, and (v) the presence of native defense
 mechanisms against malicious activities such as eavesdropping,
 selective modification, deletion, and replay (and related
 combinations thereof). Hence, security of the single components of
 the CLUE solution cannot be evaluated independently of the integrated
 view of the final architecture.

 The CLUE protocol is an application-level protocol allowing a Media
 Producer and an MC to negotiate a variegated set of parameters
 associated with the establishment of a telepresence session. This
 unavoidably exposes a CLUE-enabled telepresence system to a number of
 potential threats, most of which are extensively discussed in the
 CLUE framework document [RFC8845]. The Security Considerations
 section of [RFC8845] actually discusses issues associated with the
 setup and management of a telepresence session in both (1) the basic
 case involving two CLUE endpoints acting as the MP and the MC,
 respectively and (2) the more advanced scenario envisaging the
 presence of an MCU.

 The CLUE framework document [RFC8845] also mentions that the
 information carried within CLUE protocol messages might contain
 sensitive data, which SHOULD hence be accessed only by authenticated
 endpoints. Security issues associated with the CLUE data model
 schema are discussed in [RFC8846].

 There is extra information carried by the CLUE protocol that is not
 associated with the CLUE data model schema and that exposes
 information that might be of concern. This information is primarily
 exchanged during the negotiation phase via the ’options’ and
 ’optionsResponse’ messages. In the CP state machine’s OPTIONS state,
 both parties agree on the version and extensions to be used in the
 subsequent CLUE message exchange phase. A malicious participant
 might either (1) try to retrieve a detailed footprint of a specific
 CLUE protocol implementation during this initial setup phase or
 (2) force the communicating party to use a version of the protocol
 that is outdated and that they know how to break. Indeed, exposing
 all of the supported versions and extensions could conceivably leak
 information about the specific implementation of the protocol. In
 theory, an implementation could choose not to announce all of the
 versions it supports if it wants to avoid such leakage, although this
 would come at the expense of interoperability. With respect to the
 above considerations, it is noted that the OPTIONS state is only
 reached after the CLUE data channel has been successfully set up.
 This ensures that only authenticated parties can exchange ’options’
 messages and related ’optionsResponse’ messages, and hence
 drastically reduces the attack surface that is exposed to malicious

 parties.

 The CLUE framework clearly states the requirement to protect CLUE
 protocol messages against threats deriving from the presence of a
 malicious agent capable of gaining access to the CLUE data channel.
 Such a requirement is met by the CLUE data channel solution described
 in [RFC8850], which ensures protection from both message recovery and
 message tampering. With respect to this last point, any
 implementation of the CLUE protocol compliant with the CLUE
 specification MUST rely on the exchange of messages that flow on top
 of a reliable and ordered SCTP-over-DTLS transport channel connecting
 two CPs.

12. IANA Considerations

 This document registers a new XML namespace, a new XML schema, and
 the media type for the schema. This document also registers the
 "CLUE" Application Service tag and the "CLUE" Application Protocol
 tag and defines registries for the CLUE messages and response codes.

12.1. URN Sub-Namespace Registration

 This section registers a new XML namespace,
 "urn:ietf:params:xml:ns:clue-protocol".

 URI: urn:ietf:params:xml:ns:clue-protocol

 Registrant Contact: IESG (iesg@ietf.org).

 XML:

 <CODE BEGINS>
 <?xml version="1.0"?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "https://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 <html xmlns="https://www.w3.org/1999/xhtml" xml:lang="en">
 <head>
 <title>CLUE Messages</title>
 </head>
 <body>
 <h1>Namespace for CLUE Messages</h1>
 <h2>urn:ietf:params:xml:ns:clue-protocol</h2>
 <p>See
 RFC 8847.</p>
 </body>
 </html>
 <CODE ENDS>

12.2. XML Schema Registration

 This section registers an XML schema per the guidelines in [RFC3688].

 URI: urn:ietf:params:xml:schema:clue-protocol

 Registrant Contact: IESG (iesg@ietf.org).

 Schema: The XML for this schema can be found in Section 9 of this
 document.

12.3. Media Type Registration for "application/clue+xml"

 This section registers the "application/clue+xml" media type.

 To: ietf-types@iana.org

 Subject: Registration of media type "application/clue+xml"

 Media type name: application

 Subtype name: clue+xml

 Required parameters: (none)

 Optional parameters: charset. Same as the charset parameter of
 "application/xml" as specified in [RFC7303], Section 4.2.

 Encoding considerations: Same as the encoding considerations of
 "application/xml" as specified in [RFC7303], Section 4.2.

 Security considerations: This content type is designed to carry
 protocol data related to telepresence session control. Some of
 the data could be considered private. This media type does not
 provide any protection; thus, other mechanisms, such as those
 described in Section 11 of this document, are required to protect
 the data. This media type does not contain executable content.

 Interoperability considerations: None.

 Published specification: RFC 8847

 Applications that use this media type: CLUE Participants.

 Additional Information:

 Magic Number(s): (none)
 File extension(s): .xml
 Macintosh File Type Code(s): TEXT

 Person & email address to contact for further information: Simon
 Pietro Romano (spromano@unina.it).

 Intended usage: LIMITED USE

 Author/Change controller: The IETF

 Other information: This media type is a specialization of
 application/xml [RFC7303], and many of the considerations
 described there also apply to application/clue+xml.

12.4. CLUE Protocol Registry

 Per this document, IANA has created new registries for CLUE messages
 and response codes.

12.4.1. CLUE Message Types

 The following summarizes the registry for CLUE messages:

 Related Registry: CLUE Message Types

 Defining RFC: RFC 8847

 Registration/Assignment Procedures: Following the policies outlined
 in [RFC8126], the IANA policy for assigning new values for the
 CLUE message types for the CLUE protocol is Specification
 Required.

 Registrant Contact: IESG (iesg@ietf.org).

 The initial table of CLUE messages is populated using the CLUE
 messages described in Section 5 and defined in the XML schema in
 Section 9.

 +===================+=================================+===========+
 | Message | Description | Reference |
 +===================+=================================+===========+
 | options | Sent by the CI to the CR in the | RFC 8847 |
 | | initiation phase to specify the | |
 | | roles played by the CI, the | |
 | | supported versions, and the | |
 | | supported extensions. | |
 +-------------------+---------------------------------+-----------+

 | optionsResponse | Sent by the CI to the CR in | RFC 8847 |
 | | reply to an ’options’ message, | |
 | | to establish the version and | |
 | | extensions to be used in the | |
 | | subsequent exchange of CLUE | |
 | | messages. | |
 +-------------------+---------------------------------+-----------+
 | advertisement | Sent by the MP to the MC to | RFC 8847 |
 | | specify the telepresence | |
 | | capabilities of the MP | |
 | | expressed according to the CLUE | |
 | | framework. | |
 +-------------------+---------------------------------+-----------+
 | ack | Sent by the MC to the MP to | RFC 8847 |
 | | acknowledge the reception of an | |
 | | ’advertisement’ message. | |
 +-------------------+---------------------------------+-----------+
 | configure | Sent by the MC to the MP to | RFC 8847 |
 | | specify the desired media | |
 | | captures among those specified | |
 | | in the ’advertisement’. | |
 +-------------------+---------------------------------+-----------+
 | configureResponse | Sent by the MP to the MC in | RFC 8847 |
 | | reply to a ’configure’ message | |
 | | to communicate whether or not | |
 | | the configuration request has | |
 | | been successfully processed. | |
 +-------------------+---------------------------------+-----------+

 Table 2: Initial IANA Table of CLUE Messages

12.4.2. CLUE Response Codes

 The following summarizes the registry for CLUE response codes:

 Related Registry: CLUE Response Codes

 Defining RFC: RFC 8847

 Registration/Assignment Procedures: Following the policies outlined
 in [RFC8126], the IANA policy for assigning new values for the
 response codes for CLUE is Specification Required.

 Registrant Contact: IESG (iesg@ietf.org).

 The initial table of CLUE response codes is populated using the
 response codes defined in Section 5.7 as follows:

 +========+===============+==============================+===========+
 | Number | Default | Description | Reference |
 | | Reason String | | |
 +========+===============+==============================+===========+
200	Success	The request has been	RFC 8847
		successfully	
		processed.	
+--------+---------------+------------------------------+-----------+			
300	Low-level	A generic low-level	RFC 8847
	request error	request error has	
		occurred.	
+--------+---------------+------------------------------+-----------+			
301	Bad syntax	The XML syntax of the	RFC 8847
		message is not	
		correct.	
+--------+---------------+------------------------------+-----------+			
302	Invalid value	The message contains	RFC 8847
		an invalid parameter	
		value.	
+--------+---------------+------------------------------+-----------+			
303	Conflicting	The message contains	RFC 8847
	values	values that cannot be	
		used together.	

 +--------+---------------+------------------------------+-----------+
400	Semantic	The received CLUE	RFC 8847
	errors	protocol message	
		contains semantic	
		errors.	
+--------+---------------+------------------------------+-----------+			
401	Version not	The protocol version	RFC 8847
	supported	used in the message is	
		not supported.	
+--------+---------------+------------------------------+-----------+			
402	Invalid	The received message	RFC 8847
	sequencing	contains an unexpected	
		sequence number (e.g.,	
		sequence number gap,	
		repeated sequence	
		number, or sequence	
		number outdated).	
+--------+---------------+------------------------------+-----------+			
403	Invalid	The clueId used in the	RFC 8847
	identifier	message is invalid or	
		unknown.	
+--------+---------------+------------------------------+-----------+			
404	Advertisement	The sequence number of	RFC 8847
	expired	the advertisement the	
		’configure’ message	
		refers to is out of	
		date.	
+--------+---------------+------------------------------+-----------+			
405	Subset choice	The subset choice is	RFC 8847
	not allowed	not allowed for the	
		specified Multiple	
		Content Capture.	
 +--------+---------------+------------------------------+-----------+

 Table 3: Initial IANA Table of CLUE Response Codes

13. References

13.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, DOI 10.17487/RFC3550,
 July 2003, <https://www.rfc-editor.org/info/rfc3550>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC7303] Thompson, H. and C. Lilley, "XML Media Types", RFC 7303,
 DOI 10.17487/RFC7303, July 2014,
 <https://www.rfc-editor.org/info/rfc7303>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8845] Duckworth, M., Ed., Pepperell, A., and S. Wenger,
 "Framework for Telepresence Multi-Streams", RFC 8845,
 DOI 10.17487/RFC8845, January 2021,
 <https://www.rfc-editor.org/info/rfc8845>.

 [RFC8846] Presta, R. and S P. Romano, "An XML Schema for the
 Controlling Multiple Streams for Telepresence (CLUE) Data
 Model", RFC 8846, DOI 10.17487/RFC8846, January 2021,
 <https://www.rfc-editor.org/info/rfc8846>.

 [RFC8848] Hanton, R., Kyzivat, P., Xiao, L., and C. Groves, "Session
 Signaling for Controlling Multiple Streams for
 Telepresence (CLUE)", RFC 8848, DOI 10.17487/RFC8848,
 January 2021, <https://www.rfc-editor.org/info/rfc8848>.

 [RFC8850] Holmberg, C., "Controlling Multiple Streams for
 Telepresence (CLUE) Protocol Data Channel", RFC 8850,
 DOI 10.17487/RFC8850, January 2021,
 <https://www.rfc-editor.org/info/rfc8850>.

 [W3C.REC-xml-20081126]
 Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E., and
 F. Yergeau, "Extensible Markup Language (XML) 1.0 (Fifth
 Edition)", World Wide Web Consortium Recommendation REC-
 xml-20081126, November 2008,
 <https://www.w3.org/TR/2008/REC-xml-20081126>.

13.2. Informative References

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989,
 <https://www.rfc-editor.org/info/rfc1122>.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 DOI 10.17487/RFC3261, June 2002,
 <https://www.rfc-editor.org/info/rfc3261>.

 [RFC4353] Rosenberg, J., "A Framework for Conferencing with the
 Session Initiation Protocol (SIP)", RFC 4353,
 DOI 10.17487/RFC4353, February 2006,
 <https://www.rfc-editor.org/info/rfc4353>.

 [RFC6120] Saint-Andre, P., "Extensible Messaging and Presence
 Protocol (XMPP): Core", RFC 6120, DOI 10.17487/RFC6120,
 March 2011, <https://www.rfc-editor.org/info/rfc6120>.

 [RFC7262] Romanow, A., Botzko, S., and M. Barnes, "Requirements for
 Telepresence Multistreams", RFC 7262,
 DOI 10.17487/RFC7262, June 2014,
 <https://www.rfc-editor.org/info/rfc7262>.

 [RFC7667] Westerlund, M. and S. Wenger, "RTP Topologies", RFC 7667,
 DOI 10.17487/RFC7667, November 2015,
 <https://www.rfc-editor.org/info/rfc7667>.

Acknowledgements

 The authors thank all the CLUErs for their precious feedback and
 support -- in particular, Paul Kyzivat, Christian Groves, and
 Scarlett Liuyan.

Authors’ Addresses

 Roberta Presta
 University of Napoli
 Via Claudio 21
 80125 Napoli
 Italy

 Email: roberta.presta@unina.it

 Simon Pietro Romano
 University of Napoli
 Via Claudio 21
 80125 Napoli
 Italy

 Email: spromano@unina.it

