
ï»¿

Internet Engineering Task Force (IETF) W. Roome
Request for Comments: 8895 Nokia Bell Labs
Category: Standards Track Y. Yang
ISSN: 2070-1721 Yale University
 November 2020

Application-Layer Traffic Optimization (ALTO) Incremental Updates Using
 Server-Sent Events (SSE)

Abstract

 The Application-Layer Traffic Optimization (ALTO) protocol (RFC 7285)
 provides network-related information, called network information
 resources, to client applications so that clients can make informed
 decisions in utilizing network resources. This document presents a
 mechanism to allow an ALTO server to push updates to ALTO clients to
 achieve two benefits: (1) updates can be incremental, in that if only
 a small section of an information resource changes, the ALTO server
 can send just the changes and (2) updates can be immediate, in that
 the ALTO server can send updates as soon as they are available.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8895.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 2. Terms
 2.1. Requirements Language
 3. Background
 3.1. Incremental Encoding: JSON Merge Patch
 3.1.1. JSON Merge Patch Encoding
 3.1.2. JSON Merge Patch ALTO Messages
 3.2. Incremental Encoding: JSON Patch
 3.2.1. JSON Patch Encoding
 3.2.2. JSON Patch ALTO Messages
 3.3. Multiplexing and Server Push: HTTP/2
 3.4. Server Push: Server-Sent Event
 4. Overview of Approach and High-Level Protocol Message Flow
 4.1. Update Stream Service Message Flow

 4.2. Stream Control Service Message Flow
 4.3. Service Announcement and Management Message Flow
 5. Update Messages: Data Update and Control Update Messages
 5.1. Generic ALTO Update Message Structure
 5.2. ALTO Data Update Message
 5.3. ALTO Control Update Message
 6. Update Stream Service
 6.1. Media Type
 6.2. HTTP Method
 6.3. Capabilities
 6.4. Uses
 6.5. Request: Accept Input Parameters
 6.6. Response
 6.7. Additional Requirements on Update Stream Service
 6.7.1. Event Sequence Requirements
 6.7.2. Cross-Stream Consistency Requirements
 6.7.3. Multipart Update Requirements
 6.8. Keep-Alive Messages
 7. Stream Control Service
 7.1. URI
 7.2. Media Type
 7.3. HTTP Method
 7.4. IRD Capabilities & Uses
 7.5. Request: Accept Input Parameters
 7.6. Response
 8. Examples
 8.1. Example: IRD Announcing Update Stream Services
 8.2. Example: Simple Network and Cost Map Updates
 8.3. Example: Advanced Network and Cost Map Updates
 8.4. Example: Endpoint Property Updates
 8.5. Example: Multipart Message Updates
 9. Operation and Processing Considerations
 9.1. Considerations for Choosing Data Update Messages
 9.2. Considerations for Client Processing Data Update Messages
 9.3. Considerations for Updates to Filtered Cost Maps
 9.4. Considerations for Updates to Ordinal Mode Costs
 9.5. Considerations for SSE Text Formatting and Processing
 10. Security Considerations
 10.1. Update Stream Server: Denial-of-Service Attacks
 10.2. ALTO Client: Update Overloading or Instability
 10.3. Stream Control: Spoofed Control Requests and Information
 Breakdown
 11. Requirements on Future ALTO Services to Use This Design
 12. IANA Considerations
 12.1. application/alto-updatestreamparams+json Media Type
 12.2. application/alto-updatestreamcontrol+json Media Type
 13. Appendix: Design Decision: Not Allowing Stream Restart
 14. References
 14.1. Normative References
 14.2. Informative References
 Acknowledgments
 Contributors
 Authors’ Addresses

1. Introduction

 The Application-Layer Traffic Optimization (ALTO) protocol [RFC7285]
 provides network-related information, called network information
 resources, to client applications so that clients may make informed
 decisions in utilizing network resources. For example, an ALTO
 server provides network and cost maps, where a network map partitions
 the set of endpoints into a manageable number of sets each defined by
 a Provider-Defined Identifier (PID) and a cost map provides directed
 costs between PIDs. Given network and cost maps, an ALTO client can
 obtain costs between endpoints by first using the network map to get
 the PID for each endpoint and then using the cost map to get the
 costs between those PIDs. Such costs can be used by the client to
 choose communicating endpoints with low network costs.

 The ALTO protocol defines only an ALTO client pull model without
 defining a mechanism to allow an ALTO client to obtain updates to

 network information resources, other than by periodically re-fetching
 them. In settings where an information resource may be large but
 only parts of it may change frequently (e.g., some entries of a cost
 map), complete re-fetching can be inefficient.

 This document presents a mechanism to allow an ALTO server to push
 incremental updates to ALTO clients. Integrating server push and
 incremental updates provides two benefits: (1) updates can be small,
 in that if only a small section of an information resource changes,
 the ALTO server can send just the changes and (2) updates can be
 immediate, in that the ALTO server can send updates as soon as they
 are available.

 While primarily intended to provide updates to GET-mode network and
 cost maps, the mechanism defined in this document can also provide
 updates to POST-mode ALTO services, such as the ALTO endpoint
 property and endpoint cost services. The mechanism can also support
 new ALTO services to be defined by future extensions, but a future
 service needs to satisfy requirements specified in Section 11.

 The rest of this document is organized as follows. Section 3 gives
 background on the basic techniques used in this design: (1) JSON
 merge patch and JSON patch to allow incremental updates and (2)
 Server-Sent Events (SSE) [SSE] to allow server push. With the
 background, Section 4 gives a non-normative overview of the design.
 Section 5 defines individual messages in an update stream. Section 6
 defines the update stream service. Section 7 defines the stream
 control service. Section 8 gives several examples to illustrate the
 two types of services. Section 9 describes operation and processing
 considerations by both ALTO servers and clients. Section 13
 discusses a design feature that is not supported. Section 10
 discusses security issues. Sections 11 and 12 review the
 requirements for future ALTO services to use SSE and IANA
 considerations, respectively.

2. Terms

 Besides the terminologies as defined in [RFC7285], this document also
 uses additional terminologies defined as follows:

 Update Stream:
 A reliable, in-order connection compatible with HTTP/1.x between
 an ALTO client and an ALTO server so that the server can push a
 sequence of update messages using [SSE] to the client.

 Update Stream Server:
 This document refers to an ALTO server providing an update stream
 as an ALTO update stream server, or update stream server for
 short. Note that the ALTO server mentioned in this document
 refers to a general server that provides various kinds of
 services; it can be an update stream server or stream control
 server (see below). It can also be a server providing ALTO
 Information Resource Directory (IRD).

 Update Message:
 A message that is either a data update message or a control update
 message.

 Data Update Message:
 An update message that is for a single ALTO information resource
 and sent from the update stream server to the ALTO client when the
 resource changes. A data update message can be either a full-
 replacement message or an incremental-change message. Full
 replacement is a shorthand for a full-replacement message, and
 incremental change is a shorthand for an incremental-change
 message.

 Full Replacement:
 A data update message for a resource that encodes the content of
 the resource in its original ALTO encoding.

 Incremental Change:
 A data update message that specifies only the difference between
 the new content and the previous version. An incremental change
 can be encoded using either JSON merge patch or JSON patch in this
 document.

 Stream Control Service:
 A service that provides an HTTP URI so that the ALTO client of an
 update stream can use it to send stream control requests to the
 ALTO server on the addition or removal of resources receiving
 update messages from the update stream. The ALTO server creates a
 new stream control resource for each update stream instance,
 assigns a unique URI to it, and sends the URI to the client as the
 first event in the stream. (Note that the stream control service
 in ALTO has no association with the similarly named Stream Control
 Transmission Protocol [RFC4960].)

 Stream Control:
 A shorthand for stream control service.

 Stream Control Server:
 An ALTO server providing the stream control service.

 Substream-ID:
 An ALTO client can assign a unique substream-id when requesting
 the addition of a resource receiving update messages from an
 update stream. The server puts the substream-id in each update
 event for that resource. The substream-id allows a client to use
 one update stream to receive updates to multiple requests for the
 same resource (i.e., with the same resource-id in an ALTO IRD),
 for example, for a POST-mode resource with different input
 parameters.

 Data-ID:
 A subfield of the "event" field of [SSE] to identify the ALTO data
 (object) to be updated. For an ALTO resource returning a
 multipart response, the data-id to identify the data (object) is
 the substream-id, in addition to the Content-ID of the object in
 the multipart response. The data-id of a single-part response is
 just the substream-id.

 Control Update Message:
 An update message for the update stream server to notify the ALTO
 client of related control information of the update stream. A
 control update message may be triggered by an internal event at
 the server, such as server overloading and hence the update stream
 server will no longer send updates for an information resource, or
 as a result of a client sending a request through the stream
 control service. The first message of an update stream is a
 control update message that provides a control URI to the ALTO
 client. The ALTO client can use the URI to send stream control
 requests to the stream control server.

2.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Background

 The design requires two basic techniques: encoding of incremental
 changes and server push. For incremental changes, existing
 techniques include JSON merge patch and JSON patch; this design uses
 both. For server push, existing techniques include HTTP/2 and [SSE];
 this design adopts some design features of HTTP/2 but uses [SSE] as
 the basic server-push design. The rest of this section gives a non-
 normative summary of JSON merge patch, JSON patch, HTTP/2, and [SSE].

3.1. Incremental Encoding: JSON Merge Patch

 To avoid always sending complete data, a server needs mechanisms to
 encode incremental changes, and JSON merge patch is one mechanism.
 [RFC7396] defines the encoding of incremental changes (called JSON
 merge patch objects) to be used by the HTTP PATCH method [RFC5789].
 From [RFC7396], this document adopts only the JSON merge patch object
 encoding and does not use the HTTP PATCH method, as the updates are
 sent as events instead of HTTP methods; also, the updates are server
 to client, and PATCH semantics are more for client to server. Below
 is a non-normative summary of JSON merge patch objects; see [RFC7396]
 for the normative definition.

3.1.1. JSON Merge Patch Encoding

 Informally, a JSON merge patch message consists of a JSON merge patch
 object (referred to as a patch in [RFC7396]), which defines how to
 transform one JSON value into another using a recursive merge patch
 algorithm. Specifically, the patch is computed by treating two JSON
 values (first one being the original and the second being the
 updated) as trees of nested JSON objects (dictionaries of name/value
 pairs), where the leaves are values (e.g., JSON arrays, strings, and
 numbers), other than JSON objects, and the path for each leaf is the
 sequence of keys leading to that leaf. When the second tree has a
 different value for a leaf at a path or adds a new leaf, the patch
 has a leaf, at that path, with the new value. When a leaf in the
 first tree does not exist in the second tree, the JSON merge patch
 tree has a leaf with a JSON "null" value. Hence, in the patch, null
 as the value of a name/value pair will delete the element with "name"
 in the original JSON value. The patch does not have an entry for any
 leaf that has the same value in both versions. See the MergePatch
 pseudocode at the beginning of Section 2 of [RFC7396] for the formal
 specification of how to apply a given patch. As a result, if all
 leaf values are simple scalars, JSON merge patch is a quite efficient
 representation of incremental changes. It is less efficient when
 leaf values are arrays, because JSON merge patch replaces arrays in
 their entirety, even if only one entry changes.

3.1.2. JSON Merge Patch ALTO Messages

 To provide both examples of JSON merge patch and a demonstration of
 the feasibility of applying JSON merge patch to ALTO, the sections
 below show the application of JSON merge patch to two key ALTO
 messages.

3.1.2.1. JSON Merge Patch Network Map Messages

 Section 11.2.1.6 of [RFC7285] defines the format of an ALTO network
 map message. Assume a simple example ALTO message sending an initial
 network map:

 {
 "meta" : {
 "vtag": {
 "resource-id" : "my-network-map",
 "tag" : "da65eca2eb7a10ce8b059740b0b2e3f8eb1d4785"
 }
 },
 "network-map" : {
 "PID1" : {
 "ipv4" : ["192.0.2.0/24", "198.51.100.0/25"]
 },
 "PID2" : {
 "ipv4" : ["198.51.100.128/25"]
 },
 "PID3" : {
 "ipv4" : ["0.0.0.0/0"],
 "ipv6" : ["::/0"]
 }
 }
 }

 Consider the following JSON merge patch update message, which (1)
 adds an ipv4 prefix "203.0.113.0/25" and an ipv6 prefix
 "2001:db8:8000::/33" to "PID1", (2) deletes "PID2", and (3) assigns a
 new "tag" to the network map:

 {
 "meta" : {
 "vtag" : {
 "tag" : "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
 }
 },
 "network-map": {
 "PID1" : {
 "ipv4" : ["192.0.2.0/24", "198.51.100.0/25",
 "203.0.113.0/25"],
 "ipv6" : ["2001:db8:8000::/33"]
 },
 "PID2" : null
 }
 }

 Applying the JSON merge patch update to the initial network map is
 equivalent to the following ALTO network map:

 {
 "meta" : {
 "vtag": {
 "resource-id" : "my-network-map",
 "tag" : "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
 }
 },
 "network-map" : {
 "PID1" : {
 "ipv4" : ["192.0.2.0/24", "198.51.100.0/25",
 "203.0.113.0/25"],
 "ipv6" : ["2001:db8:8000::/33"]
 },
 "PID3" : {
 "ipv4" : ["0.0.0.0/0"],
 "ipv6" : ["::/0"]
 }
 }
 }

3.1.2.2. JSON Merge Patch Cost Map Messages

 Section 11.2.3.6 of [RFC7285] defines the format of an ALTO cost map
 message. Assume a simple example ALTO message for an initial cost
 map:

 {
 "meta" : {
 "dependent-vtags" : [
 {"resource-id": "my-network-map",
 "tag": "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
 }
],
 "cost-type" : {
 "cost-mode" : "numerical",
 "cost-metric": "routingcost"
 },
 "vtag": {
 "resource-id" : "my-cost-map",
 "tag" : "3ee2cb7e8d63d9fab71b9b34cbf764436315542e"
 }
 },
 "cost-map" : {
 "PID1": { "PID1": 1, "PID2": 5, "PID3": 10 },
 "PID2": { "PID1": 5, "PID2": 1, "PID3": 15 },
 "PID3": { "PID1": 20, "PID2": 15 }

 }
 }

 The following JSON merge patch message updates the example cost map
 so that (1) the "tag" field of the cost map is updated, (2) the cost
 of PID1->PID2 is 9 instead of 5, (3) the cost of PID3->PID1 is no
 longer available, and (4) the cost of PID3->PID3 is defined as 1.

 {
 "meta" : {
 "vtag": {
 "tag": "c0ce023b8678a7b9ec00324673b98e54656d1f6d"
 }
 }
 "cost-map" : {
 "PID1" : { "PID2" : 9 },
 "PID3" : { "PID1" : null, "PID3" : 1 }
 }
 }

 Hence, applying the JSON merge patch to the initial cost map is
 equivalent to the following ALTO cost map:

 {
 "meta" : {
 "dependent-vtags" : [
 {"resource-id": "my-network-map",
 "tag": "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
 }
],
 "cost-type" : {
 "cost-mode" : "numerical",
 "cost-metric": "routingcost"
 },
 "vtag": {
 "resource-id": "my-cost-map",
 "tag": "c0ce023b8678a7b9ec00324673b98e54656d1f6d"
 }
 },
 "cost-map" : {
 "PID1": { "PID1": 1, "PID2": 9, "PID3": 10 },
 "PID2": { "PID1": 5, "PID2": 1, "PID3": 15 },
 "PID3": { "PID2": 15, "PID3": 1 }
 }
 }

3.2. Incremental Encoding: JSON Patch

3.2.1. JSON Patch Encoding

 One issue of JSON merge patch is that it does not handle array
 changes well. In particular, JSON merge patch considers an array as
 a single object and hence can only replace an array in its entirety.
 When the change is to make a small change to an array, such as the
 deletion of an element from a large array, whole-array replacement is
 inefficient. Consider the example in Section 3.1.2.1. To add a new
 entry to the ipv4 array for PID1, the server needs to send a whole
 new array. Another issue is that JSON merge patch cannot change a
 value to be null, as the JSON merge patch processing algorithm
 (MergePatch in Section 3.1.1) interprets a null as a removal
 instruction. On the other hand, some ALTO resources can have null
 values, and it is possible that the update will want to change the
 new value to be null.

 JSON patch [RFC6902] can address the preceding issues. It defines a
 set of operators to modify a JSON object. See [RFC6902] for the
 normative definition.

3.2.2. JSON Patch ALTO Messages

 To provide both examples of JSON patch and a demonstration of the

 difference between JSON patch and JSON merge patch, the sections
 below show the application of JSON patch to the same updates shown in
 Section 3.1.2.

3.2.2.1. JSON Patch Network Map Messages

 First, consider the same update as in Section 3.1.2.1 for the network
 map. Below is the encoding using JSON patch:

 [
 {
 "op": "replace",
 "path": "/meta/vtag/tag",
 "value": "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
 },
 {
 "op": "add",
 "path": "/network-map/PID1/ipv4/2",
 "value": "203.0.113.0/25"
 }
 {
 "op": "add",
 "path": "/network-map/PID1/ipv6",
 "value": ["2001:db8:8000::/33"]
 },
 {
 "op": "remove",
 "path": "/network-map/PID2"
 }
]

3.2.2.2. JSON Patch Cost Map Messages

 Compared with JSON merge patch, JSON patch does not encode cost map
 updates efficiently. Consider the cost map update shown in
 Section 3.1.2.2, the encoding using JSON patch is:

 [
 {
 "op": "replace",
 "path": "/meta/vtag/tag",
 "value": "c0ce023b8678a7b9ec00324673b98e54656d1f6d"
 },
 {
 "op": "replace",
 "path": "/cost-map/PID1/PID2",
 "value": 9
 },
 {
 "op": "remove",
 "path": "/cost-map/PID3/PID1"
 },
 {
 "op": "replace",
 "path": "/cost-map/PID3/PID3",
 "value": 1
 }
]

3.3. Multiplexing and Server Push: HTTP/2

 HTTP/2 [RFC7540] provides two related features: multiplexing and
 server push. In particular, HTTP/2 allows a client and a server to
 multiplex multiple HTTP requests and responses over a single TCP
 connection. The requests and responses can be interleaved on a block
 (frame) by block (frame) basis, by indicating the requests and
 responses in HTTP/2 messages, avoiding the head-of-line blocking
 problem encountered with HTTP/1.1. To achieve the same goal, this
 design introduces substream-id to allow a client to receive updates
 to multiple resources. HTTP/2 also provides a server-push facility
 to allow a server to send asynchronous updates.

 Despite the two features of HTTP/2, this design chooses a design
 compatible with HTTP/1.x for the simplicity of HTTP/1.x. A design
 based on HTTP/2 may more likely need to be implemented using a more
 complex HTTP/2 client library. In such a case, one approach for
 using server push for updates is for the update stream server to send
 each data update message as a separate server-push item and let the
 client apply those updates as they arrive. An HTTP/2 client library
 may not necessarily inform a client application when the server
 pushes a resource. Instead, the library might cache the pushed
 resource and only deliver it to the client when the client explicitly
 requests that URI. Further, it is more likely that a design based on
 HTTP/2 may encounter issues with a proxy between the client and the
 server, in that server push is optional and can be disabled by any
 proxy between the client and the server. This is not a problem for
 the intended use of server push; eventually, the client will request
 those resources, so disabling server push just adds a delay. But
 this means that Server Push is not suitable for resources that the
 client does not know to request.

 Thus, this design leaves a design based on HTTP/2 as a future work
 and focuses on ALTO updates on HTTP/1.x and [SSE].

3.4. Server Push: Server-Sent Event

 Server-Sent Events (SSE) are techniques that can work with HTTP/1.1.
 The following is a non-normative summary of SSE; see [SSE] for its
 normative definition.

 SSE enable a server to send new data to a client by "server push".
 The client establishes an HTTP [RFC7230] [RFC7231] connection to the
 server and keeps the connection open. The server continually sends
 messages. Each message has one or more lines, where a line is
 terminated by a carriage return immediately followed by a new line, a
 carriage return not immediately followed by a new line, or a new line
 not immediately preceded by a carriage return. A message is
 terminated by a blank line (two line terminators in a row).

 Each line in a message is of the form "field-name: string value".
 Lines with a blank field name (that is, lines that start with a
 colon) are ignored, as are lines that do not have a colon. The
 protocol defines three field names: event, id, and data. If a
 message has more than one "data" line, the value of the data field is
 the concatenation of the values on those lines. There can be only
 one "event" and "id" line per message. The "data" field is required;
 the others are optional.

 Figure 1 is a sample SSE stream, starting with the client request.
 The server sends three events and then closes the stream.

 (Client request)
 GET /stream HTTP/1.1
 Host: example.com
 Accept: text/event-stream

 (Server response)
 HTTP/1.1 200 OK
 Connection: keep-alive
 Content-Type: text/event-stream

 event: start
 id: 1
 data: hello there

 event: middle
 id: 2
 data: let’s chat some more ...
 data: and more and more and ...

 event: end
 id: 3

 data: goodbye

 Figure 1: A Sample SSE Stream

4. Overview of Approach and High-Level Protocol Message Flow

 With the preceding background, this section now gives a non-normative
 overview of the update mechanisms and message flow to be defined in
 later sections of this document. Figure 2 gives the main components
 and overall message flow.

 | |
 | +-------+ +-------+ 1. init request +------+ |
				<--------------		
				-------------->		
3.add/				1’. control URI		
remove						
resource	Stream		Update			
 -------->|Control| private |Stream | 2a. data update |Client| --
 |Server |<------->|Server | messages | |
 -------- | | | | ---------------> | | <-
 | response | | | | ---------------> | | |
 | | | | | 2b. control update| | |
 | +-------+ +-------+ messages +------+ |
 | |

 Figure 2: ALTO SSE Architecture and Message Flow

4.1. Update Stream Service Message Flow

 The building block of the update mechanism defined in this document
 is the update stream service (defined in Section 6), where each
 update stream service is a POST-mode service that provides update
 streams.

 Note that the lines of the format "** ... **" are used to describe
 message flows in this section and the following sections.

 ** Initial request: client -> update server **:
 When an ALTO client requests an update stream service, the ALTO
 client establishes a persistent connection to the update stream
 server and submits an initial update-stream request (defined in
 Section 6.5), creating an update stream. This initial request
 creating the update stream is labeled "1. init request" in
 Figure 2.

 An update stream can provide updates to both GET-mode resources,
 such as ALTO network and cost maps, and POST-mode resources, such
 as ALTO endpoint property service. Also, to avoid creating too
 many update streams, this design allows an ALTO client to use one
 update stream to receive updates to multiple requests. In
 particular, the client may request to receive updates for the same
 resource but with different parameters for a POST-mode resource,
 in addition to being able to consolidate updates for multiple
 resources into a single stream. The updates for each request is
 called a substream and hence the update server needs an identifier
 to indicate the substream when sending an update. To achieve this
 goal, the client assigns a unique substream-id when requesting
 updates to a resource in an update stream, and the server puts the
 substream-id in each update.

 ** Data updates: update server -> client **:
 The objective of an update stream is to continuously push (to an
 ALTO client) the data value changes for a set of resources, where
 the set of resources is specified by the ALTO client’s requests.
 This document refers to messages sending such data-value changes
 as data update messages (defined in Section 5.2). Although an
 update stream may update one or more requests, each data update
 message updates only one request and is sent as a Server-Sent

 Event (SSE), as defined by [SSE]. A data update message is
 encoded either as a full replacement or as an incremental change.
 A full replacement uses the JSON message format defined by the
 ALTO protocol. There can be multiple encodings for incremental
 changes. The current design supports incremental changes using
 JSON merge patch [RFC7396] or JSON patch [RFC6902] to describe the
 changes of the resource. Future documents may define additional
 mechanisms for incremental changes. The update stream server
 decides when to send data update messages and whether to send full
 replacements or incremental changes. These decisions can vary
 from resource to resource and from update to update. Since the
 transport is a design compatible with HTTP/1.x, data update
 messages are delivered reliably and in order, and the lossless,
 sequential delivery of its messages allows the server to know the
 exact state of the client to compute the correct incremental
 updates. Figure 2 shows examples of data update messages (labeled
 "2a. data update messages") in the overall message flow.

 ** Control updates: update server -> client **:
 An update stream can run for a long time and hence there can be
 status changes at the update stream server side during the
 lifetime of an update stream; for example, the update stream
 server may encounter an error or need to shut down for
 maintenance. To support a robust, flexible protocol design, this
 document allows the update stream server to send control update
 messages (defined in Section 5.3) in addition to data update
 messages to the ALTO client. Figure 2 shows that both data
 updates and control updates can be sent by the server to the
 client (labeled "2b. control update messages").

4.2. Stream Control Service Message Flow

 ** Stream control: client -> stream control server **:
 In addition to control changes triggered from the update stream
 server side, in a flexible design, an ALTO client may initiate
 control changes as well, in particular, by adding or removing ALTO
 resources receiving updates. An ALTO client initiates such
 changes using the stream control service (defined in Section 7).
 Although one may use a design that the client uses as the same
 HTTP connection to send the control requests, it requires stronger
 server support, such as HTTP pipeline. For more flexibility, this
 document introduces stream control service. In particular, the
 update stream server of an update stream uses the first message to
 provide the URI of the stream control service (labeled "1’:
 control URI" in Figure 2).

 The ALTO client can then use the URI to ask the stream control
 server specified in the URI to request the update stream server to
 (1) send data update messages for additional resources, (2) stop
 sending data update messages for previously requested resources,
 or (3) gracefully stop and close the update stream altogether.

4.3. Service Announcement and Management Message Flow

 ** Service announcements: IRD server -> client **:
 An update server may provide any number of update stream services,
 where each update stream may provide updates for a given subset of
 the ALTO server’s resources. An ALTO server’s Information
 Resource Directory (IRD) defines the update stream services and
 declares the set of resources for which each update stream service
 provides updates. The ALTO server selects the resource set for
 each update stream service. It is recommended that if a resource
 depends on one or more other resource(s) (indicated with the
 "uses" attribute defined in [RFC7285]), these other resource(s)
 should also be part of that update stream. Thus, the update
 stream for a cost map should also provide updates for the network
 map on which that cost map depends.

 ** Service management (server) **:
 An ALTO client may request any number of update streams
 simultaneously. Because each update stream consumes resources on

 the update stream server, an update stream server may require
 client authorization and/or authentication, limit the number of
 open update streams, close inactive streams, or redirect an ALTO
 client to another update stream server.

5. Update Messages: Data Update and Control Update Messages

 This section defines the format of update messages sent from the
 server to the client. It first defines the generic structure of
 update messages (Section 5.1). It then defines the details of the
 data update messages (Section 5.2) and the control update messages
 (Section 5.3). These messages will be used in the next two sections
 to define the update stream service (Section 6) and the stream
 control service (Section 7).

5.1. Generic ALTO Update Message Structure

 Both data update and control update messages from the server to the
 client have the same basic structure. Each message includes a data
 field to provide data information, which is typically a JSON object,
 and an event field preceding the data field, to specify the media
 type indicating the encoding of the data field.

 A data update message needs additional information to identify the
 ALTO data (object) to which the update message applies. To be
 generic, this document uses a data-id to identify the ALTO data
 (object) to be updated; see below.

 Hence, the event field of ALTO update message can include two
 subfields (media-type and data-id), where the two subfields are
 separated by a comma (’,’, U+002C):

 media-type [’,’ data-id]

 According to Section 4.2 of [RFC6838], the comma character is not
 allowed in a media-type name so there is no ambiguity when decoding
 of the two subfields.

 Note that an update message does not use the SSE "id" field.

5.2. ALTO Data Update Message

 A data update message is sent when a monitored resource changes. As
 discussed in the preceding section, the event field of a data update
 message includes two subfields: ’media-type’ and ’data-id’.

 The ’media-type’ subfield depends on whether the data update is a
 complete specification of the identified data or an incremental patch
 (e.g., a JSON merge patch or JSON patch), if possible, describing the
 changes from the last version of the data. This document refers to
 these as full replacement and incremental change, respectively. The
 encoding of a full replacement is defined by its defining document
 (e.g., network and cost map messages by [RFC7285]) and uses the media
 type defined in that document. The encoding of JSON merge patch is
 defined by [RFC7396], with the media type "application/merge-
 patch+json"; the encoding of JSON patch is defined by [RFC6902], with
 media type "application/json-patch+json".

 The ’data-id’ subfield identifies the ALTO data to which the data
 update message applies.

 First, consider the case that the resource contains only a single
 JSON object. For example, since an ALTO client can request data
 updates for both a cost map resource (object) and its dependent
 network map resource (object) in the same update stream, to
 distinguish the updates, the client assigns a substream-id for each
 resource receiving data updates. Substream-ids MUST be unique within
 an update stream but need not be globally unique. A substream-id is
 encoded as a JSON string with the same format as that of the type
 ResourceID (Section 10.2 of [RFC7285]). The type SubstreamID is used
 in this document to indicate a string of this format. The substream-

 id of a single JSON object is the ’data-id’.

 As an example, assume that the ALTO client assigns substream-id "1"
 in its request to receive updates to the network map and substream-id
 "2" to the cost map. Then, the substream-ids are the data-ids
 indicating which objects will be updated. Figure 3 shows some
 examples of ALTO data update messages:

 event: application/alto-networkmap+json,1
 data: { ... full network map message ... }

 event: application/alto-costmap+json,2
 data: { ... full cost map message ... }

 event: application/merge-patch+json,2
 data: { ... JSON merge patch update for the cost map ... }

 Figure 3: Examples of ALTO Data Update Messages

 Next, consider the case that a resource may include multiple JSON
 objects. This document considers the case that a resource may
 contain multiple components (parts), and they are encoded using the
 media type "multipart/related" [RFC2387]. Each part of this
 multipart response MUST be an HTTP message including a Content-ID
 header and a JSON object body. Each component requiring the update
 stream service (defined in Section 6) MUST be identified by a unique
 Content-ID to be defined in its defining document.

 For a resource using the media type "multipart/related", the ’data-
 id’ subfield MUST be the concatenation of the substream-id, the ’.’
 separator (U+002E), and the unique Content-ID, in order.

5.3. ALTO Control Update Message

 Control update messages have the media type "application/alto-
 updatestreamcontrol+json", and the data is of type
 UpdateStreamControlEvent:

 object {
 [String control-uri;]
 [SubstreamID started<1..*>;]
 [SubstreamID stopped<1..*>;]
 [String description;]
 } UpdateStreamControlEvent;

 control-uri:
 the URI providing stream control for this update stream (see
 Section 7). The server sends a control update message notifying
 the client of the control-uri. This control update message
 notifying the control-uri will be sent once and MUST be the first
 event in an update stream. If the URI value is NULL, the update
 stream server does not support stream control for this update
 stream; otherwise, the update stream server provides stream
 control through the given URI.

 started:
 a list of substream-ids of resources. It notifies the ALTO client
 that the update stream server will start sending data update
 messages for each resource listed.

 stopped:
 a list of substream-ids of resources. It notifies the ALTO client
 that the update stream server will no longer send data update
 messages for the listed resources. There can be multiple reasons
 for an update stream server to stop sending data update messages
 for a resource, including a request from the ALTO client using
 stream control (Section 6.7.1) or an internal server event.

 description:
 a non-normative, human-readable text providing an explanation for
 the control event. When an update stream server stops sending

 data update messages for a resource, it is RECOMMENDED that the
 update stream server use the description field to provide details.
 There can be multiple reasons that trigger a "stopped" event; see
 above. The intention of this field is to provide a human-readable
 text for the developer and/or the administrator to diagnose
 potential problems.

6. Update Stream Service

 An update stream service returns a stream of update messages, as
 defined in Section 5. An ALTO server’s IRD (Information Resource
 Directory) MAY define one or more update stream services, which ALTO
 clients use to request new update stream instances. An IRD entry
 defining an update stream service MUST define the media type, HTTP
 method, and capabilities and uses as follows.

6.1. Media Type

 The media type of an ALTO update stream service is "text/event-
 stream", as defined by [SSE].

6.2. HTTP Method

 An ALTO update stream service is requested using the HTTP POST
 method.

6.3. Capabilities

 The capabilities are defined as an object of type
 UpdateStreamCapabilities:

 object {
 IncrementalUpdateMediaTypes incremental-change-media-types;
 Boolean support-stream-control;
 } UpdateStreamCapabilities;

 object-map {
 ResourceID -> String;
 } IncrementalUpdateMediaTypes;

 If this update stream can provide data update messages with
 incremental changes for a resource, the "incremental-change-media-
 types" field has an entry for that resource-id, and the value is the
 supported media types of the incremental change separated by commas.
 Normally, this will be "application/merge-patch+json", "application/
 json-patch+json", or "application/merge-patch+json,application/json-
 patch+json", because, as described in Section 5, they are the only
 incremental change types defined by this document. However, future
 extensions may define other types of incremental changes.

 When choosing the media types to encode incremental changes for a
 resource, the update stream server MUST consider the limitations of
 the encoding. For example, when a JSON merge patch specifies that
 the value of a field is null, its semantics are that the field is
 removed from the target and hence the field is no longer defined
 (i.e., undefined); see the MergePatch algorithm in Section 3.1.1 on
 how null value is processed. This, however, may not be the intended
 result for the resource, when null and undefined have different
 semantics for the resource. In such a case, the update stream server
 MUST choose JSON patch over JSON merge patch if JSON patch is
 indicated as a capability of the update stream server. If the server
 does not support JSON patch to handle such a case, the server then
 need to send a full replacement.

 The "support-stream-control" field specifies whether the given update
 stream supports stream control. If the "support-stream-control"
 field is "true", the update stream server will use the stream control
 specified in this document; otherwise, the update stream server may
 use other mechanisms to provide the same functionality as stream
 control.

6.4. Uses

 The "uses" attribute MUST be an array with the resource-ids of every
 resource for which this update stream can provide updates. Each
 resource specified in the "uses" MUST support full replacement; the
 update stream server can always send full replacement, and the ALTO
 client MUST accept full replacement.

 This set may be any subset of the ALTO server’s resources and may
 include resources defined in linked IRDs. However, it is RECOMMENDED
 that the ALTO server selects a set that is closed under the resource
 dependency relationship. That is, if an update stream’s "uses" set
 includes resource R1 and resource R1 depends on ("uses") resource R0,
 then the update stream’s "uses" set SHOULD include R0 as well as R1.
 For example, an update stream for a cost map SHOULD also provide
 updates for the network map upon which that cost map depends.

6.5. Request: Accept Input Parameters

 An ALTO client specifies the parameters for the new update stream by
 sending an HTTP POST body with the media type "application/alto-
 updatestreamparams+json". That body contains a JSON object of type
 UpdateStreamReq, where:

 object {
 [AddUpdatesReq add;]
 [SubstreamID remove<0..*>;]
 } UpdateStreamReq;

 object-map {
 SubstreamID -> AddUpdateReq;
 } AddUpdatesReq;

 object {
 ResourceID resource-id;
 [JSONString tag;]
 [Boolean incremental-changes;]
 [Object input;]
 } AddUpdateReq;

 add:
 Specifies the resources (and the parameters for the resources) for
 which the ALTO client wants updates. In the scope of the same
 update stream, the ALTO client MUST assign a substream-id that is
 unique in the scope of the update stream (Section 5.2) for each
 entry and use those substream-ids as the keys in the "add" field.

 resource-id:
 The resource-id of an ALTO resource and MUST be in the update
 stream’s "uses" list (Section 6.4). If the resource-id is a GET-
 mode resource with a version tag (or "vtag"), as defined in
 Sections 6.3 and 10.3 of [RFC7285], and the ALTO client has
 previously retrieved a version of that resource from the update
 stream server, the ALTO client MAY set the "tag" field to the tag
 part of the client’s version of that resource. If that version is
 not current, the update stream server MUST send a full replacement
 before sending any incremental changes, as described in
 Section 6.7.1. If that version is still current, the update
 stream server MAY omit the initial full replacement.

 incremental-changes:
 The ALTO client specifies whether it is willing to receive
 incremental changes from the update stream server for this
 substream. If the "incremental-changes" field is "true", the
 update stream server MAY send incremental changes for this
 substream. In this case, the client MUST support all incremental
 methods from the set announced in the server’s capabilities for
 this resource; see Section 6.3 for the server’s announcement of
 potential incremental methods. If a client does not support all
 incremental methods from the set announced in the server’s
 capabilities, the client can set "incremental-changes" to "false",

 and the update stream server then MUST NOT send incremental
 changes for that substream. The default value for "incremental-
 changes" is "true", so to suppress incremental changes, the ALTO
 client MUST explicitly set "incremental-changes" to "false". An
 alternative design of incremental-changes control is a more fine-
 grained control, by allowing a client to select a subset of
 incremental methods from the set announced in the server’s
 capabilities. But this alternative design is not adopted in this
 document, because it adds complexity to the server, which is more
 likely to be the bottleneck. Note that the ALTO client cannot
 suppress full replacement. When the ALTO client sets
 "incremental-changes" to "false", the update stream server MUST
 send a full replacement instead of an incremental change to the
 ALTO client. The update stream server MAY wait until more changes
 are available and send a single full replacement with those
 changes. Thus, an ALTO client that declines to accept incremental
 changes may not get updates as quickly as an ALTO client that
 does.

 input:
 If the resource is a POST-mode service that requires input, the
 ALTO client MUST set the "input" field to a JSON object with the
 parameters that the resource expects.

 remove:
 It is used in update stream control requests (Section 7) and is
 not allowed in the update stream request. The update stream
 server SHOULD ignore this field if it is included in the request.

 If a request has any errors, the update stream server MUST NOT create
 an update stream. Also, the update stream server will send an error
 response to the ALTO client, as specified in Section 6.6.

6.6. Response

 If the update stream request has any errors, the update stream server
 MUST return an HTTP "400 Bad Request" to the ALTO client; the body of
 the response follows the generic ALTO error response format specified
 in Section 8.5.2 of [RFC7285]. Hence, an example ALTO error response
 has the format:

 HTTP/1.1 400 Bad Request
 Content-Length: 131
 Content-Type: application/alto-error+json
 Connection: Closed

 {
 "meta":{
 "code": "E_INVALID_FIELD_VALUE",
 "field": "add/my-network-map/resource-id",
 "value": "my-networkmap/#"
 }
 }

 Note that "field" and "value" are optional fields. If the "value"
 field exists, the "field" field MUST exist.

 * If an update stream request does not have an "add" field
 specifying one or more resources, the error code of the error
 message MUST be E_MISSING_FIELD and the "field" field SHOULD be
 "add". The update stream server MUST close the stream without
 sending any events.

 * If the "resource-id" field is invalid or is not associated with
 the update stream, the error code of the error message MUST be
 E_INVALID_FIELD_VALUE. The "field" field SHOULD be the full path
 of the "resource-id" field, and the "value" field SHOULD be the
 invalid resource-id. If there are more than one invalid resource-
 ids, the update stream server SHOULD pick one and return it. The
 update stream server MUST close the stream (i.e., TCP connection)
 without sending any events.

 * If the resource is a POST-mode service that requires input, the
 client MUST set the "input" field to a JSON object with the
 parameters that that resource expects. If the "input" field is
 missing or invalid, the update stream server MUST return the same
 error response that that resource would return for missing or
 invalid input (see [RFC7285]). In this case, the update stream
 server MUST close the update stream without sending any events.
 If the input for several POST-mode resources is missing or
 invalid, the update stream server MUST pick one and return it.

 The response to a valid request is a stream of update messages.
 Section 5 defines the update messages, and [SSE] defines how they are
 encoded into a stream.

 An update stream server SHOULD send updates only when the underlying
 values change. However, it may be difficult for an update stream
 server to guarantee that in all circumstances. Therefore, a client
 MUST NOT assume that an update message represents an actual change.

6.7. Additional Requirements on Update Stream Service

6.7.1. Event Sequence Requirements

 * The first event MUST be a control update message with the URI of
 the update stream control service (see Section 7) for this update
 stream. Note that the value of the control-uri can be "null",
 indicating that there is no control stream service.

 * As soon as possible, after the ALTO client initiates the
 connection, the update stream server checks the "tag" field for
 each added update request. If the "tag" field is not specified in
 an added update request, the update stream server MUST first send
 a full replacement for the request. If the "tag" field is
 specified, the client can accept incremental changes, and the
 server can compute an incremental update based on the "tag" (the
 server needs to ensure that for a POST resource with input, the
 "tag" should indicate the correct result for different inputs);
 the update stream server MAY omit the initial full replacement.

 * If this update stream provides updates for resource-ids R0 and R1
 and if R1 depends on R0, then the update stream server MUST send
 the update for R0 before sending the related updates for R1. For
 example, suppose an update stream provides updates to a network
 map and its dependent cost maps. When the network map changes,
 the update stream server MUST send the network map update before
 sending the cost map updates.

 * When the ALTO client uses the stream control service to stop
 updates for one or more resources (Section 7), the ALTO client
 MUST send a stream control request. The update stream server MUST
 send a control update message whose "stopped" field has the
 substream-ids of all stopped resources.

6.7.2. Cross-Stream Consistency Requirements

 If multiple ALTO clients create multiple update streams from the same
 update stream resource and with the same update request parameters
 (i.e., same resource and same input), the update stream server MUST
 send the same updates to all of them. However, the update stream
 server MAY pack data items into different patch events, as long as
 the net result of applying those updates is the same.

 For example, suppose two different ALTO clients create two different
 update streams for the same cost map, and suppose the update stream
 server processes three separate cost point updates with a brief pause
 between each update. The server MUST send all three new cost points
 to both clients. But the update stream server MAY send a single
 patch event (with all three cost points) to one ALTO client while
 sending three separate patch events (with one cost point per event)
 to the other ALTO client.

 An update stream server MAY offer several different update stream
 resources that provide updates to the same underlying resource (that
 is, a resource-id may appear in the "uses" field of more than one
 update stream resource). In this case, those update stream resources
 MUST return the same update.

6.7.3. Multipart Update Requirements

 This design allows any valid media type for full replacement. Hence,
 it supports ALTO resources using multipart to contain multiple JSON
 objects. This realizes the push benefit but not the incremental
 encoding benefit of SSE.

 JSON patch and merge patch provide the incremental encoding benefit
 but can be applied to only a single JSON object. If an update stream
 service supports a resource providing a multipart media type, which
 we refer to as a multipart resource, then the update stream service
 needs to handle the issue that the message of a full multipart
 resource can include multiple JSON objects. To address the issue,
 when an update stream service specifies that it supports JSON patch
 or merge patch incremental updates for a multipart resource, the
 service MUST ensure that (1) each part of a multipart message is a
 single JSON object, (2) each part is specified by a static Content-ID
 in the initial full message, (3) each data update event applies to
 only one part, and (4) each data update specifies substream-
 id.content-id as the "event" field of the event, to identify the part
 to be updated.

6.8. Keep-Alive Messages

 In an SSE stream, any line that starts with a colon (U+003A)
 character is a comment, and an ALTO client MUST ignore that line
 [SSE]. As recommended in [SSE], an update stream server SHOULD send
 a comment line (or an event) every 15 seconds to prevent ALTO clients
 and proxy servers from dropping the HTTP connection. Note that
 although TCP also provides a Keep-Alive function, the interval
 between TCP Keep-Alive messages can depend on the OS configuration
 and varies. The preceding recommended SSE Keep-Alive allows the SSE
 client to detect the status of the update stream server with more
 certainty.

7. Stream Control Service

 A stream control service allows an ALTO client to remove resources
 from the set of resources that are monitored by an update stream or
 add additional resources to that set. The service also allows an
 ALTO client to gracefully shut down an update stream.

 When an update stream server creates a new update stream and if the
 update stream server supports stream control for the update stream,
 the update stream server creates a stream control service for that
 update stream. An ALTO client uses the stream control service to
 remove resources from the update stream instance or to request
 updates for additional resources. An ALTO client cannot obtain the
 stream control service through the IRD. Instead, the first event
 that the update stream server sends to the ALTO client has the URI
 for the associated stream control service (see Section 5.3).

 Each stream control request is an individual HTTP request. The ALTO
 client MAY send multiple stream control requests to the stream
 control server using the same HTTP connection.

7.1. URI

 The URI for a stream control service, by itself, MUST uniquely
 specify the update stream instance that it controls. The stream
 control server MUST NOT use other properties of an HTTP request, such
 as cookies or the client’s IP address, to determine the update
 stream. Furthermore, an update stream server MUST NOT reuse a
 control service URI once the associated update stream has been

 closed.

 The ALTO client MUST evaluate a relative control URI reference
 [RFC3986] (for example, a URI reference without a host or with a
 relative path) in the context of the URI used to create the update
 stream. The stream control service’s host MAY be different from the
 update stream’s host.

 It is expected that there is an internal mechanism to map a stream
 control URI to the unique update stream instance to be controlled.
 For example, the update stream service may assign a unique, internal
 stream id to each update stream instance. However, the exact
 mechanism is left to the update stream service provider.

 To prevent an attacker from forging a stream control URI and sending
 bogus requests to disrupt other update streams, the service should
 consider two security issues. First, if http, not https, is used,
 the stream control URI can be exposed to an on-path attacker. To
 address this issue, in a setting where the path from the server to
 the client can traverse such an attacker, the server SHOULD use
 https. Second, even without direct exposure, an off-path attacker
 may guess valid stream control URIs. To address this issue, the
 server SHOULD choose stream control URIs with enough randomness to
 make guessing difficult; the server SHOULD introduce mechanisms that
 detect repeated guesses indicating an attack (e.g., keeping track of
 the number of failed stream control attempts). Please see the W3C’s
 "Good Practices for Capability URLs" <https://www.w3.org/TR/
 capability-urls/>.

7.2. Media Type

 An ALTO stream control response does not have a specific media type.

7.3. HTTP Method

 An ALTO update stream control resource is requested using the HTTP
 POST method.

7.4. IRD Capabilities & Uses

 None (Stream control services do not appear in the IRD).

7.5. Request: Accept Input Parameters

 A stream control service accepts the same input media type and input
 parameters as the update stream service (Section 6.5). The only
 difference is that a stream control service also accepts the "remove"
 field.

 If specified, the "remove" field is an array of substream-ids the
 ALTO client previously added to this update stream. An empty
 "remove" array is equivalent to a list of all currently active
 resources; the update stream server responds by removing all
 resources and closing the stream.

 An ALTO client MAY use the "add" field to add additional resources.
 The ALTO client MUST assign a unique substream-id to each additional
 resource. Substream-ids MUST be unique over the lifetime of this
 update stream; an ALTO client MUST NOT reuse a previously removed
 substream-id. The processing of an "add" resource is the same as
 discussed in Sections 6.5 and 6.6.

 If a request has any errors, the update stream server MUST NOT add or
 remove any resources from the associated update stream. Also, the
 stream control server will return an error response to the client, as
 specified in Section 7.6.

7.6. Response

 The stream control server MUST process the "add" field before the
 "remove" field. If the request removes all active resources without

 adding any additional resources, the update stream server MUST close
 the update stream. Thus, an update stream cannot have zero
 resources.

 If the request has any errors, the stream control server MUST return
 an HTTP "400 Bad Request" to the ALTO client. The body part of the
 response follows the generic ALTO error response format specified in
 Section 8.5.2 of [RFC7285]. An error response has the same format as
 specified in Section 6.6. Detailed error code and error information
 are specified as below.

 * If the "add" request does not satisfy the requirements in
 Section 6.5, the stream control server MUST return the ALTO error
 message defined in Section 6.6.

 * If any substream-id in the "remove" field was not added in a prior
 request, the error code of the error message MUST be
 E_INVALID_FIELD_VALUE, the "field" field SHOULD be "remove", and
 the "value" field SHOULD be an array of the invalid substream-ids.
 Thus, it is illegal to "add" and "remove" the same substream-id in
 the same request. However, it is legal to remove a substream-id
 twice. To support the preceding checking, the update stream
 server MUST keep track of previously used but now closed
 substream-ids.

 * If any substream-id in the "add" field has been used before in
 this stream, the error code of the error message MUST be
 E_INVALID_FIELD_VALUE, the "field" field SHOULD be "add", and the
 "value" field SHOULD be an array of invalid substream-ids.

 * If the request has a non-empty "add" field and a "remove" field
 with an empty list of substream-ids (to replace all active
 resources with a new set, the client MUST explicitly enumerate the
 substream-ids to be removed), the error code of the error message
 MUST be E_INVALID_FIELD_VALUE, the "field" field SHOULD be
 "remove", and the "value" field SHOULD be an empty array.

 If the request is valid but the associated update stream has been
 closed, then the stream control server MUST return an HTTP "404 Not
 Found".

 If the request is valid and the stream control server successfully
 processes the request without error, the stream control server should
 return either an HTTP "202 Accepted" response or an HTTP "204 No
 Content" response. The difference is that for the latter case, the
 stream control server is sure that the update stream server has also
 processed the request. Regardless of a 202 or 204 HTTP response, the
 final updates of related resources will be notified by the update
 stream server using its control update message(s), due to the modular
 design.

8. Examples

8.1. Example: IRD Announcing Update Stream Services

 Below is an example IRD announcing three update stream services. The
 first, which is named "update-my-costs", provides updates for the
 network map, the "routingcost" and "hopcount" cost maps, and a
 Filtered Cost Map resource. The second, which is named "update-my-
 prop", provides updates to the endpoint properties service. The
 third, which is named "update-my-pv", provides updates to a
 nonstandard ALTO service returning a multipart response.

 Note that in the "update-my-costs" update stream shown in the example
 IRD, the update stream server uses JSON patch for network map, and it
 uses JSON merge patch to update the other resources. Also, the
 update stream will only provide full replacements for "my-simple-
 filtered-cost-map".

 Also, note that this IRD defines two Filtered Cost Map resources.
 They use the same cost types, but "my-filtered-cost-map" accepts cost

 constraint tests, while "my-simple-filtered-cost-map" does not. To
 avoid the issues discussed in Section 9.3, the update stream provides
 updates for the second but not the first.

 This IRD also announces a nonstandard ALTO service, which is named
 "my-pv". This service accepts an extended endpoint cost request as
 an input and returns a multipart response, including an endpoint cost
 resource and a property map resource. This document does not rely on
 any other design details of this new service. In this document, the
 "my-pv" service is only used to illustrate how the update stream
 service provides updates to an ALTO resource returning a multipart
 response.

 "my-network-map": {
 "uri": "https://alto.example.com/networkmap",
 "media-type": "application/alto-networkmap+json",
 },
 "my-routingcost-map": {
 "uri": "https://alto.example.com/costmap/routingcost",
 "media-type": "application/alto-costmap+json",
 "uses": ["my-networkmap"],
 "capabilities": {
 "cost-type-names": ["num-routingcost"]
 }
 },
 "my-hopcount-map": {
 "uri": "https://alto.example.com/costmap/hopcount",
 "media-type": "application/alto-costmap+json",
 "uses": ["my-networkmap"],
 "capabilities": {
 "cost-type-names": ["num-hopcount"]
 }
 },
 "my-filtered-cost-map": {
 "uri": "https://alto.example.com/costmap/filtered/constraints",
 "media-type": "application/alto-costmap+json",
 "accepts": "application/alto-costmapfilter+json",
 "uses": ["my-networkmap"],
 "capabilities": {
 "cost-type-names": ["num-routingcost", "num-hopcount"],
 "cost-constraints": true
 }
 },
 "my-simple-filtered-cost-map": {
 "uri": "https://alto.example.com/costmap/filtered/simple",
 "media-type": "application/alto-costmap+json",
 "accepts": "application/alto-costmapfilter+json",
 "uses": ["my-networkmap"],
 "capabilities": {
 "cost-type-names": ["num-routingcost", "num-hopcount"],
 "cost-constraints": false
 }
 },
 "my-props": {
 "uri": "https://alto.example.com/properties",
 "media-type": "application/alto-endpointprops+json",
 "accepts": "application/alto-endpointpropparams+json",
 "capabilities": {
 "prop-types": ["priv:ietf-bandwidth"]
 }
 },
 "my-pv": {
 "uri": "https://alto.example.com/endpointcost/pv",
 "media-type": "multipart/related;
 type=application/alto-endpointcost+json",
 "accepts": "application/alto-endpointcostparams+json",
 "capabilities": {
 "cost-type-names": ["path-vector"],
 "ane-properties": ["maxresbw", "persistent-entities"]
 }
 },

 "update-my-costs": {
 "uri": "https://alto.example.com/updates/costs",
 "media-type": "text/event-stream",
 "accepts": "application/alto-updatestreamparams+json",
 "uses": [
 "my-network-map",
 "my-routingcost-map",
 "my-hopcount-map",
 "my-simple-filtered-cost-map"
],
 "capabilities": {
 "incremental-change-media-types": {
 "my-network-map": "application/json-patch+json",
 "my-routingcost-map": "application/merge-patch+json",
 "my-hopcount-map": "application/merge-patch+json"
 },
 "support-stream-control": true
 }
 },
 "update-my-props": {
 "uri": "https://alto.example.com/updates/properties",
 "media-type": "text/event-stream",
 "uses": ["my-props"],
 "accepts": "application/alto-updatestreamparams+json",
 "capabilities": {
 "incremental-change-media-types": {
 "my-props": "application/merge-patch+json"
 },
 "support-stream-control": true
 }
 },
 "update-my-pv": {
 "uri": "https://alto.example.com/updates/pv",
 "media-type": "text/event-stream",
 "uses": ["my-pv"],
 "accepts": "application/alto-updatestreamparams+json",
 "capabilities": {
 "incremental-change-media-types": {
 "my-pv": "application/merge-patch+json"
 },
 "support-stream-control": true
 }
 }

8.2. Example: Simple Network and Cost Map Updates

 Given the update streams announced in the preceding example IRD, the
 section below shows an example of an ALTO client’s request and the
 update stream server’s immediate response, using the update stream
 resource "update-my-costs". In the example, the ALTO client requests
 updates for the network map and "routingcost" cost map but not for
 the "hopcount" cost map. The ALTO client uses the ALTO server’s
 resource-ids as the substream-ids. Because the client does not
 provide a "tag" for the network map, the update stream server must
 send a full replacement for the network map as well as for the cost
 map. The ALTO client does not set "incremental-changes" to "false",
 so it defaults to "true". Thus, the update stream server will send
 patch updates for the cost map and the network map.

 POST /updates/costs HTTP/1.1
 Host: alto.example.com
 Accept: text/event-stream,application/alto-error+json
 Content-Type: application/alto-updatestreamparams+json
 Content-Length: 155

 { "add": {
 "my-network-map": {
 "resource-id": "my-network-map"
 },
 "my-routingcost-map": {
 "resource-id": "my-routingcost-map"

 }
 }
 }

 HTTP/1.1 200 OK
 Connection: keep-alive
 Content-Type: text/event-stream

 event: application/alto-updatestreamcontrol+json
 data: {"control-uri":
 data: "https://alto.example.com/updates/streams/3141592653589"}

 event: application/alto-networkmap+json,my-network-map
 data: {
 data: "meta" : {
 data: "vtag": {
 data: "resource-id" : "my-network-map",
 data: "tag" : "da65eca2eb7a10ce8b059740b0b2e3f8eb1d4785"
 data: }
 data: },
 data: "network-map" : {
 data: "PID1" : {
 data: "ipv4" : ["192.0.2.0/24", "198.51.100.0/25"]
 data: },
 data: "PID2" : {
 data: "ipv4" : ["198.51.100.128/25"]
 data: },
 data: "PID3" : {
 data: "ipv4" : ["0.0.0.0/0"],
 data: "ipv6" : ["::/0"]
 data: }
 data: }
 data: }
 data: }

 event: application/alto-costmap+json,my-routingcost-map
 data: {
 data: "meta" : {
 data: "dependent-vtags" : [{
 data: "resource-id": "my-network-map",
 data: "tag": "da65eca2eb7a10ce8b059740b0b2e3f8eb1d4785"
 data: }],
 data: "cost-type" : {
 data: "cost-mode" : "numerical",
 data: "cost-metric": "routingcost"
 data: },
 data: "vtag": {
 data: "resource-id" : "my-routingcost-map",
 data: "tag" : "3ee2cb7e8d63d9fab71b9b34cbf764436315542e"
 data: }
 data: },
 data: "cost-map" : {
 data: "PID1": { "PID1": 1, "PID2": 5, "PID3": 10 },
 data: "PID2": { "PID1": 5, "PID2": 1, "PID3": 15 },
 data: "PID3": { "PID1": 20, "PID2": 15 }
 data: }
 data: }

 After sending those events immediately, the update stream server will
 send additional events as the maps change. For example, the
 following represents a small change to the cost map. PID1->PID2 is
 changed to 9 from 5, PID3->PID1 is no longer available, and
 PID3->PID3 is now defined as 1:

 event: application/merge-patch+json,my-routingcost-map
 data: {
 data: "meta" : {
 data: "vtag": {
 data: "tag": "c0ce023b8678a7b9ec00324673b98e54656d1f6d"
 data: }
 data: },

 data: "cost-map": {
 data: "PID1" : { "PID2" : 9 },
 data: "PID3" : { "PID1" : null, "PID3" : 1 }
 data: }
 data: }

 As another example, the following represents a change to the network
 map: an ipv4 prefix "203.0.113.0/25" is added to PID1. It triggers
 changes to the cost map. The update stream server chooses to send an
 incremental change for the network map and send a full replacement
 instead of an incremental change for the cost map:

 event: application/json-patch+json,my-network-map
 data: {
 data: {
 data: "op": "replace",
 data: "path": "/meta/vtag/tag",
 data: "value" :"a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
 data: },
 data: {
 data: "op": "add",
 data: "path": "/network-map/PID1/ipv4/2",
 data: "value": "203.0.113.0/25"
 data: }
 data: }

 event: application/alto-costmap+json,my-routingcost-map
 data: {
 data: "meta" : {
 data: "vtag": {
 data: "tag": "c0ce023b8678a7b9ec00324673b98e54656d1f6d"
 data: }
 data: },
 data: "cost-map" : {
 data: "PID1": { "PID1": 1, "PID2": 3, "PID3": 7 },
 data: "PID2": { "PID1": 12, "PID2": 1, "PID3": 9 },
 data: "PID3": { "PID1": 14, "PID2": 8 }
 data: }
 data: }

8.3. Example: Advanced Network and Cost Map Updates

 This example is similar to the previous one, except that the ALTO
 client requests updates for the "hopcount" cost map as well as the
 "routingcost" cost map and provides the current version tag of the
 network map, so the update stream server is not required to send the
 full network map data update message at the beginning of the stream.
 In this example, the client uses the substream-ids "net", "routing",
 and "hops" for those resources. The update stream server sends the
 stream control URI and the full cost maps, followed by updates for
 the network map and cost maps as they become available:

 POST /updates/costs HTTP/1.1
 Host: alto.example.com
 Accept: text/event-stream,application/alto-error+json
 Content-Type: application/alto-updatestreamparams+json
 Content-Length: 244

 { "add": {
 "net": {
 "resource-id": "my-network-map",
 "tag": "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
 },
 "routing": {
 "resource-id": "my-routingcost-map"
 },
 "hops": {
 "resource-id": "my-hopcount-map"
 }
 }
 }

 HTTP/1.1 200 OK
 Connection: keep-alive
 Content-Type: text/event-stream

 event: application/alto-updatestreamcontrol+json
 data: {"control-uri":
 data: "https://alto.example.com/updates/streams/2718281828459"}

 event: application/alto-costmap+json,routing
 data: { ... full routingcost cost map message ... }

 event: application/alto-costmap+json,hops
 data: { ... full hopcount cost map message ... }

 (pause)

 event: application/merge-patch+json,routing
 data: {"cost-map": {"PID2" : {"PID3" : 31}}}

 event: application/merge-patch+json,hops
 data: {"cost-map": {"PID2" : {"PID3" : 4}}}

 If the ALTO client wishes to stop receiving updates for the
 "hopcount" cost map, the ALTO client can send a "remove" request on
 the stream control URI:

 POST /updates/streams/2718281828459 HTTP/1.1
 Host: alto.example.com
 Accept: text/plain,application/alto-error+json
 Content-Type: application/alto-updatestreamparams+json
 Content-Length: 24

 {
 "remove": ["hops"]
 }

 HTTP/1.1 204 No Content
 Content-Length: 0

 (stream closed without sending data content)

 The update stream server sends a "stopped" control update message on
 the original request stream to inform the ALTO client that updates
 are stopped for that resource:

 event: application/alto-updatestreamcontrol+json
 data: {
 data: "stopped": ["hops"]
 data: }

 Below is an example of an invalid stream control request. The
 "remove" field of the request includes an undefined substream-id, and
 the stream control server will return an error response to the ALTO
 client.

 POST /updates/streams/2718281828459 HTTP/1.1
 Host: alto.example.com
 Accept: text/plain,application/alto-error+json
 Content-Type: application/alto-updatestreamparams+json
 Content-Length: 31
 {
 "remove": ["properties"]
 }

 HTTP/1.1 400 Bad Request
 Content-Length: 89
 Content-Type: application/alto-error+json

 {

 "meta":{
 "code": "E_INVALID_FIELD_VALUE",
 "field": "remove",
 "value": "properties"
 }

 If the ALTO client no longer needs any updates and wishes to shut the
 update stream down gracefully, the client can send a "remove" request
 with an empty array:

 POST /updates/streams/2718281828459 HTTP/1.1
 Host: alto.example.com
 Accept: text/plain,application/alto-error+json
 Content-Type: application/alto-updatestreamparams+json
 Content-Length: 17

 {
 "remove": []
 }

 HTTP/1.1 204 No Content
 Content-Length: 0

 (stream closed without sending data content)

 The update stream server sends a final control update message on the
 original request stream to inform the ALTO client that all updates
 are stopped and then closes the stream:

 event: application/alto-updatestreamcontrol+json
 data: {
 data: "stopped": ["net", "routing"]
 data: }

 (server closes stream)

8.4. Example: Endpoint Property Updates

 As another example, here is how an ALTO client can request updates
 for the property "priv:ietf-bandwidth" for one set of endpoints and
 "priv:ietf-load" for another. The update stream server immediately
 sends full replacements with the property values for all endpoints.
 After that, the update stream server sends data update messages for
 the individual endpoints as their property values change.

 POST /updates/properties HTTP/1.1
 Host: alto.example.com
 Accept: text/event-stream
 Content-Type: application/alto-updatestreamparams+json
 Content-Length: 511

 { "add": {
 "props-1": {
 "resource-id": "my-props",
 "input": {
 "properties" : ["priv:ietf-bandwidth"],
 "endpoints" : [
 "ipv4:198.51.100.1",
 "ipv4:198.51.100.2",
 "ipv4:198.51.100.3"
]
 }
 },
 "props-2": {
 "resource-id": "my-props",
 "input": {
 "properties" : ["priv:ietf-load"],
 "endpoints" : [
 "ipv6:2001:db8:100::1",
 "ipv6:2001:db8:100::2",

 "ipv6:2001:db8:100::3"
]
 }
 }
 }
 }

 HTTP/1.1 200 OK
 Connection: keep-alive
 Content-Type: text/event-stream

 event: application/alto-updatestreamcontrol+json
 data: {"control-uri":
 data: "https://alto.example.com/updates/streams/1414213562373"}

 event: application/alto-endpointprops+json,props-1
 data: { "endpoint-properties": {
 data: "ipv4:198.51.100.1" : { "priv:ietf-bandwidth": "13" },
 data: "ipv4:198.51.100.2" : { "priv:ietf-bandwidth": "42" },
 data: "ipv4:198.51.100.3" : { "priv:ietf-bandwidth": "27" }
 data: } }

 event: application/alto-endpointprops+json,props-2
 data: { "endpoint-properties": {
 data: "ipv6:2001:db8:100::1" : { "priv:ietf-load": "8" },
 data: "ipv6:2001:db8:100::2" : { "priv:ietf-load": "2" },
 data: "ipv6:2001:db8:100::3" : { "priv:ietf-load": "9" }
 data: } }

 (pause)

 event: application/merge-patch+json,props-1
 data: { "endpoint-properties":
 data: {"ipv4:198.51.100.1" : {"priv:ietf-bandwidth": "3"}}
 data: }

 (pause)

 event: application/merge-patch+json,props-2
 data: { "endpoint-properties":
 data: {"ipv6:2001:db8:100::3" : {"priv:ietf-load": "7"}}
 data: }

 If the ALTO client needs the "priv:ietf-bandwidth" property and the
 "priv:ietf-load" property for additional endpoints, the ALTO client
 can send an "add" request on the stream control URI:

 POST /updates/streams/1414213562373" HTTP/1.1
 Host: alto.example.com
 Accept: text/plain,application/alto-error+json
 Content-Type: application/alto-updatestreamparams+json
 Content-Length: 448

 { "add": {
 "props-3": {
 "resource-id": "my-props",
 "input": {
 "properties" : ["priv:ietf-bandwidth"],
 "endpoints" : [
 "ipv4:198.51.100.4",
 "ipv4:198.51.100.5"
]
 }
 },
 "props-4": {
 "resource-id": "my-props",
 "input": {
 "properties" : ["priv:ietf-load"],
 "endpoints" : [
 "ipv6:2001:db8:100::4",
 "ipv6:2001:db8:100::5"

]
 }
 }
 }
 }

 HTTP/1.1 204 No Content
 Content-Length: 0

 (stream closed without sending data content)

 The update stream server sends full replacements for the two new
 resources, followed by incremental changes for all four requests as
 they arrive:

 event: application/alto-endpointprops+json,props-3
 data: { "endpoint-properties": {
 data: "ipv4:198.51.100.4" : { "priv:ietf-bandwidth": "25" },
 data: "ipv4:198.51.100.5" : { "priv:ietf-bandwidth": "31" },
 data: } }

 event: application/alto-endpointprops+json,props-4
 data: { "endpoint-properties": {
 data: "ipv6:2001:db8:100::4" : { "priv:ietf-load": "6" },
 data: "ipv6:2001:db8:100::5" : { "priv:ietf-load": "4" },
 data: } }

 (pause)

 event: application/merge-patch+json,props-3
 data: { "endpoint-properties":
 data: {"ipv4:198.51.100.5" : {"priv:ietf-bandwidth": "15"}}
 data: }

 (pause)

 event: application/merge-patch+json,props-2
 data: { "endpoint-properties":
 data: {"ipv6:2001:db8:100::2" : {"priv:ietf-load": "9"}}
 data: }

 (pause)

 event: application/merge-patch+json,props-4
 data: { "endpoint-properties":
 data: {"ipv6:2001:db8:100::4" : {"priv:ietf-load": "3"}}
 data: }

8.5. Example: Multipart Message Updates

 This example shows how an ALTO client can request a nonstandard ALTO
 service returning a multipart response. The update stream server
 immediately sends full replacements of the multipart response. After
 that, the update stream server sends data update messages for the
 individual parts of the response as the ALTO data (object) in each
 part changes.

 POST /updates/pv HTTP/1.1
 Host: alto.example.com
 Accept: text/event-stream
 Content-Type: application/alto-updatestreamparams+json
 Content-Length: 382

 {
 "add": {
 "ecspvsub1": {
 "resource-id": "my-pv",
 "input": {
 "cost-type": {
 "cost-mode": "array",

 "cost-metric": "ane-path"
 },
 "endpoints": {
 "srcs": ["ipv4:192.0.2.2"],
 "dsts": ["ipv4:192.0.2.89", "ipv4:203.0.113.45"]
 },
 "ane-properties": ["maxresbw", "persistent-entities"]
 }
 }
 }
 }

 HTTP/1.1 200 OK
 Connection: keep-alive
 Content-Type: text/event-stream

 event: application/alto-updatestreamcontrol+json
 data: {"control-uri":
 data: "https://alto.example.com/updates/streams/1414"}

 event: multipart/related;boundary=example-pv;
 type=application/alto-endpointcost+json,ecspvsub1
 data: --example-pv
 data: Content-ID: ecsmap
 data: Content-Type: application/alto-endpointcost+json
 data:
 data: { ... data (object) of an endpoint cost map ... }
 data: --example-pv
 data: Content-ID: propmap
 data: Content-Type: application/alto-propmap+json
 data:
 data: { ... data (object) of a property map ... }
 data: --example-pv--

 (pause)

 event: application/merge-patch+json,ecspvsub1.ecsmap
 data: { ... merge patch for updates of ecspvsub1.ecsmap ... }

 event: application/merge-patch+json,ecspvsub1.propmap
 data: { ... merge patch for updates of ecspvsub1.propmap ... }

9. Operation and Processing Considerations

9.1. Considerations for Choosing Data Update Messages

 The update stream server should be cognizant of the effects of its
 update schedule, which includes both the choice of timing (i.e.,
 when/what to trigger an update) and the choice of message format
 (i.e., given an update, send a full replacement or an incremental
 change). In particular, the update schedule can have effects on both
 the overhead and the freshness of information. To minimize overhead,
 the server may choose to batch a sequence of updates for resources
 that frequently change by sending cumulative updates or a full
 replacement after a while. The update stream server should be
 cognizant that batching reduces the freshness of information. The
 server should also consider the effect of such delays on client
 behaviors (see below on client timeout on waiting for updates of
 dependent resources).

 For incremental updates, this design allows both JSON patch and JSON
 merge patch for incremental changes. JSON merge patch is clearly
 superior to JSON patch for describing incremental changes to cost
 maps, endpoint costs, and endpoint properties. For these data
 structures, JSON merge patch is more space efficient, as well as
 simpler to apply. There is no advantage allowing a server to use
 JSON patch for those resources.

 The case is not as clear for incremental changes to network maps.

 First, consider small changes, such as moving a prefix from one PID

 to another. JSON patch could encode that as a simple insertion and
 deletion, while JSON merge patch would have to replace the entire
 array of prefixes for both PIDs. On the other hand, to process a
 JSON patch update, the ALTO client would have to retain the indexes
 of the prefixes for each PID. Logically, the prefixes in a PID are
 an unordered set, not an array; aside from handling updates, a client
 has no need to retain the array indexes of the prefixes. Hence, to
 take advantage of JSON patch for network maps, ALTO clients would
 have to retain additional, otherwise unnecessary, data.

 Second, consider more involved changes, such as removing half of the
 prefixes from a PID. JSON merge patch would send a new array for
 that PID, while JSON patch would have to send a list of remove
 operations and delete the prefix one by one.

 Therefore, each update stream server may decide on its own whether to
 use JSON merge patch or JSON patch according to the changes in
 network maps.

9.2. Considerations for Client Processing Data Update Messages

 In general, when an ALTO client receives a full replacement for a
 resource, the ALTO client should replace the current version with the
 new version. When an ALTO client receives an incremental change for
 a resource, the ALTO client should apply those patches to the current
 version of the resource.

 However, because resources can depend on other resources (e.g., cost
 maps depend on network maps), an ALTO client MUST NOT use a dependent
 resource if the resource on which it depends has changed. There are
 at least two ways an ALTO client can do that. The following
 paragraphs illustrate these techniques by referring to network and
 cost map messages, although these techniques apply to any dependent
 resources.

 Note that when a network map changes, the update stream server MUST
 send the network map update message before sending the updates for
 the dependent cost maps (see Section 6.7.1).

 One approach is for the ALTO client to save the network map update
 message in a buffer and continue to use the previous network map and
 the associated cost maps until the ALTO client receives the update
 messages for all dependent cost maps. The ALTO client then applies
 all network and cost map updates atomically.

 Alternatively, the ALTO client MAY update the network map
 immediately. In this case, the cost maps using the network map
 become invalid because they are inconsistent with the current network
 map; hence, the ALTO client MUST mark each such dependent cost map as
 temporarily invalid and MUST NOT use each such cost map until the
 ALTO client receives a cost map update message indicating that it is
 based on the new network map version tag.

 The update stream server SHOULD send updates for dependent resources
 (i.e., the cost maps in the preceding example) in a timely fashion.
 However, if the ALTO client does not receive the expected updates, a
 simple recovery method is that the ALTO client closes the update
 stream connection, discards the dependent resources, and
 reestablishes the update stream. The ALTO client MAY retain the
 version tag of the last version of any tagged resources and give
 those version tags when requesting the new update stream. In this
 case, if a version is still current, the update stream server will
 not resend that resource.

 Although not as efficient as possible, this recovery method is simple
 and reliable.

9.3. Considerations for Updates to Filtered Cost Maps

 If an update stream provides updates to a Filtered Cost Map that
 allows constraint tests, then an ALTO client MAY request updates to a

 Filtered Cost Map request with a constraint test. In this case, when
 a cost changes, the update stream server MUST send an update if the
 new value satisfies the test. If the new value does not, whether the
 update stream server sends an update depends on whether the previous
 value satisfied the test. If it did not, the update stream server
 SHOULD NOT send an update to the ALTO client. But if the previous
 value did, then the update stream server MUST send an update with a
 "null" value to inform the ALTO client that this cost no longer
 satisfies the criteria.

 An update stream server can avoid having to handle such a complicated
 behavior by offering update streams only for Filtered Cost Maps that
 do not allow constraint tests.

9.4. Considerations for Updates to Ordinal Mode Costs

 For an ordinal mode cost map, a change to a single cost point may
 require updating many other costs. As an extreme example, suppose
 the lowest cost changes to the highest cost. For a numerical mode
 cost map, only that one cost changes. But for an ordinal mode cost
 map, every cost might change. While this document allows an update
 stream server to offer incremental updates for ordinal mode cost
 maps, update stream server implementors should be aware that
 incremental updates for ordinal costs are more complicated than for
 numerical costs, and ALTO clients should be aware that small changes
 may result in large updates.

 An update stream server can avoid this complication by only offering
 full replacements for ordinal cost maps.

9.5. Considerations for SSE Text Formatting and Processing

 SSE was designed for events that consist of relatively small amounts
 of line-oriented text data, and SSE clients frequently read input one
 line at a time. However, an update stream sends a full cost map as a
 single events, and a cost map may involve megabytes, if not tens of
 megabytes, of text. This has implications that the ALTO client and
 the update stream server may consider.

 First, some SSE client libraries read all data for an event into
 memory and then present it to the client as a character array.
 However, a client may not have enough memory to hold the entire JSON
 text for a large cost map. Hence, an ALTO client SHOULD consider
 using an SSE library that presents the event data in manageable
 chunks, so the ALTO client can parse the cost map incrementally and
 store the underlying data in a more compact format.

 Second, an SSE client library may use a low-level, generic socket
 read library that stores each line of an event data, just in case the
 higher-level parser may need the line delimiters as part of the
 protocol formatting. A server sending a complete cost map as a
 single line may then generate a multi-megabyte data "line", and such
 a long line may then require complex memory management at the client.
 It is RECOMMENDED that an update stream server limit the lengths of
 data lines.

 Third, an SSE server may use a library, which may put line breaks in
 places that would have semantic consequences for the ALTO updates;
 see Section 11. The update stream server implementation MUST ensure
 that no line breaks are introduced to change the semantics.

10. Security Considerations

 The security considerations (Section 15 of [RFC7285]) of the base
 protocol fully apply to this extension. For example, the same
 authenticity and integrity considerations (Section 15.1 of [RFC7285])
 still fully apply; the same considerations for the privacy of ALTO
 users (Section 15.4 of [RFC7285]) also still fully apply.

 The additional services (addition of update streams and stream
 control URIs) provided by this extension extend the attack surface

 described in Section 15.1.1 of [RFC7285]. Below, we discuss the
 additional risks and their remedies.

10.1. Update Stream Server: Denial-of-Service Attacks

 Allowing persistent update stream connections enables a new class of
 Denial-of-Service attacks.

 For the update stream server, an ALTO client might create an
 unreasonable number of update stream connections or add an
 unreasonable number of substream-ids to one update stream.

 To avoid these attacks on the update stream server, the server SHOULD
 choose to limit the number of active streams and reject new requests
 when that threshold is reached. An update stream server SHOULD also
 choose to limit the number of active substream-ids on any given
 stream or limit the total number of substream-ids used over the
 lifetime of a stream and reject any stream control request that would
 exceed those limits. In these cases, the update stream server SHOULD
 return the HTTP status "503 Service Unavailable".

 It is important to note that the preceding approaches are not the
 only possibilities. For example, it may be possible for the update
 stream server to use somewhat more clever logic involving IP
 reputation, rate-limiting, and compartmentalization of the overall
 threshold into smaller thresholds that apply to subsets of potential
 clients.

 While the preceding techniques prevent update stream DoS attacks from
 disrupting an update stream server’s other services, it does make it
 easier for a DoS attack to disrupt the update stream service.
 Therefore, an update stream server MAY prefer to restrict update
 stream services to authorized clients, as discussed in Section 15 of
 [RFC7285].

 Alternatively, an update stream server MAY return the HTTP status
 "307 Temporary Redirect" to redirect the client to another ALTO
 server that can better handle a large number of update streams.

10.2. ALTO Client: Update Overloading or Instability

 The availability of continuous updates can also cause overload for an
 ALTO client, in particular, an ALTO client with limited processing
 capabilities. The current design does not include any flow control
 mechanisms for the client to reduce the update rates from the server.
 Under overloading, the client MAY choose to remove the information
 resources with high update rates.

 Also, under overloading, the client may no longer be able to detect
 whether information is still fresh or has become stale. In such a
 case, the client should be careful in how it uses the information to
 avoid stability or efficiency issues.

10.3. Stream Control: Spoofed Control Requests and Information
 Breakdown

 An outside party that can read the update stream response or that can
 observe stream control requests can obtain the control URI and use
 that to send a fraudulent "remove" requests, thus disabling updates
 for the valid ALTO client. This can be avoided by encrypting the
 update stream and stream control requests (see Section 15 of
 [RFC7285]). Also, the update stream server echoes the "remove"
 requests on the update stream, so the valid ALTO client can detect
 unauthorized requests.

 In general, as the architecture allows the possibility for the update
 stream server and the stream control server to be different entities,
 the additional risks should be evaluated and remedied. For example,
 the private communication path between the servers may be attacked,
 resulting in a risk of communications breakdown between them, as well
 as invalid or spoofed messages claiming to be on that private

 communications path. Proper security mechanisms, including
 confidentiality, authenticity, and integrity mechanisms, should be
 considered.

11. Requirements on Future ALTO Services to Use This Design

 Although this design is quite flexible, it has underlying
 requirements.

 The key requirements are that (1) each data update message is for a
 single resource and (2) an incremental change can be applied only to
 a resource that is a single JSON object, as both JSON merge patch and
 JSON patch can apply only to a single JSON object. Hence, if a
 future ALTO resource can contain multiple objects, then either each
 individual object also has a resource-id or an extension to this
 design is made.

 At the low-level encoding level, new line in SSE has its own
 semantics. Hence, this design requires that resource encoding does
 not include new lines that can be confused with SSE encoding. In
 particular, the data update message MUST NOT include "event: " or
 "data: " at a new line as part of data message.

 If an update stream provides updates to a Filtered Cost Map that
 allows constraint tests, the requirements for such services are
 stated in Section 9.3.

12. IANA Considerations

 This document defines two new media types: "application/alto-
 updatestreamparams+json", as described in Section 6.5, and
 "application/alto-updatestreamcontrol+json", as described in
 Section 5.3. All other media types used in this document have
 already been registered, either for ALTO, JSON merge patch, or JSON
 patch.

12.1. application/alto-updatestreamparams+json Media Type

 Type name: application

 Subtype name: alto-updatestreamparams+json

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: Encoding considerations are identical to
 those specified for the "application/json" media type. See
 [RFC8259].

 Security considerations: Security considerations relating to the
 generation and consumption of ALTO Protocol messages are discussed
 in Section 10 of RFC 8895 and Section 15 of [RFC7285].

 Interoperability considerations: RFC 8895 specifies format of
 conforming messages and the interpretation thereof.

 Published specification: Section 6.5 of RFC 8895.

 Applications that use this media type: ALTO servers and ALTO clients
 either stand alone or are embedded within other applications.

 Fragment identifier considerations: N/A

 Additional information:

 Deprecated alias names for this type: N/A

 Magic number(s): N/A

 File extension(s): RFC 8895 uses the media type to refer to

 protocol messages and thus does not require a file extension.

 Macintosh file type code(s): N/A

 Person & email address to contact for further information: See
 Authors’ Addresses section.

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: See Authors’ Addresses section.

 Change controller: Internet Engineering Task Force
 (mailto:iesg@ietf.org).

12.2. application/alto-updatestreamcontrol+json Media Type

 Type name: application

 Subtype name: alto-updatestreamcontrol+json

 Required parameters: N/A

 Optional parameters: N/A

 Encoding considerations: Encoding considerations are identical to
 those specified for the "application/json" media type. See
 [RFC8259].

 Security considerations: Security considerations relating to the
 generation and consumption of ALTO Protocol messages are discussed
 in Section 10 of RFC 8895 and Section 15 of [RFC7285].

 Interoperability considerations: RFC 8895 specifies format of
 conforming messages and the interpretation thereof.

 Published specification: Section 5.3 of RFC 8895.

 Applications that use this media type: ALTO servers and ALTO clients
 either stand alone or are embedded within other applications.

 Fragment identifier considerations: N/A

 Additional information:

 Deprecated alias names for this type: N/A

 Magic number(s): N/A

 File extension(s): RFC 8895 uses the media type to refer to
 protocol messages and thus does not require a file extension.

 Macintosh file type code(s): N/A

 Person & email address to contact for further information: See
 Authors’ Addresses section.

 Intended usage: COMMON

 Restrictions on usage: N/A

 Author: See Authors’ Addresses section.

 Change controller: Internet Engineering Task Force
 (mailto:iesg@ietf.org).

13. Appendix: Design Decision: Not Allowing Stream Restart

 If an update stream is closed accidentally, when the ALTO client
 reconnects, the update stream server must resend the full maps. This

 is clearly inefficient. To avoid that inefficiency, the SSE
 specification allows an update stream server to assign an id to each
 event. When an ALTO client reconnects, the ALTO client can present
 the id of the last successfully received event, and the update stream
 server restarts with the next event.

 However, that mechanism adds additional complexity. The update
 stream server must save SSE messages in a buffer in case ALTO clients
 reconnect. But that mechanism will never be perfect: If the ALTO
 client waits too long to reconnect or if the ALTO client sends an
 invalid ID, then the update stream server will have to resend the
 complete maps anyway.

 Furthermore, this is unlikely to be a problem in practice. ALTO
 clients who want continuous updates for large resources, such as full
 network and cost maps, are likely to be things like P2P trackers.
 These ALTO clients will be well connected to the network; they will
 rarely drop connections.

 Mobile devices certainly can and do drop connections and will have to
 reconnect. But mobile devices will not need continuous updates for
 multi-megabyte cost maps. If mobile devices need continuous updates
 at all, they will need them for small queries, such as the costs from
 a small set of media servers from which the device can stream the
 currently playing movie. If the mobile device drops the connection
 and reestablishes the update stream, the update stream server will
 have to retransmit only a small amount of redundant data.

 In short, using event ids to avoid resending the full map adds a
 considerable amount of complexity to avoid a situation that is very
 rare. The complexity is not worth the benefit.

 The update stream service does allow the ALTO client to specify the
 tag of the last received version of any tagged resource, and if that
 is still current, the update stream server need not retransmit the
 full resource. Hence, ALTO clients can use this to avoid
 retransmitting full network maps. Cost maps are not tagged, so this
 will not work for them. Of course, the ALTO protocol could be
 extended by adding version tags to cost maps, which would solve the
 retransmission-on-reconnect problem. However, adding tags to cost
 maps might add a new set of complications.

14. References

14.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2387] Levinson, E., "The MIME Multipart/Related Content-type",
 RFC 2387, DOI 10.17487/RFC2387, August 1998,
 <https://www.rfc-editor.org/info/rfc2387>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,
 RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <https://www.rfc-editor.org/info/rfc6838>.

 [RFC6902] Bryan, P., Ed. and M. Nottingham, Ed., "JavaScript Object
 Notation (JSON) Patch", RFC 6902, DOI 10.17487/RFC6902,
 April 2013, <https://www.rfc-editor.org/info/rfc6902>.

 [RFC7285] Alimi, R., Ed., Penno, R., Ed., Yang, Y., Ed., Kiesel, S.,
 Previdi, S., Roome, W., Shalunov, S., and R. Woundy,

 "Application-Layer Traffic Optimization (ALTO) Protocol",
 RFC 7285, DOI 10.17487/RFC7285, September 2014,
 <https://www.rfc-editor.org/info/rfc7285>.

 [RFC7396] Hoffman, P. and J. Snell, "JSON Merge Patch", RFC 7396,
 DOI 10.17487/RFC7396, October 2014,
 <https://www.rfc-editor.org/info/rfc7396>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [SSE] Hickson, I., "Server-Sent Events", W3C Recommendation,
 February 2015, <https://www.w3.org/TR/eventsource/>.

14.2. Informative References

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
 RFC 4960, DOI 10.17487/RFC4960, September 2007,
 <https://www.rfc-editor.org/info/rfc4960>.

 [RFC5789] Dusseault, L. and J. Snell, "PATCH Method for HTTP",
 RFC 5789, DOI 10.17487/RFC5789, March 2010,
 <https://www.rfc-editor.org/info/rfc5789>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

Acknowledgments

 Thank you to Dawn Chen (Tongji University), Shawn Lin (Tongji
 University), and Xiao Shi (Yale University) for their contributions
 to an earlier version of this document.

Contributors

 Sections 2, 5.1, 5.2, and 8.5 of this document are based on
 contributions from Jingxuan Jensen Zhang, and he is considered an
 author.

Authors’ Addresses

 Wendy Roome
 Nokia Bell Labs (Retired)
 124 Burlington Rd
 Murray Hill, NJ 07974
 United States of America

 Phone: +1-908-464-6975
 Email: wendy@wdroome.com

 Y. Richard Yang
 Yale University

 51 Prospect St
 New Haven, CT
 United States of America

 Email: yry@cs.yale.edu

