
ï»¿

Internet Engineering Task Force (IETF) T. Watteyne, Ed.
Request for Comments: 8930 Analog Devices
Category: Standards Track P. Thubert, Ed.
ISSN: 2070-1721 Cisco Systems
 C. Bormann
 UniversitÃ¤t Bremen TZI
 November 2020

 On Forwarding 6LoWPAN Fragments over a Multi-Hop IPv6 Network

Abstract

 This document provides generic rules to enable the forwarding of an
 IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) fragment
 over a route-over network. Forwarding fragments can improve both
 end-to-end latency and reliability as well as reduce the buffer
 requirements in intermediate nodes; it may be implemented using RFC
 4944 and Virtual Reassembly Buffers (VRBs).

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc8930.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 2. Terminology
 2.1. Requirements Language
 2.2. Background
 2.3. New Terms
 3. Overview of 6LoWPAN Fragmentation
 4. Limitations of Per-Hop Fragmentation and Reassembly
 4.1. Latency
 4.2. Memory Management and Reliability
 5. Forwarding Fragments
 6. Virtual Reassembly Buffer (VRB) Implementation
 7. Security Considerations
 8. IANA Considerations
 9. References
 9.1. Normative References
 9.2. Informative References

 Acknowledgments
 Authors’ Addresses

1. Introduction

 The original 6LoWPAN fragmentation is defined in [RFC4944] for use
 over a single Layer 3 hop, though multiple Layer 2 hops in a mesh-
 under network is also possible, and was not modified by the update in
 [RFC6282]. 6LoWPAN operations including fragmentation depend on a
 link-layer security that prevents any rogue access to the network.

 In a route-over 6LoWPAN network, an IP packet is expected to be
 reassembled at each intermediate hop, uncompressed, pushed to Layer 3
 to be routed, and then compressed and fragmented again. This
 document introduces an alternate approach called 6LoWPAN Fragment
 Forwarding (6LFF) whereby an intermediate node forwards a fragment
 (or the bulk thereof, MTU permitting) without reassembling if the
 next hop is a similar 6LoWPAN link. The routing decision is made on
 the first fragment of the datagram, which has the IPv6 routing
 information. The first fragment is forwarded immediately, and a
 state is stored to enable forwarding the next fragments along the
 same path.

 Done right, 6LoWPAN Fragment Forwarding techniques lead to more
 streamlined operations, less buffer bloat, and lower latency. But it
 may be wasteful when fragments are missing, leading to locked
 resources and low throughput, and it may be misused to the point that
 the end-to-end latency of one packet falls behind that of per-hop
 reassembly.

 This specification provides a generic overview of 6LFF, discusses
 advantages and caveats, and introduces a particular 6LFF technique
 called "Virtual Reassembly Buffer" (VRB) that can be used while
 retaining the message formats defined in [RFC4944]. Basic
 recommendations such as the insertion of an inter-frame gap between
 fragments are provided to avoid the most typical caveats.

2. Terminology

2.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2.2. Background

 Past experience with fragmentation, e.g., as described in "IPv4
 Reassembly Errors at High Data Rates" [RFC4963] and references
 therein, has shown that misassociated or lost fragments can lead to
 poor network behavior and, occasionally, trouble at the application
 layer. That experience led to the definition of the "Path MTU
 Discovery for IP version 6" [RFC8201] protocol that limits
 fragmentation over the Internet.

 "IP Fragmentation Considered Fragile" [RFC8900] discusses security
 threats that are linked to using IP fragmentation. The 6LoWPAN
 fragmentation takes place underneath the IP Layer, but some issues
 described there may still apply to 6LoWPAN fragments (as discussed in
 further details in Section 7).

 Readers are expected to be familiar with all the terms and concepts
 that are discussed in "IPv6 over Low-Power Wireless Personal Area
 Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and
 Goals" [RFC4919] and "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks" [RFC4944].

 "Multiprotocol Label Switching Architecture" [RFC3031] states that
 with MPLS,

 | packets are "labeled" before they are forwarded. At subsequent
 | hops, there is no further analysis of the packet’s network layer
 | header. Rather, the label is used as an index into a table which
 | specifies the next hop, and a new label.

 The MPLS technique is leveraged in the present specification to
 forward fragments that actually do not have a network-layer header,
 since the fragmentation occurs below IP.

2.3. New Terms

 This specification uses the following terms:

 6LoWPAN Fragment Forwarding Endpoints: The 6LFF endpoints are the
 first and last nodes in an unbroken string of 6LFF nodes. They
 are also the only points where the fragmentation and reassembly
 operations take place.

 Compressed Form: This specification uses the generic term
 "compressed form" to refer to the format of a datagram after the
 action of [RFC6282] and possibly [RFC8138] for Routing Protocol
 for Low-Power and Lossy Network (RPL) [RFC6550] artifacts.

 Datagram_Size: The size of the datagram in its compressed form
 before it is fragmented.

 Datagram_Tag: An identifier of a datagram that is locally unique to
 the Layer 2 sender. Associated with the link-layer address of the
 sender, this becomes a globally unique identifier for the datagram
 within the duration of its transmission.

 Fragment_Offset: The offset of a fragment of a datagram in its
 compressed form.

3. Overview of 6LoWPAN Fragmentation

 Figure 1 illustrates 6LoWPAN fragmentation. We assume node A
 forwards a packet to node B, possibly as part of a multi-hop route
 between 6LoWPAN Fragment Forwarding endpoints, which may be neither A
 nor B, though 6LoWPAN may compress the IP header better when they are
 both the 6LFF and the 6LoWPAN compression endpoints.

 +---+ +---+
 ... ---| A |-------------------->| B |--- ...
 +---+ +---+
 # (frag. 5)

 123456789 123456789
 +---------+ +---------+
 | # ###| |### # |
 +---------+ +---------+
 outgoing incoming
 fragmentation reassembly
 buffer buffer

 Figure 1: Fragmentation at Node A, and Reassembly at Node B

 Typically, node A starts with an uncompressed packet and compacts the
 IPv6 packet using the header compression mechanism defined in
 [RFC6282]. If the resulting 6LoWPAN packet does not fit into a
 single link-layer frame, node A’s 6LoWPAN sub-layer cuts it into
 multiple 6LoWPAN fragments, which it transmits as separate link-layer
 frames to node B. Node B’s 6LoWPAN sub-layer reassembles these
 fragments, inflates the compressed header fields back to the original
 IPv6 header, and hands over the full IPv6 packet to its IPv6 layer.

 In Figure 1, a packet forwarded by node A to node B is cut into nine
 fragments, numbered 1 to 9 as follows:

 * Each fragment is represented by the ’#’ symbol.

 * Node A has sent fragments 1, 2, 3, 5, and 6 to node B.

 * Node B has received fragments 1, 2, 3, and 6 from node A.

 * Fragment 5 is still being transmitted at the link layer from node
 A to node B.

 The reassembly buffer for 6LoWPAN is indexed in node B by:

 * a unique identifier of node A (e.g., node A’s link-layer address).

 * the Datagram_Tag chosen by node A for this fragmented datagram.

 Because it may be hard for node B to correlate all possible link-
 layer addresses that node A may use (e.g., short versus long
 addresses), node A must use the same link-layer address to send all
 the fragments of the same datagram to node B.

 Conceptually, the reassembly buffer in node B contains:

 * a Datagram_Tag as received in the incoming fragments, associated
 with the interface and the link-layer address of node A for which
 the received Datagram_Tag is unique,

 * the actual packet data from the fragments received so far, in a
 form that makes it possible to detect when the whole packet has
 been received and can be processed or forwarded,

 * a state indicating the fragments already received,

 * a Datagram_Size, and

 * a timer that allows discarding a partially reassembled packet
 after some timeout.

 A fragmentation header is added to each fragment; it indicates what
 portion of the packet that fragment corresponds to. Section 5.3 of
 [RFC4944] defines the format of the header for the first and
 subsequent fragments. All fragments are tagged with a 16-bit
 "Datagram_Tag", used to identify which packet each fragment belongs
 to. Each datagram can be uniquely identified by the sender link-
 layer addresses of the frame that carries it and the Datagram_Tag
 that the sender allocated for this datagram. [RFC4944] also mandates
 that the first fragment is sent first and with a particular format
 that is different than that of the next fragments. Each fragment
 except for the first one can be identified within its datagram by the
 datagram-offset.

 Node B’s typical behavior, per [RFC4944], is as follows. Upon
 receiving a fragment from node A with a Datagram_Tag previously
 unseen from node A, node B allocates a buffer large enough to hold
 the entire packet. The length of the packet is indicated in each
 fragment (the Datagram_Size field), so node B can allocate the buffer
 even if the fragment it receives first is not the first fragment. As
 fragments come in, node B fills the buffer. When all fragments have
 been received, node B inflates the compressed header fields into an
 IPv6 header and hands the resulting IPv6 packet to the IPv6 layer,
 which performs the route lookup. This behavior typically results in
 per-hop fragmentation and reassembly. That is, the packet is fully
 reassembled, then (re-)fragmented, at every hop.

4. Limitations of Per-Hop Fragmentation and Reassembly

 There are at least two limitations to doing per-hop fragmentation and
 reassembly. See [ARTICLE] for detailed simulation results on both
 limitations.

4.1. Latency

 When reassembling, a node needs to wait for all the fragments to be

 received before being able to re-form the IPv6 packet and possibly
 forwarding it to the next hop. This repeats at every hop.

 This may result in increased end-to-end latency compared to a case
 where each fragment is forwarded without per-hop reassembly.

4.2. Memory Management and Reliability

 Constrained nodes have limited memory. Assuming a reassembly buffer
 for a 6LoWPAN MTU of 1280 bytes as defined in Section 4 of [RFC4944],
 typical nodes only have enough memory for 1-3 reassembly buffers.

 To illustrate this, we use the topology from Figure 2, where nodes A,
 B, C, and D all send packets through node E. We further assume that
 node E’s memory can only hold 3 reassembly buffers.

 +---+ +---+
 ... --->| A |------>| B |
 +---+ +---+\
 \
 +---+ +---+
 | E |--->| F | ...
 +---+ +---+
 /
 /
 +---+ +---+
 ... --->| C |------>| D |
 +---+ +---+

 Figure 2: Illustrating the Memory Management Issue

 When nodes A, B, and C concurrently send fragmented packets, all
 three reassembly buffers in node E are occupied. If, at that moment,
 node D also sends a fragmented packet, node E has no option but to
 drop one of the packets, lowering end-to-end reliability.

5. Forwarding Fragments

 A 6LoWPAN Fragment Forwarding technique makes the routing decision on
 the first fragment, which is always the one with the IPv6 address of
 the destination. Upon receiving a first fragment, a forwarding node
 (e.g., node B in an A->B->C sequence) that does fragment forwarding
 MUST attempt to create a state and forward the fragment. This is an
 atomic operation, and if the first fragment cannot be forwarded, then
 the state MUST be removed.

 Since the Datagram_Tag is uniquely associated with the source link-
 layer address of the fragment, the forwarding node MUST assign a new
 Datagram_Tag from its own namespace for the next hop and rewrite the
 fragment header of each fragment with that Datagram_Tag.

 When a forwarding node receives a fragment other than a first
 fragment, it MUST look up state based on the source link-layer
 address and the Datagram_Tag in the received fragment. If no such
 state is found, the fragment MUST be dropped; otherwise, the fragment
 MUST be forwarded using the information in the state found.

 Compared to Section 3, the conceptual reassembly buffer in node B now
 contains the following, assuming that node B is neither the source
 nor the final destination:

 * a Datagram_Tag as received in the incoming fragments, associated
 with the interface and the link-layer address of node A for which
 the received Datagram_Tag is unique.

 * the link-layer address that node B uses as the source to forward
 the fragments.

 * the interface and the link-layer address of the next-hop C that is
 resolved on the first fragment.

 * a Datagram_Tag that node B uniquely allocated for this datagram
 and that is used when forwarding the fragments of the datagram.

 * a buffer for the remainder of a previous fragment left to be sent.

 * a timer that allows discarding the stale 6LFF state after some
 timeout. The duration of the timer should be longer than that
 which covers the reassembly at the receiving endpoint.

 A node that has not received the first fragment cannot forward the
 next fragments. This means that if node B receives a fragment, node
 A was in possession of the first fragment at some point. To keep the
 operation simple and consistent with [RFC4944], the first fragment
 MUST always be sent first. When that is done, if node B receives a
 fragment that is not the first and for which it has no state, then
 node B treats it as an error and refrains from creating a state or
 attempting to forward. This also means that node A should perform
 all its possible retries on the first fragment before it attempts to
 send the next fragments, and that it should abort the datagram and
 release its state if it fails to send the first fragment.

 Fragment forwarding obviates some of the benefits of the 6LoWPAN
 header compression [RFC6282] in intermediate hops. In return, the
 memory used to store the packet is distributed along the path, which
 limits the buffer-bloat effect. Multiple fragments may progress
 simultaneously along the network as long as they do not interfere.
 An associated caveat is that on a half-duplex radio, if node A sends
 the next fragment at the same time as node B forwards the previous
 fragment to node C down the path, then node B will miss it. If node
 C forwards the previous fragment to node D at the same time and on
 the same frequency as node A sends the next fragment to node B, this
 may result in a hidden terminal problem. In that case, the
 transmission from node C interferes at node B with that from node A,
 unbeknownst to node A. Consecutive fragments of a same datagram MUST
 be separated with an inter-frame gap that allows one fragment to
 progress beyond the next hop and beyond the interference domain
 before the next shows up. This can be achieved by interleaving
 packets or fragments sent via different next-hop routers.

6. Virtual Reassembly Buffer (VRB) Implementation

 The VRB [LWIG-VRB] is a particular incarnation of a 6LFF that can be
 implemented without a change to [RFC4944].

 VRB overcomes the limitations listed in Section 4. Nodes do not wait
 for the last fragment before forwarding, reducing end-to-end latency.
 Similarly, the memory footprint of VRB is just the VRB table,
 reducing the packet drop probability significantly.

 However, there are other caveats:

 Non-zero Packet Drop Probability: The abstract data in a VRB table
 entry contains at a minimum the link-layer address of the
 predecessor and the successor, the Datagram_Tag used by the
 predecessor, and the local Datagram_Tag that this node will swap
 with it. The VRB may need to store a few octets from the last
 fragment that may not have fit within MTU and that will be
 prepended to the next fragment. This yields a small footprint
 that is 2 orders of magnitude smaller, compared to needing a
 1280-byte reassembly buffer for each packet. Yet, the size of the
 VRB table necessarily remains finite. In the extreme case where a
 node is required to concurrently forward more packets than it has
 entries in its VRB table, packets are dropped.

 No Fragment Recovery: There is no mechanism in VRB for the node that
 reassembles a packet to request a single missing fragment.
 Dropping a fragment requires the whole packet to be resent. This
 causes unnecessary traffic, as fragments are forwarded even when
 the destination node can never construct the original IPv6 packet.

 No Per-Fragment Routing: All subsequent fragments follow the same

 sequence of hops from the source to the destination node as the
 first fragment, because the IP header is required in order to
 route the fragment and is only present in the first fragment. A
 side effect is that the first fragment must always be forwarded
 first.

 The severity and occurrence of these caveats depend on the link layer
 used. Whether they are acceptable depends entirely on the
 requirements the application places on the network.

 If the caveats are present and not acceptable for the application,
 alternative specifications may define new protocols to overcome them.
 One example is [RFC8931], which specifies a 6LFF technique that
 allows the end-to-end fragment recovery between the 6LFF endpoints.

7. Security Considerations

 An attacker can perform a Denial-of-Service (DoS) attack on a node
 implementing VRB by generating a large number of bogus "fragment 1"
 fragments without sending subsequent fragments. This causes the VRB
 table to fill up. Note that the VRB does not need to remember the
 full datagram as received so far but only possibly a few octets from
 the last fragment that could not fit in it. It is expected that an
 implementation protects itself to keep the number of VRBs within
 capacity, and that old VRBs are protected by a timer of a reasonable
 duration for the technology and destroyed upon timeout.

 Secure joining and the link-layer security that it sets up protects
 against those attacks from network outsiders.

 "IP Fragmentation Considered Fragile" [RFC8900] discusses security
 threats and other caveats that are linked to using IP fragmentation.
 The 6LoWPAN fragmentation takes place underneath the IP Layer, but
 some issues described there may still apply to 6LoWPAN fragments.

 * Overlapping fragment attacks are possible with 6LoWPAN fragments,
 but there is no known firewall operation that would work on
 6LoWPAN fragments at the time of this writing, so the exposure is
 limited. An implementation of a firewall SHOULD NOT forward
 fragments but instead should recompose the IP packet, check it in
 the uncompressed form, and then forward it again as fragments if
 necessary. Overlapping fragments are acceptable as long as they
 contain the same payload. The firewall MUST drop the whole packet
 if overlapping fragments are encountered that result in different
 data at the same offset.

 * Resource-exhaustion attacks are certainly possible and a sensitive
 issue in a constrained network. An attacker can perform a DoS
 attack on a node implementing VRB by generating a large number of
 bogus first fragments without sending subsequent fragments. This
 causes the VRB table to fill up. When hop-by-hop reassembly is
 used, the same attack can be more damaging if the node allocates a
 full Datagram_Size for each bogus first fragment. With the VRB,
 the attack can be performed remotely on all nodes along a path,
 but each node suffers a lesser hit. This is because the VRB does
 not need to remember the full datagram as received so far but only
 possibly a few octets from the last fragment that could not fit in
 it. An implementation MUST protect itself to keep the number of
 VRBs within capacity and to ensure that old VRBs are protected by
 a timer of a reasonable duration for the technology and destroyed
 upon timeout.

 * Attacks based on predictable fragment identification values are
 also possible but can be avoided. The Datagram_Tag SHOULD be
 assigned pseudorandomly in order to reduce the risk of such
 attacks. A larger size of the Datagram_Tag makes the guessing
 more difficult and reduces the chances of an accidental reuse
 while the original packet is still in flight, at the expense of
 more space in each frame. Nonetheless, some level of risk remains
 because an attacker that is able to authenticate to and send
 traffic on the network can guess a valid Datagram_Tag value, since

 there are only a limited number of possible values.

 * Evasion of Network Intrusion Detection Systems (NIDSs) leverages
 ambiguity in the reassembly of the fragment. This attack makes
 little sense in the context of this specification since the
 fragmentation happens within the Low-Power and Lossy Network
 (LLN), meaning that the intruder should already be inside to
 perform the attack. NIDS systems would probably not be installed
 within the LLN either but rather at a bottleneck at the exterior
 edge of the network.

8. IANA Considerations

 This document has no IANA actions.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4919] Kushalnagar, N., Montenegro, G., and C. Schumacher, "IPv6
 over Low-Power Wireless Personal Area Networks (6LoWPANs):
 Overview, Assumptions, Problem Statement, and Goals",
 RFC 4919, DOI 10.17487/RFC4919, August 2007,
 <https://www.rfc-editor.org/info/rfc4919>.

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007,
 <https://www.rfc-editor.org/info/rfc4944>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

9.2. Informative References

 [ARTICLE] Tanaka, Y., Minet, P., and T. Watteyne, "6LoWPAN Fragment
 Forwarding", IEEE Communications Standards Magazine, Vol.
 3, Issue 1, pp. 35-39, DOI 10.1109/MCOMSTD.2019.1800029,
 March 2019,
 <https://ieeexplore.ieee.org/abstract/document/8771317>.

 [LWIG-VRB] Bormann, C. and T. Watteyne, "Virtual reassembly buffers
 in 6LoWPAN", Work in Progress, Internet-Draft, draft-ietf-
 lwig-6lowpan-virtual-reassembly-02, 9 March 2020,
 <https://tools.ietf.org/html/draft-ietf-lwig-6lowpan-
 virtual-reassembly-02>.

 [RFC3031] Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol
 Label Switching Architecture", RFC 3031,
 DOI 10.17487/RFC3031, January 2001,
 <https://www.rfc-editor.org/info/rfc3031>.

 [RFC4963] Heffner, J., Mathis, M., and B. Chandler, "IPv4 Reassembly
 Errors at High Data Rates", RFC 4963,
 DOI 10.17487/RFC4963, July 2007,
 <https://www.rfc-editor.org/info/rfc4963>.

 [RFC6282] Hui, J., Ed. and P. Thubert, "Compression Format for IPv6
 Datagrams over IEEE 802.15.4-Based Networks", RFC 6282,
 DOI 10.17487/RFC6282, September 2011,
 <https://www.rfc-editor.org/info/rfc6282>.

 [RFC6550] Winter, T., Ed., Thubert, P., Ed., Brandt, A., Hui, J.,
 Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur,
 JP., and R. Alexander, "RPL: IPv6 Routing Protocol for

 Low-Power and Lossy Networks", RFC 6550,
 DOI 10.17487/RFC6550, March 2012,
 <https://www.rfc-editor.org/info/rfc6550>.

 [RFC8138] Thubert, P., Ed., Bormann, C., Toutain, L., and R. Cragie,
 "IPv6 over Low-Power Wireless Personal Area Network
 (6LoWPAN) Routing Header", RFC 8138, DOI 10.17487/RFC8138,
 April 2017, <https://www.rfc-editor.org/info/rfc8138>.

 [RFC8201] McCann, J., Deering, S., Mogul, J., and R. Hinden, Ed.,
 "Path MTU Discovery for IP version 6", STD 87, RFC 8201,
 DOI 10.17487/RFC8201, July 2017,
 <https://www.rfc-editor.org/info/rfc8201>.

 [RFC8900] Bonica, R., Baker, F., Huston, G., Hinden, R., Troan, O.,
 and F. Gont, "IP Fragmentation Considered Fragile",
 BCP 230, RFC 8900, DOI 10.17487/RFC8900, September 2020,
 <https://www.rfc-editor.org/info/rfc8900>.

 [RFC8931] Thubert, P., Ed., "IPv6 over Low-Power Wireless Personal
 Area Network (6LoWPAN) Selective Fragment Recovery",
 RFC 8931, DOI 10.17487/RFC8931, November 2020,
 <https://www.rfc-editor.org/info/rfc8931>.

Acknowledgments

 The authors would like to thank Carles Gomez Montenegro, Yasuyuki
 Tanaka, Ines Robles, and Dave Thaler for their in-depth review of
 this document and suggestions for improvement. Many thanks to
 Georgios Papadopoulos and Dominique Barthel for their contributions
 during the WG activities. And many thanks as well to Roman Danyliw,
 Barry Leiba, Murray Kucherawy, Derrell Piper, Sarah Banks, Joerg Ott,
 Francesca Palombini, Mirja KÃ¼hlewind, Ã\211ric Vyncke, and especially
 Benjamin Kaduk for their constructive reviews through the IETF last
 call and IESG process.

Authors’ Addresses

 Thomas Watteyne (editor)
 Analog Devices
 32990 Alvarado-Niles Road, Suite 910
 Union City, CA 94587
 United States of America

 Email: thomas.watteyne@analog.com

 Pascal Thubert (editor)
 Cisco Systems, Inc
 Building D
 45 Allee des Ormes - BP1200
 06254 Mougins - Sophia Antipolis
 France

 Phone: +33 497 23 26 34
 Email: pthubert@cisco.com

 Carsten Bormann
 UniversitÃ¤t Bremen TZI
 Postfach 330440
 D-28359 Bremen
 Germany

 Phone: +49-421-218-63921
 Email: cabo@tzi.org

