
ï»¿

Internet Engineering Task Force (IETF)                   P. Thubert, Ed.
Request for Comments: 8931                                 Cisco Systems
Updates: 4944                                              November 2020
Category: Standards Track                                               
ISSN: 2070-1721

 IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Selective
                           Fragment Recovery

Abstract
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1.  Introduction

   In most Low-Power and Lossy Network (LLN) applications, the bulk of
   the traffic consists of small chunks of data (on the order of a few
   bytes to a few tens of bytes) at a time.  Given that an IEEE Std
   802.15.4 [IEEE.802.15.4] frame can carry a payload of 74 bytes or
   more, fragmentation is usually not required.  However, and though
   this happens only occasionally, a number of mission-critical
   applications do require the capability to transfer larger chunks of
   data, for instance, to support the firmware upgrade of the LLN nodes
   or the extraction of logs from LLN nodes.

   In the former case, the large chunk of data is transferred to the LLN
   node, whereas in the latter case, the large chunk flows away from the
   LLN node.  In both cases, the size can be on the order of 10 KB or
   more, and an end-to-end reliable transport is required.

   "Transmission of IPv6 Packets over IEEE 802.15.4 Networks" [RFC4944]
   defines the original IPv6 over Low-Power Wireless Personal Area
   Network (6LoWPAN) datagram fragmentation mechanism for LLNs.  One
   critical issue with this original design is that routing an IPv6
   [RFC8200] packet across a route-over mesh requires the reassembly of
   the packet at each hop.  "An Architecture for IPv6 over the TSCH mode
   of IEEE 802.15.4" [6TiSCH] indicates that this may cause latency
   along a path and impact critical resources such as memory and
   battery; to alleviate those undesirable effects, it recommends using
   a 6LoWPAN Fragment Forwarding (6LFF) technique.

   "On Forwarding 6LoWPAN Fragments over a Multihop IPv6 Network"
   [RFC8930] specifies the generic behavior that all 6LFF techniques
   including this specification follow, and it presents the associated
   caveats.  In particular, the routing information is fully indicated
   in the first fragment, which is always forwarded first.  With this
   specification, the first fragment is identified by a Sequence of 0 as
   opposed to a dispatch type in [RFC4944].  A state is formed and used
   to forward all the next fragments along the same path.  The
   Datagram_Tag is locally significant to the Layer 2 source of the
   packet and is swapped at each hop; see Section 6.  This specification
   encodes the Datagram_Tag in 1 byte, which will saturate if more than
   256 datagrams transit in fragmented form over a single hop at the
   same time.  This is not realistic at the time of this writing.
   Should this happen in a new 6LoWPAN technology, a node will need to
   use several link-layer addresses to increase its indexing capacity.

   "Virtual reassembly buffers in 6LoWPAN" [LWIG-FRAG] proposes a 6LFF
   technique that is compatible with [RFC4944] without the need to
   define a new protocol.  However, adding that capability alone to the
   local implementation of the original 6LoWPAN fragmentation would not
   address the inherent fragility of fragmentation (see [RFC8900]), in
   particular, the issues of resources locked on the reassembling
   endpoint and the wasted transmissions due to the loss of a single
   fragment in a whole datagram.  [Kent] compares the unreliable
   delivery of fragments with a mechanism it calls "selective
   acknowledgments" that recovers the loss of a fragment individually.
   The paper illustrates the benefits that can be derived from such a
   method; see Figures 1, 2, and 3 in Section 2.3 of [Kent].  [RFC4944]



   has no selective recovery, and the whole datagram fails when one
   fragment is not delivered to the reassembling endpoint.  Constrained
   memory resources are blocked on the reassembling endpoint until it
   times out, possibly causing the loss of subsequent packets that
   cannot be received for the lack of buffers.

   That problem is exacerbated when forwarding fragments over multiple
   hops since a loss at an intermediate hop will not be discovered by
   either the fragmenting or the reassembling endpoints.  Should this
   happen, the source will keep on sending fragments, wasting even more
   resources in the network since the datagram cannot arrive in its
   entirety, which possibly contributes to the condition that caused the
   loss.  [RFC4944] is lacking a congestion control to avoid
   participating in a saturation that may have caused the loss of the
   fragment.  It has no signaling to abort a multi-fragment transmission
   at any time and from either end, and if the capability to forward
   fragments is implemented, clean up the related state in the network.

   This specification provides a method to forward fragments over,
   typically, a few hops in a route-over 6LoWPAN mesh and a selective
   acknowledgment to recover individual fragments between 6LoWPAN
   endpoints.  The method can help limit the congestion loss in the
   network and addresses the requirements in Appendix B.  Flow control
   is out of scope since the endpoints are expected to be able to store
   the full datagram.  Deployments are expected to be managed and
   homogeneous, and an incremental transition requires a flag day.

2.  Terminology

2.1.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

2.2.  Background

   This document uses 6LoWPAN terms and concepts that are presented in
   "IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs):
   Overview, Assumptions, Problem Statement, and Goals" [RFC4919];
   "Transmission of IPv6 Packets over IEEE 802.15.4 Networks" [RFC4944];
   and "Problem Statement and Requirements for IPv6 over Low-Power
   Wireless Personal Area Network (6LoWPAN) Routing" [RFC6606].

   [RFC8930] discusses the generic concept of a Virtual Reassembly
   Buffer (VRB) and specifies behaviors and caveats that are common to a
   large family of 6LFF techniques including the mechanism specified by
   this document, which is fully inherited from that specification.  It
   also defines terms used in this document: Compressed Form,
   Datagram_Tag, Datagram_Size, Fragment_Offset, and 6LoWPAN Fragment
   Forwarding endpoint (commonly abbreviated as only "endpoint").

   Past experience with fragmentation has shown that misassociated or
   lost fragments can lead to poor network behavior and, occasionally,
   trouble at the application layer.  The reader is encouraged to read
   "IPv4 Reassembly Errors at High Data Rates" [RFC4963] and follow the
   references for more information.  That experience led to the
   definition of the "Path MTU Discovery for IP version 6" [RFC8201]
   protocol that limits fragmentation over the Internet.  Specifically,
   in the case of UDP, valuable additional information can be found in
   "UDP Usage Guidelines" [RFC8085].

   "The Benefits of Using Explicit Congestion Notification (ECN)"
   [RFC8087] provides useful information on the potential benefits and
   pitfalls of using ECN.

   Quoting "Multiprotocol Label Switching Architecture" [RFC3031]:

   |  With MPLS, "packets are "labeled" before they are forwarded [along



   |  a Label Switched Path (LSP)].  At subsequent hops, there is no
   |  further analysis of the packet’s network layer header.  Rather,
   |  the label is used as an index into a table which specifies the
   |  next hop, and a new label".

   [RFC8930] leverages MPLS to forward fragments that actually do not
   have a network-layer header, since the fragmentation occurs below IP,
   and this specification makes it reversible so the reverse path can be
   followed as well.

2.3.  Other Terms

   This specification uses the following terms:

   RFRAG:  Recoverable Fragment

   RFRAG-ACK:  Recoverable Fragment Acknowledgment

   RFRAG Acknowledgment Request:  An RFRAG with the Acknowledgment
      Request flag ("X" flag) set.

   NULL bitmap:  Refers to a bitmap with all bits set to zero.

   FULL bitmap:  Refers to a bitmap with all bits set to one.

   Reassembling endpoint:  The receiving endpoint.

   Fragmenting endpoint:  The sending endpoint.

   Forward direction:  The direction of a path, which is followed by the
      RFRAG.

   Reverse direction:  The reverse direction of a path, which is taken
      by the RFRAG-ACK.

3.  Updating RFC 4944

   This specification updates the fragmentation mechanism that is
   specified in [RFC4944] for use in route-over LLNs by providing a
   model where fragments can be forwarded end to end across a 6LoWPAN
   LLN and where fragments that are lost on the way can be recovered
   individually.  A new format for fragments is introduced, and new
   dispatch types are defined in Section 5.

   [RFC8138] allows modifying the size of a packet en route by removing
   the consumed hops in a compressed Routing Header.  This requires that
   Fragment_Offset and Datagram_Size (defined in Section 5.1) also be
   modified en route, which is difficult to do in the uncompressed form.
   This specification expresses those fields in the compressed form and
   allows modifying them en route easily (more in Section 4.4).

   To be consistent with Section 2 of [RFC6282], for the fragmentation
   mechanism described in Section 5.3 of [RFC4944], any header that
   cannot fit within the first fragment MUST NOT be compressed when
   using the fragmentation mechanism described in this specification.

4.  Extending RFC 8930

   This specification implements the generic 6LFF technique defined in
   [RFC8930] and provides end-to-end fragment recovery and congestion
   control mechanisms.

4.1.  Slack in the First Fragment

   [RFC8930] allows for a refragmentation operation in intermediate
   nodes, whereby the trailing bytes from a given fragment may be left
   in the VRB to be added as the heading bytes in the next fragment.
   This solves the case when the outgoing fragment needs more space than
   the incoming fragment; that case may arise when the 6LoWPAN header
   compression is not as efficient on the outgoing link or if the Link



   MTU is reduced.

   This specification cannot allow that refragmentation operation since
   the fragments are recovered end to end based on a sequence number.
   The Fragment_Size MUST be tailored to fit the minimal MTU along the
   path, and the first fragment that contains a 6LoWPAN compressed
   header MUST have enough slack to enable a less-efficient compression
   in the next hops to still fit within the Link MTU.

   For instance, if the fragmenting endpoint is also the 6LoWPAN
   compression endpoint, it will elide the Interface ID (IID) of the
   source IPv6 address when it matches the link-layer address [RFC6282].
   In that case, it MUST leave slack in the first fragment as the if MTU
   on the first hop was 8 bytes less, so the next hop can expand the IID
   within the same fragment within MTU.

4.2.  Gap between Frames

   [RFC8930] requires that a configurable interval of time be inserted
   between transmissions to the same next hop and, in particular,
   between fragments of a same datagram.  In the case of half duplex
   interfaces, this inter-frame gap ensures that the next hop is done
   forwarding the previous frame and is capable of receiving the next
   one.

   In the case of a mesh operating at a single frequency with
   omnidirectional antennas, a larger inter-frame gap is required to
   protect the frame against hidden terminal collisions with the
   previous frame of the same flow that is still progressing along a
   common path.

   The inter-frame gap is useful even for unfragmented datagrams, but it
   becomes a necessity for fragments that are typically generated in a
   fast sequence and are all sent over the exact same path.

4.3.  Congestion Control

   The inter-frame gap is the only protection that [RFC8930] imposes by
   default.  This document enables grouping fragments in windows and
   requesting intermediate acknowledgments, so the number of in-flight
   fragments can be bounded.  This document also adds an ECN mechanism
   that can be used to protect the network by adapting the size of the
   window, the size of the fragments, and/or the inter-frame gap.

   This specification enables the fragmenting endpoint to apply a
   congestion control mechanism to tune those parameters, but the
   mechanism itself is out of scope.  In most cases, the expectation is
   that most datagrams will require only a few fragments, and that only
   the last fragment will be acknowledged.  A basic implementation of
   the fragmenting endpoint is NOT REQUIRED to vary the size of the
   window, the duration of the inter-frame gap, or the size of a
   fragment in the middle of the transmission of a datagram, and it MAY
   ignore the ECN signal or simply reset the window to 1 (see
   Appendix C) until the end of this datagram upon detecting a
   congestion.

   An intermediate node that experiences a congestion MAY set the ECN
   bit in a fragment, and the reassembling endpoint echoes the ECN bit
   at most once at the next opportunity to acknowledge back.

   The size of the fragments is typically computed from the Link MTU to
   maximize the size of the resulting frames.  The size of the window
   and the duration of the inter-frame gap SHOULD be configurable, to
   reduce the chances of congestion and to follow the general
   recommendations in [RFC8930], respectively.

4.4.  Modifying the First Fragment

   The compression of the hop limit, of the source and destination
   addresses in the IPv6 header, and of the Routing Header, which are
   all in the first fragment, may change en route in a route-over mesh



   LLN.  If the size of the first fragment is modified, then the
   intermediate node MUST adapt the Datagram_Size, encoded in the
   Fragment_Size field, to reflect that difference.

   The intermediate node MUST also save the difference of Datagram_Size
   of the first fragment in the VRB and add it to the Fragment_Offset of
   all the subsequent fragments that it forwards for that datagram.  In
   the case of a Source Routing Header 6LoWPAN Routing Header (SRH-
   6LoRH) [RFC8138] being consumed and thus reduced, that difference is
   negative, meaning that the Fragment_Offset is decremented by the
   number of bytes that were consumed.

5.  New Dispatch Types and Headers

   This document specifies an alternative to the 6LoWPAN fragmentation
   sub-layer [RFC4944] to emulate a Link MTU up to 2048 bytes for the
   upper layer, which can be the 6LoWPAN header compression sub-layer
   that is defined in "Compression Format for IPv6 Datagrams over IEEE
   802.15.4-Based Networks" [RFC6282].  This specification also provides
   a reliable transmission of the fragments over a multi-hop 6LoWPAN
   route-over mesh network and a minimal congestion control to reduce
   the chances of congestion loss.

   A 6LoWPAN Fragment Forwarding [RFC8930] technique derived from MPLS
   enables the forwarding of individual fragments across a 6LoWPAN
   route-over mesh without reassembly at each hop.  The Datagram_Tag is
   used as a label; it is locally unique to the node that owns the
   source link-layer address of the fragment, so together the link-layer
   address and the label can identify the fragment globally within the
   lifetime of the datagram.  A node may build the Datagram_Tag in its
   own locally significant way, as long as the chosen Datagram_Tag stays
   unique to the particular datagram for its lifetime.  The result is
   that the label does not need to be globally unique, but it must be
   swapped at each hop as the source link-layer address changes.

   In the following sections, a Datagram_Tag extends the semantics
   defined in "Fragmentation Type and Header" (see Section 5.3 of
   [RFC4944]).  The Datagram_Tag is a locally unique identifier for the
   datagram from the perspective of the sender.  This means that the
   Datagram_Tag identifies a datagram uniquely in the network when
   associated with the source of the datagram.  As the datagram gets
   forwarded, the source changes, and the Datagram_Tag must be swapped
   as detailed in [RFC8930].

   This specification extends [RFC4944] with two new dispatch types for
   RFRAG and the RFRAG-ACK that is received back.  The new 6LoWPAN
   dispatch types are taken from [RFC8025], as indicated in Table 1 of
   Section 9.

5.1.  Recoverable Fragment Dispatch Type and Header

   In this specification, if the packet is compressed, the size and
   offset of the fragments are expressed with respect to the compressed
   form of the packet, as opposed to the uncompressed (native) form.

   The format of the fragment header is shown in Figure 1.  It is the
   same for all fragments even though the Fragment_Offset is overloaded.
   The format has a length and an offset, as well as a Sequence field.
   This would be redundant if the offset was computed as the product of
   the Sequence by the length, but this is not the case.  The position
   of a fragment in the reassembly buffer is correlated with neither the
   value of the Sequence field nor the order in which the fragments are
   received.  This enables splitting fragments to cope with an MTU
   deduction; see the example of fragment Sequence 5 that is retried end
   to end as smaller fragment Sequences 13 and 14 in Section 6.2.

   The first fragment is recognized by a Sequence of 0; it carries its
   Fragment_Size and the Datagram_Size of the compressed packet before
   it is fragmented, whereas the other fragments carry their
   Fragment_Size and Fragment_Offset.  The last fragment for a datagram
   is recognized when its Fragment_Offset and its Fragment_Size add up



   to the stored Datagram_Size of the packet identified by the sender
   link-layer address and the Datagram_Tag.

                              1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
                                       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                       |1 1 1 0 1 0 0|E|  Datagram_Tag |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |X| Sequence|   Fragment_Size   |       Fragment_Offset         |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                                                X set == Ack-Request

                  Figure 1: RFRAG Dispatch Type and Header

   X:  1 bit; Ack-Request.  When set, the fragmenting endpoint requires
      an RFRAG Acknowledgment from the reassembling endpoint.

   E:  1 bit; Explicit Congestion Notification.  The "E" flag is cleared
      by the source of the fragment and set by intermediate routers to
      signal that this fragment experienced congestion along its path.

   Fragment_Size:  10-bit unsigned integer.  The size of this fragment
      in a unit that depends on link-layer technology.  Unless
      overridden by a more specific specification, that unit is the
      byte, which allows fragments up to 1023 bytes.

   Datagram_Tag:  8 bits.  An identifier of the datagram that is locally
      unique to the link-layer sender.

   Sequence:  5-bit unsigned integer.  The sequence number of the
      fragment in the acknowledgment bitmap.  Fragments are numbered as
      [0..N], where N is in [0..31].  A Sequence of 0 indicates the
      first fragment in a datagram, but non-zero values are not
      indicative of the position in the reassembly buffer.

   Fragment_Offset:  16-bit unsigned integer.

      When the Fragment_Offset is set to a non-zero value, its semantics
      depend on the value of the Sequence field as follows:

      *  For a first fragment (i.e., with a Sequence of 0), this field
         indicates the Datagram_Size of the compressed datagram, to help
         the reassembling endpoint allocate an adapted buffer for the
         reception and reassembly operations.  The fragment may be
         stored for local reassembly.  Alternatively, it may be routed
         based on the destination IPv6 address.  In that case, a VRB
         state must be installed as described in Section 6.1.1.

      *  When the Sequence is not 0, this field indicates the offset of
         the fragment in the compressed form of the datagram.  The
         fragment may be added to a local reassembly buffer or forwarded
         based on an existing VRB as described in Section 6.1.2.

      A Fragment_Offset that is set to a value of 0 indicates an abort
      condition, and all states regarding the datagram should be cleaned
      up once the processing of the fragment is complete; the processing
      of the fragment depends on whether there is a VRB already
      established for this datagram and if the next hop is still
      reachable:

      *  if a VRB already exists and the next hop is still reachable,
         the fragment is to be forwarded along the associated LSP as
         described in Section 6.1.2, without checking the value of the
         Sequence field.

      *  else, if the Sequence is 0, then the fragment is to be routed
         as described in Section 6.1.1, but no state is conserved
         afterwards.  In that case, the session, if it exists, is
         aborted, and the packet is also forwarded in an attempt to
         clean up the next hops along the path indicated by the IPv6



         header (possibly including a Routing Header).

      *  else (the Sequence is non-zero and either no VRB exists or the
         next hop is unavailable), the fragment cannot be forwarded or
         routed; the fragment is discarded and an abort RFRAG-ACK is
         sent back to the source as described in Section 6.1.2.

   Recoverable Fragments are sequenced, and a bitmap is used in the
   RFRAG Acknowledgment to indicate the received fragments by setting
   the individual bits that correspond to their sequence.

   There is no requirement on the reassembling endpoint to check that
   the received fragments are consecutive and non-overlapping.  This may
   be useful, in particular, in the case where the MTU changes and a
   fragment Sequence is retried with a smaller Fragment_Size, with the
   remainder of the original fragment being retried with new Sequence
   values.  The fragmenting endpoint knows that the datagram is fully
   received when the acknowledged fragments cover the whole datagram,
   which is implied by a FULL bitmap.

5.2.  RFRAG Acknowledgment Dispatch Type and Header

   This specification also defines a 4-byte RFRAG Acknowledgment Bitmap
   that is used by the reassembling endpoint to selectively confirm the
   reception of individual fragments.  A given offset in the bitmap maps
   one to one with a given sequence number and indicates which fragment
   is acknowledged as follows:

                            1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |           RFRAG Acknowledgment Bitmap                         |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        ^                 ^
        |                 |    bitmap indicating whether:
        |                 +----- Fragment with Sequence 9 was received
        +----------------------- Fragment with Sequence 0 was received

               Figure 2: RFRAG Acknowledgment Bitmap Encoding

   Figure 3 shows an example RFRAG Acknowledgment Bitmap that indicates
   that all fragments from Sequence 0 to 20 were received, except for
   fragments 1, 2, and 16, which were lost and must be retried.

                            1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |1|0|0|1|1|1|1|1|1|1|1|1|1|1|1|1|0|1|1|1|1|0|0|0|0|0|0|0|0|0|0|0|
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 3: Example RFRAG Acknowledgment Bitmap

   The RFRAG Acknowledgment Bitmap is included in an RFRAG
   Acknowledgment header, as follows:

                            1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
                                       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                       |1 1 1 0 1 0 1|E|  Datagram_Tag |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |          RFRAG Acknowledgment Bitmap (32 bits)                |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

          Figure 4: RFRAG Acknowledgment Dispatch Type and Header

   E:  1 bit; Explicit Congestion Notification Echo.

      When set, the fragmenting endpoint indicates that at least one of
      the acknowledged fragments was received with an Explicit
      Congestion Notification, indicating that the path followed by the



      fragments is subject to congestion.  See more details in
      Appendix C.

   Datagram_Tag:  8 bits; an identifier of the datagram that is locally
      unique to the link-layer recipient.

   RFRAG Acknowledgment Bitmap:  An RFRAG Acknowledgment Bitmap, whereby
      setting the bit at offset x indicates that fragment x was
      received, as shown in Figure 2.  A NULL bitmap indicates that the
      fragmentation process is aborted.  A FULL bitmap indicates that
      the fragmentation process is complete; all fragments were received
      at the reassembly endpoint.

6.  Fragment Recovery

   The RFRAG header is used to transport a fragment and optionally
   request an RFRAG-ACK that confirms the reception of one or more
   fragments.  An RFRAG-ACK is carried as a standalone fragment header
   (i.e., with no 6LoWPAN payload) in a message that is propagated back
   to the fragmenting endpoint.  To achieve this, each hop that
   performed an MPLS-like operation on fragments reverses that operation
   for the RFRAG-ACK by sending a frame from the next hop to the
   previous hop as known by its link-layer address in the VRB.  The
   Datagram_Tag in the RFRAG-ACK is unique to the reassembling endpoint
   and is enough information for an intermediate hop to locate the VRB
   that contains the Datagram_Tag used by the previous hop and the Layer
   2 information associated with it (interface and link-layer address).

   The fragmenting endpoint (i.e., the node that fragments the packets
   at the 6LoWPAN level) also controls the number of acknowledgments by
   setting the Ack-Request flag in the RFRAG packets.

   The fragmenting endpoint may set the Ack-Request flag on any fragment
   to perform congestion control by limiting the number of outstanding
   fragments, which are the fragments that have been sent but for which
   reception or loss was not positively confirmed by the reassembling
   endpoint.  The maximum number of outstanding fragments is controlled
   by the Window-Size.  It is configurable and may vary in case of ECN
   notification.  When the endpoint that reassembles the packets at the
   6LoWPAN level receives a fragment with the Ack-Request flag set, it
   MUST send an RFRAG-ACK back to the originator to confirm reception of
   all the fragments it has received so far.

   The Ack-Request ("X") set in an RFRAG marks the end of a window.
   This flag MUST be set on the last fragment if the fragmenting
   endpoint wishes to perform an automatic repeat request (ARQ) process
   for the datagram, and it MAY be set in any intermediate fragment for
   the purpose of congestion control.

   This ARQ process MUST be protected by a Retransmission Timeout (RTO)
   timer, and the fragment that carries the "X" flag MAY be retried upon
   a timeout for a configurable number of times (see Section 7.1) with
   an exponential backoff.  Upon exhaustion of the retries, the
   fragmenting endpoint may either abort the transmission of the
   datagram or resend the first fragment with an "X" flag set in order
   to establish a new path for the datagram and obtain the list of
   fragments that were received over the old path in the acknowledgment
   bitmap.  When the fragmenting endpoint knows that an underlying link-
   layer mechanism protects the fragments, it may refrain from using the
   RFRAG Acknowledgment mechanism and never set the Ack-Request bit.

   The reassembling endpoint MAY issue unsolicited acknowledgments.  An
   unsolicited acknowledgment signals to the fragmenting endpoint that
   it can resume sending in case it has reached its maximum number of
   outstanding fragments.  Another use is to inform the fragmenting
   endpoint that the reassembling endpoint aborted the processing of an
   individual datagram.

   The RFRAG Acknowledgment carries an ECN indication for congestion
   control (see Appendix C).  The reassembling endpoint of a fragment
   with the "E" (ECN) flag set MUST echo that information at most once



   by setting the "E" (ECN) flag in the next RFRAG-ACK.

   In order to protect the datagram, the fragmenting endpoint transfers
   a controlled number of fragments and flags to the last fragment of a
   window with an RFRAG Acknowledgment Request.  The reassembling
   endpoint MUST acknowledge a fragment with the acknowledgment request
   bit set.  If any fragment immediately preceding an acknowledgment
   request is still missing, the reassembling endpoint MAY intentionally
   delay its acknowledgment to allow in-transit fragments to arrive.
   Because it might defeat the round-trip time computation, delaying the
   acknowledgment should be configurable and not enabled by default.

   When enough fragments are received to cover the whole datagram, the
   reassembling endpoint reconstructs the packet, passes it to the upper
   layer, sends an RFRAG-ACK on the reverse path with a FULL bitmap, and
   arms a short timer, e.g., on the order of an average round-trip time
   in the network.  The FULL bitmap is used as opposed to a bitmap that
   acknowledges only the received fragments to let the intermediate
   nodes know that the datagram is fully received.  As the timer runs,
   the reassembling endpoint absorbs the fragments that were still in
   flight for that datagram without creating a new state, acknowledging
   the ones that bear an Ack-Request with an FRAG Acknowledgment and the
   FULL bitmap.  The reassembling endpoint aborts the communication if
   fragments with a matching source and Datagram-Tag continue to be
   received after the timer expires.

   Note that acknowledgments might consume precious resources, so the
   use of unsolicited acknowledgments SHOULD be configurable and not
   enabled by default.

   An observation is that streamlining the forwarding of fragments
   generally reduces the latency over the LLN mesh, providing room for
   retries within existing upper-layer reliability mechanisms.  The
   fragmenting endpoint protects the transmission over the LLN mesh with
   a retry timer that is configured for a use case and may be adapted
   dynamically, e.g., according to the method detailed in [RFC6298].  It
   is expected that the upper-layer retry mechanism obeys the
   recommendations in [RFC8085], in which case a single round of
   fragment recovery should fit within the upper-layer recovery timers.

   Fragments MUST be sent in a round-robin fashion: the sender MUST send
   all the fragments for a first time before it retries any lost
   fragment; lost fragments MUST be retried in sequence, oldest first.
   This mechanism enables the receiver to acknowledge fragments that
   were delayed in the network before they are retried.

   When a single radio frequency is used by contiguous hops, the
   fragmenting endpoint SHOULD insert a delay between the frames (e.g.,
   carrying fragments) that are sent to the same next hop.  The delay
   SHOULD cover multiple transmissions so as to let a frame progress a
   few hops and avoid hidden terminal issues.  This precaution is not
   required on channel hopping technologies such as Time-Slotted Channel
   Hopping (TSCH) [RFC6554], where nodes that communicate at Layer 2 are
   scheduled to send and receive, respectively, and different hops
   operate on different channels.

6.1.  Forwarding Fragments

   This specification inherits from [RFC8930] and proposes a Virtual
   Reassembly Buffer technique to forward fragments with no intermediate
   reconstruction of the entire datagram.

   The IPv6 header MUST be placed in the first fragment in full to
   enable the routing decision.  The first fragment is routed and
   creates an LSP from the fragmenting endpoint to the reassembling
   endpoint.  The next fragments are label switched along that LSP.  As
   a consequence, the next fragments can only follow the path that was
   set up by the first fragment; they cannot follow an alternate route.
   The Datagram_Tag is used to carry the label, which is swapped in each
   hop.



   If the first fragment is too large for the path MTU, it will
   repeatedly fail and never establish an LSP.  In that case, the
   fragmenting endpoint MAY retry the same datagram with a smaller
   Fragment_Size, in which case it MUST abort the original attempt and
   use a new Datagram_Tag for the new attempt.

6.1.1.  Receiving the First Fragment

   In route-over mode, the source and destination link-layer addresses
   in a frame change at each hop.  The label that is formed and placed
   in the Datagram_Tag by the sender is associated with the source link-
   layer address and only valid (and temporarily unique) for that source
   link-layer address.

   Upon receiving the first fragment (i.e., with a Sequence of 0), an
   intermediate router creates a VRB and the associated LSP state
   indexed by the incoming interface, the previous-hop link-layer
   address, and the Datagram_Tag and forwards the fragment along the
   IPv6 route that matches the destination IPv6 address in the IPv6
   header until it reaches the reassembling endpoint, as prescribed by
   [RFC8930].  The LSP state enables matching the next incoming
   fragments of a datagram to the abstract forwarding information of the
   next interface, source and next-hop link-layer addresses, and the
   swapped Datagram_Tag.

   In addition, the router also forms a reverse LSP state indexed by the
   interface to the next hop, the link-layer address the router uses as
   source for that datagram, and the swapped Datagram_Tag.  This reverse
   LSP state enables matching the tuple (interface, destination link-
   layer address, Datagram_Tag) found in an RFRAG-ACK to the abstract
   forwarding information (previous interface, previous link-layer
   address, Datagram_Tag) used to forward the RFRAG-ACK back to the
   fragmenting endpoint.

6.1.2.  Receiving the Next Fragments

   Upon receiving the next fragment (i.e., with a non-zero Sequence), an
   intermediate router looks up an LSP indexed by the tuple (incoming
   interface, previous-hop link-layer address, Datagram_Tag) found in
   the fragment.  If it is found, the router forwards the fragment using
   the associated VRB as prescribed by [RFC8930].

   If the VRB for the tuple is not found, the router builds an RFRAG-ACK
   to abort the transmission of the packet.  The resulting message has
   the following information:

   *  The source and destination link-layer addresses are swapped from
      those found in the fragment, and the same interface is used

   *  The Datagram_Tag is set to the Datagram_Tag found in the fragment

   *  A NULL bitmap is used to signal the abort condition

   At this point, the router is all set and can send the RFRAG-ACK back
   to the previous router.  The RFRAG-ACK should normally be forwarded
   all the way to the source using the reverse LSP state in the VRBs in
   the intermediate routers as described in the next section.

   [RFC8930] indicates that the reassembling endpoint stores "the actual
   packet data from the fragments received so far, in a form that makes
   it possible to detect when the whole packet has been received and can
   be processed or forwarded".  How this is computed is implementation
   specific, but it relies on receiving all the bytes up to the
   Datagram_Size indicated in the first fragment.  An implementation may
   receive overlapping fragments as the result of retries after an MTU
   change.

6.2.  Receiving RFRAG Acknowledgments

   Upon receipt of an RFRAG-ACK, the router looks up a reverse LSP
   indexed by the interface and destination link-layer address of the



   received frame and the received Datagram_Tag in the RFRAG-ACK.  If it
   is found, the router forwards the fragment using the associated VRB
   as prescribed by [RFC8930], but it uses the reverse LSP so that the
   RFRAG-ACK flows back to the fragmenting endpoint.

   If the reverse LSP is not found, the router MUST silently drop the
   RFRAG-ACK message.

   Either way, if the RFRAG-ACK indicates that the fragment was entirely
   received (FULL bitmap), it arms a short timer, and upon timeout, the
   VRB and all the associated states are destroyed.  Until the timer
   elapses, fragments of that datagram may still be received, e.g., if
   the RFRAG-ACK was lost on the path back, and the source retried the
   last fragment.  In that case, the router generates an RFRAG-ACK with
   a FULL bitmap back to the fragmenting endpoint if an acknowledgment
   was requested; else, it silently drops the fragment.

   This specification does not provide a method to discover the number
   of hops or the minimal value of MTU along those hops.  In a typical
   case, the MTU is constant and is the same across the network.  But
   should the minimal MTU along the path decrease, it is possible to
   retry a long fragment (say a Sequence of 5) with several shorter
   fragments with a Sequence that was not used before (e.g., 13 and 14).
   Fragment 5 is marked as abandoned and will not be retried anymore.
   Note that when this mechanism is in place, it is hard to predict the
   total number of fragments that will be needed or the final shape of
   the bitmap that would cover the whole packet.  This is why the FULL
   bitmap is used when the reassembling endpoint gets the whole datagram
   regardless of which fragments were actually used to do so.
   Intermediate nodes will know unambiguously that the process is
   complete.  Note that Path MTU Discovery is out of scope for this
   document.

6.3.  Aborting the Transmission of a Fragmented Packet

   A reset is signaled on the forward path with a pseudo fragment that
   has the Fragment_Offset set to 0.  The sender of a reset SHOULD also
   set the Sequence and Fragment_Size field to 0.

   When the fragmenting endpoint or a router on the path decides that a
   packet should be dropped and the fragmentation process aborted, it
   generates a reset pseudo fragment and forwards it down the fragment
   path.

   Each router along the path forwards the pseudo fragment in turn based
   on the VRB state.  If an acknowledgment is not requested, the VRB and
   all associated states are destroyed.

   Upon reception of the pseudo fragment, the reassembling endpoint
   cleans up all resources for the packet associated with the
   Datagram_Tag.  If an acknowledgment is requested, the reassembling
   endpoint responds with a NULL bitmap.

   On the other hand, the reassembling endpoint might need to abort the
   processing of a fragmented packet for internal reasons, for instance,
   if it is out of reassembly buffers, already uses all 256 possible
   values of the Datagram_Tag, or keeps receiving fragments beyond a
   reasonable time while it considers that this packet is already fully
   reassembled and was passed to the upper layer.  In that case, the
   reassembling endpoint SHOULD indicate so to the fragmenting endpoint
   with a NULL bitmap in an RFRAG-ACK.

   The RFRAG-ACK is forwarded all the way back to the source of the
   packet and cleans up all resources on the path.  Upon an
   acknowledgment with a NULL bitmap, the fragmenting endpoint MUST
   abort the transmission of the fragmented datagram with one exception:
   in the particular case of the first fragment, it MAY decide to retry
   via an alternate next hop instead.

6.4.  Applying Recoverable Fragmentation along a Diverse Path



   The text above can be read with the assumption of a serial path
   between a source and a destination.  The IPv6 over the TSCH mode of
   IEEE 802.15.4e (6TiSCH) architecture (see Section 4.5.3 of [6TiSCH])
   defines the concept of a Track that can be a complex path between a
   source and a destination with Packet ARQ, Replication, Elimination,
   and Overhearing (PAREO) along the Track.  This specification can be
   used along any subset of the complex Track where the first fragment
   is flooded.  The last RFRAG Acknowledgment is flooded on that same
   subset in the reverse direction.  Intermediate RFRAG Acknowledgments
   can be flooded on any sub-subset of that reverse subset that reaches
   back to the source.

7.  Management Considerations

   This specification extends [RFC8930] and requires the same parameters
   in the reassembling endpoint and on intermediate nodes.  There is no
   new parameter as echoing ECN is always on.  These parameters
   typically include the reassembly timeout at the reassembling
   endpoint, an inactivity cleanup timer on the intermediate nodes, and
   the number of messages that can be processed in parallel in all
   nodes.

   The configuration settings introduced by this specification only
   apply to the fragmenting endpoint, which is in full control of the
   transmission.  LLNs vary a lot in size (there can be thousands of
   nodes in a mesh), in speed (from 10 Kbps to several Mbps at the PHY
   layer), in traffic density, and in optimizations that are desired
   (e.g., the selection of a Routing Protocol for LLNs (RPL) [RFC6550]
   Objective Function [RFC6552] impacts the shape of the routing graph).

   For that reason, only very generic guidance can be given on the
   settings of the fragmenting endpoint and on whether complex
   algorithms are needed to perform congestion control or to estimate
   the round-trip time.  To cover the most complex use cases, this
   specification enables the fragmenting endpoint to vary the fragment
   size, the window size, and the inter-frame gap based on the number of
   losses, the observed variations of the round-trip time, and the
   setting of the ECN bit.

7.1.  Protocol Parameters

   The management system SHOULD be capable of providing the parameters
   listed in this section, and an implementation MUST abide by those
   parameters and, in particular, never exceed the minimum and maximum
   configured boundaries.

   An implementation should consider the generic recommendations from
   the IETF in the matter of congestion control and rate management for
   IP datagrams in [RFC8085].  An implementation may perform congestion
   control by using a dynamic value of the window size (Window_Size),
   adapting the fragment size (Fragment_Size), and potentially reducing
   the load by inserting an inter-frame gap that is longer than
   necessary.  In a large network where nodes contend for the bandwidth,
   a larger Fragment_Size consumes less bandwidth but also reduces
   fluidity and incurs higher chances of loss in transmission.

   This is controlled by the following parameters:

   inter-frame gap:  The inter-frame gap indicates the minimum amount of
      time between transmissions.  The inter-frame gap controls the rate
      at which fragments are sent, the ratio of air time, and the amount
      of memory in intermediate nodes that a particular datagram will
      use.  It can be used as a flow control, a congestion control, and/
      or a collision control measure.  It MUST be set at a minimum to a
      value that protects the propagation of one transmission against
      collision with next [RFC8930].  In a wireless network that uses
      the same frequency along a path, this may represent the time for a
      frame to progress over multiple hops (see more in Section 4.2).
      It SHOULD be augmented beyond this as necessary to protect the
      network against congestion.



   MinFragmentSize:  The MinFragmentSize is the minimum value for the
      Fragment_Size.  It MUST be lower than the minimum value of
      smallest 1-hop MTU that can be encountered along the path.

   OptFragmentSize:  The OptFragmentSize is the value for the
      Fragment_Size that the fragmenting endpoint should use to start
      with.  It is greater than or equal to MinFragmentSize.  It is less
      than or equal to MaxFragmentSize.  For the first fragment, it must
      account for the expansion of the IPv6 addresses and of the Hop
      Limit field within MTU.  For all fragments, it is a balance
      between the expected fluidity and the overhead of link-layer and
      6LoWPAN headers.  For a small MTU, the idea is to keep it close to
      the maximum, whereas for larger MTUs, it might make sense to keep
      it short enough so that the duty cycle of the transmitter is
      bounded, e.g., to transmit at least 10 frames per second.

   MaxFragmentSize:  The MaxFragmentSize is the maximum value for the
      Fragment_Size.  It MUST be lower than the maximum value of the
      smallest 1-hop MTU that can be encountered along the path.  A
      large value augments the chances of buffer bloat and transmission
      loss.  The value MUST be less than 512 if the unit that is defined
      for the PHY layer is the byte.

   Window_Size:  The Window_Size MUST be at least 1 and less than 33.

      *  If the round-trip time is known, the Window_Size SHOULD be set
         to the round-trip time divided by the time per fragment; that
         is, the time to transmit a fragment plus the inter-frame gap.

      Otherwise:

      *  A window_size of 32 indicates that only the last fragment is to
         be acknowledged in each round.  This is the RECOMMENDED value
         in a half-duplex LLN where the fragment acknowledgment consumes
         roughly the same bandwidth on the same links as the fragments
         themselves.

      *  If it is set to a smaller value, more acks are generated.  In a
         full-duplex network, the load on the forward path will be
         lower, and a small value of 3 SHOULD be configured.

   An implementation may perform its estimate of the RTO or use a
   configured one.  The ARQ process is controlled by the following
   parameters:

   MinARQTimeOut:  The minimum amount of time a node should wait for an
      RFRAG Acknowledgment before it takes the next action.  It MUST be
      more than the maximum expected round-trip time in the respective
      network.

   OptARQTimeOut:  The initial value of the RTO, which is the amount of
      time that a fragmenting endpoint should wait for an RFRAG
      Acknowledgment before it takes the next action.  It is greater
      than or equal to MinARQTimeOut.  It is less than or equal to
      MaxARQTimeOut.  See Appendix C for recommendations on computing
      the round-trip time.  By default, a value of 3 times the maximum
      expected round-trip time in the respective network is RECOMMENDED.

   MaxARQTimeOut:  The maximum amount of time a node should wait for the
      RFRAG Acknowledgment before it takes the next action.  It must
      cover the longest expected round-trip time and be several times
      less than the timeout that covers the recomposition buffer at the
      reassembling endpoint, which is typically on the order of the
      minute.  An upper bound can be estimated to ensure that the
      datagram is either fully transmitted or dropped before an upper
      layer decides to retry it.

   MaxFragRetries:  The maximum number of retries for a particular
      fragment.  A default value of 3 is RECOMMENDED.  An upper bound
      can be estimated to ensure that the datagram is either fully
      transmitted or dropped before an upper layer decides to retry it.



   MaxDatagramRetries:  The maximum number of retries from scratch for a
      particular datagram.  A default value of 1 is RECOMMENDED.  An
      upper bound can be estimated to ensure that the datagram is either
      fully transmitted or dropped before an upper layer decides to
      retry it.

   An implementation may be capable of performing congestion control
   based on ECN; see Appendix C.  This is controlled by the following
   parameter:

   UseECN:  Indicates whether the fragmenting endpoint should react to
      ECN.  The fragmenting endpoint may react to ECN by varying the
      Window_Size between MinWindowSize and MaxWindowSize, varying the
      Fragment_Size between MinFragmentSize and MaxFragmentSize, and/or
      increasing or reducing the inter-frame gap.  With this
      specification, if UseECN is set and a fragmenting endpoint detects
      a congestion, it may apply a congestion control method until the
      end of the datagram, whereas if UseECN is reset, the endpoint does
      not react to congestion.  Future specifications may provide
      additional parameters and capabilities.

7.2.  Observing the Network

   The management system should monitor the number of retries and ECN
   settings that can be observed from the perspective of the fragmenting
   endpoint with respect to the reassembling endpoint and reciprocally.
   It may then tune the optimum size of Fragment_Size and of
   Window_Size, OptFragmentSize, and OptWindowSize, respectively, at the
   fragmenting endpoint towards a particular reassembling endpoint,
   which is applicable to the next datagrams.  It will preferably tune
   the inter-frame gap to increase the spacing between fragments of the
   same datagram and reduce the buffer bloat in the intermediate node
   that holds one or more fragments of that datagram.

8.  Security Considerations

   This document specifies an instantiation of a 6LFF technique and
   inherits from the generic description in [RFC8930].  The
   considerations in the Security Considerations section of [RFC8930]
   equally apply to this document.

   In addition to the threats detailed therein, an attacker that is on
   path can prematurely end the transmission of a datagram by sending a
   RFRAG Acknowledgment to the fragmenting endpoint.  It can also cause
   extra transmissions of fragments by resetting bits in the RFRAG
   Acknowledgment Bitmap and of RFRAG Acknowledgments by forcing the
   Ack-Request bit in fragments that it forwards.

   As indicated in [RFC8930], secure joining and link-layer security are
   REQUIRED to protect against those attacks, as the fragmentation
   protocol does not include any native security mechanisms.

   This specification does not recommend a particular algorithm for the
   estimation of the duration of the RTO that covers the detection of
   the loss of a fragment with the "X" flag set; regardless, an attacker
   on the path may slow down or discard packets, which in turn can
   affect the throughput of fragmented packets.

   Compared to [RFC4944], this specification reduces the Datagram_Tag to
   8 bits, and the tag wraps faster than with [RFC4944].  But for a
   constrained network where a node is expected to be able to hold only
   one or a few large packets in memory, 256 is still a large number.
   Also, the acknowledgment mechanism allows cleaning up the state
   rapidly once the packet is fully transmitted or aborted.

   The abstract Virtual Recovery Buffer from [RFC8930] may be used to
   perform a Denial-of-Service (DoS) attack against the intermediate
   routers since the routers need to maintain a state per flow.  The
   particular VRB implementation technique described in [LWIG-FRAG]
   allows realigning which data goes in which fragment; this causes the



   intermediate node to store a portion of the data, which adds an
   attack vector that is not present with this specification.  With this
   specification, the data that is transported in each fragment is
   conserved, and the state to keep does not include any data that would
   not fit in the previous fragment.

9.  IANA Considerations

   This document allocates two patterns for a total of four dispatch
   values for Recoverable Fragments from the "Dispatch Type Field"
   registry that was created by [RFC4944] and reformatted by "IPv6 over
   Low-Power Wireless Personal Area Network (6LoWPAN) Paging Dispatch"
   [RFC8025].

   +-------------+------+----------------------------------+-----------+
   | Bit Pattern | Page | Header Type                      | Reference |
   +-------------+------+----------------------------------+-----------+
   | 11 10100x   | 0    | RFRAG - Recoverable Fragment     | RFC 8931  |
   +-------------+------+----------------------------------+-----------+
   | 11 10100x   | 1-14 | Unassigned                       |           |
   +-------------+------+----------------------------------+-----------+
   | 11 10100x   | 15   | Reserved for Experimental Use    | RFC 8025  |
   +-------------+------+----------------------------------+-----------+
   | 11 10101x   | 0    | RFRAG-ACK - RFRAG                | RFC 8931  |
   |             |      | Acknowledgment                   |           |
   +-------------+------+----------------------------------+-----------+
   | 11 10101x   | 1-14 | Unassigned                       |           |
   +-------------+------+----------------------------------+-----------+
   | 11 10101x   | 15   | Reserved for Experimental Use    | RFC 8025  |
   +-------------+------+----------------------------------+-----------+

              Table 1: Additional Dispatch Value Bit Patterns
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Appendix A.  Rationale

   There are a number of uses for large packets in Wireless Sensor
   Networks.  Such usages may not be the most typical or represent the
   largest amount of traffic over the LLN; however, the associated
   functionality can be critical enough to justify extra care for
   ensuring effective transport of large packets across the LLN.

   The list of those usages includes:

   Towards the LLN node:

      Firmware update:  For example, a new version of the LLN node
         software is downloaded from a system manager over unicast or
         multicast services.  Such a reflashing operation typically



         involves updating a large number of similar LLN nodes over a
         relatively short period of time.

      Packages of commands:  A number of commands or a full
         configuration can be packaged as a single message to ensure
         consistency and enable atomic execution or complete rollback.
         Until such commands are fully received and interpreted, the
         intended operation will not take effect.

   From the LLN node:

      Waveform captures:  A number of consecutive samples are measured
         at a high rate for a short time and then are transferred from a
         sensor to a gateway or an edge server as a single large report.

      Data logs:  LLN nodes may generate large logs of sampled data for
         later extraction.  LLN nodes may also generate system logs to
         assist in diagnosing problems on the node or network.

      Large data packets:  Rich data types might require more than one
         fragment.

   Uncontrolled firmware download or waveform upload can easily result
   in a massive increase of the traffic and saturate the network.

   When a fragment is lost in transmission, the lack of recovery in the
   original fragmentation system of RFC 4944 implies that all fragments
   would need to be resent, further contributing to the congestion that
   caused the initial loss and potentially leading to congestion
   collapse.

   This saturation may lead to excessive radio interference or random
   early discard (leaky bucket) in relaying nodes.  Additional queuing
   and memory congestion may result while waiting for a low-power next
   hop to emerge from its sleep state.

   Considering that RFC 4944 defines an MTU as 1280 bytes, and that in
   most incarnations (except 802.15.4g) an IEEE Std 802.15.4 frame can
   limit the link-layer payload to as few as 74 bytes, a packet might be
   fragmented into at least 18 fragments at the 6LoWPAN shim layer.
   Taking into account the worst-case header overhead for 6LoWPAN
   Fragmentation and Mesh Addressing headers will increase the number of
   required fragments to around 32.  This level of fragmentation is much
   higher than that traditionally experienced over the Internet with
   IPv4 fragments.  At the same time, the use of radios increases the
   probability of transmission loss, and mesh-under techniques compound
   that risk over multiple hops.

   Mechanisms such as TCP or application-layer segmentation could be
   used to support end-to-end reliable transport.  One option to support
   bulk data transfer over a frame-size-constrained LLN is to set the
   Maximum Segment Size to fit within the link maximum frame size.
   However, doing so can add significant header overhead to each
   802.15.4 frame and cause extraneous acknowledgments across the LLN
   compared to the method in this specification.

Appendix B.  Requirements

   For one-hop communications, a number of LLN link layers propose a
   local acknowledgment mechanism that is enough to detect and recover
   the loss of fragments.  In a multi-hop environment, an end-to-end
   fragment recovery mechanism might be a good complement to a hop-by-
   hop Medium Access Control (MAC) recovery.  This document introduces a
   simple protocol to recover individual fragments between 6LFF
   endpoints that may be multiple hops away.

   The method addresses the following requirements of an LLN:

   Number of fragments:  The recovery mechanism must support highly
      fragmented packets, with a maximum of 32 fragments per packet.



   Minimum acknowledgment overhead:  Because the radio is half duplex,
      and because of silent time spent in the various medium access
      mechanisms, an acknowledgment consumes roughly as many resources
      as a data fragment.

      The new end-to-end fragment recovery mechanism should be able to
      acknowledge multiple fragments in a single message and not require
      an acknowledgment at all if fragments are already protected at a
      lower layer.

   Controlled latency:  The recovery mechanism must succeed or give up
      within the time boundary imposed by the recovery process of the
      upper-layer protocols.

   Optional congestion control:  The aggregation of multiple concurrent
      flows may lead to the saturation of the radio network and
      congestion collapse.

      The recovery mechanism should provide means for controlling the
      number of fragments in transit over the LLN.

Appendix C.  Considerations on Congestion Control

   Considering that a multi-hop LLN can be a very sensitive environment
   due to the limited queuing capabilities of a large population of its
   nodes, this document recommends a simple and conservative approach to
   congestion control, based on TCP congestion avoidance.

   Congestion on the forward path is assumed in case of packet loss, and
   packet loss is assumed upon timeout.  This document allows
   controlling the number of outstanding fragments that have been
   transmitted, but for which an acknowledgment was not yet received,
   and that are still covered by the ARQ timer.

   Congestion on the forward path can also be indicated by an ECN
   mechanism.  Though whether and how ECN [RFC3168] is carried out over
   the LoWPAN is out of scope, this document provides a way for the
   destination endpoint to echo an ECN indication back to the
   fragmenting endpoint in an acknowledgment message as represented in
   Figure 4 in Section 5.2.

   While the support of echoing the ECN at the reassembling endpoint is
   mandatory, this specification only provides a minimalistic behavior
   on the fragmenting endpoint.  If an "E" flag is received, the window
   SHOULD be reduced at least by 1 and at max to 1.  Halving the window
   for each "E" flag received could be a good compromise, but it needs
   further experimentation.  A very simple implementation may just reset
   the window to 1, so the fragments are sent and acknowledged one by
   one.

   Note that any action that has been performed upon detection of
   congestion only applies for the transmission of one datagram, and the
   next datagram starts with the configured Window_Size again.

   The exact use of the Acknowledgment Request flag and of the window
   are left to implementation.  An optimistic implementation could send
   all the fragments up to Window_Size, setting the Acknowledgment
   Request "X" flag only on the last fragment; wait for the bitmap,
   which means a gap of half a round-trip time; and resend the losses.
   A pessimistic implementation could set the "X" flag on the first
   fragment to check that the path works and open the window only upon
   receiving the RFRAG-ACK.  It could then set an "X" flag again on the
   second fragment and use the window as a credit to send up to
   Window_Size before it is blocked.  In that case, if the RFRAG-ACK
   comes back before the window starves, the gating factor is the inter-
   frame gap.  If the RFRAG-ACK does not arrive in time, the Window_Size
   is the gating factor, and the transmission of the datagram is
   delayed.

   It must be noted that even though the inter-frame gap can be used as
   a flow control or a congestion control measure, it also plays a



   critical role in wireless collision avoidance.  In particular, when a
   mesh operates on the same channel over multiple hops, the forwarding
   of a fragment over a certain hop may collide with the forwarding of
   the next fragment that is following over a previous hop but that is
   in the same interference domain.  To prevent this, the fragmenting
   endpoint is required to pace individual fragments within a transmit
   window with an inter-frame gap.  This is needed to ensure that a
   given fragment is sent only when the previous fragment has had a
   chance to progress beyond the interference domain of this hop.  In
   the case of 6TiSCH [6TiSCH], which operates over the Time-Slotted
   Channel Hopping (TSCH) mode of operation of IEEE 802.15.4 [RFC7554],
   a fragment is forwarded over a different channel at a different time,
   and it makes full sense to transmit the next fragment as soon as the
   previous fragment has had its chance to be forwarded at the next hop.

   Depending on the setting of the Window_Size and the inter-frame gap,
   how the window is used, and the number of hops, the Window_Size may
   or may not become the gating factor that blocks the transmission.  If
   the sender uses the Window_Size as a credit:

   *  a conservative Window_Size of, say, 3 will be the gating factor
      that limits the transmission rate of the sender -- and causes
      transmission gaps longer than the inter-frame gap -- as soon as
      the number of hops exceeds 3 in a TSCH network and 5-9 in a single
      frequency mesh.  The more hops the more the starving window will
      add to latency of the transmission.

   *  The recommendation to align the Window-Size to the round-trip time
      divided by the time per fragment aligns the Window-Size to the
      time it takes to get the RFAG_ACK before the window starves.  A
      Window-Size that is higher than that increases the chances of a
      congestion but does not improve the forward throughput.
      Considering that the RFRAG-ACK takes the same path as the fragment
      with the assumption that it travels at roughly the same speed, an
      inter-frame gap that separates fragments by 2 hops leads to a
      Window_Size that is roughly the number of hops.

   *  Setting the Window-Size to 32 minimizes the cost of the
      acknowledgment in a constrained network and frees bandwidth for
      the fragments in a half-duplex network.  Using it increases the
      risk of congestion if a bottleneck forms, but it optimizes the use
      of resources under normal conditions.  When it is used, the only
      protection for the network is the inter-frame gap, which must be
      chosen wisely to prevent the formation of a bottleneck.

   From the standpoint of a source 6LoWPAN endpoint, an outstanding
   fragment is a fragment that was sent but for which no explicit
   acknowledgment was yet received.  This means that the fragment might
   be on the path or received but not yet acknowledged, or the
   acknowledgment might be on the path back.  It is also possible that
   either the fragment or the acknowledgment was lost on the way.

   From the fragmenting endpoint standpoint, all outstanding fragments
   might still be in the network and contribute to its congestion.
   There is an assumption, though, that after a certain amount of time,
   a frame is either received or lost, so it is not causing congestion
   anymore.  This amount of time can be estimated based on the round-
   trip time between the 6LoWPAN endpoints.  For the lack of a more
   adapted technique, the method detailed in "Computing TCP’s
   Retransmission Timer" [RFC6298] may be used for that computation.

   This specification provides the necessary tools for the fragmenting
   endpoint to take congestion control actions and protect the network,
   but it leaves the implementation free to select the action to be
   taken.  The intention is to use it to build experience and specify
   more precisely the congestion control actions in one or more future
   specifications.  "Congestion Control Principles" [RFC2914] and
   "Specifying New Congestion Control Algorithms" [RFC5033] provide
   indications and wisdom that should help through this process.

   [RFC7567] and [RFC5681] provide deeper information on why congestion



   control is needed and how TCP handles it.  Basically, the goal here
   is to manage the number of fragments present in the network; this is
   achieved by reducing the number of outstanding fragments over a
   congested path by throttling the sources.
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