
ï»¿

Internet Engineering Task Force (IETF) A. Melnikov, Ed.
Request for Comments: 9051 Isode Ltd
Obsoletes: 3501 B. Leiba, Ed.
Category: Standards Track Futurewei Technologies
ISSN: 2070-1721 August 2021

 Internet Message Access Protocol (IMAP) - Version 4rev2

Abstract

 The Internet Message Access Protocol Version 4rev2 (IMAP4rev2) allows
 a client to access and manipulate electronic mail messages on a
 server. IMAP4rev2 permits manipulation of mailboxes (remote message
 folders) in a way that is functionally equivalent to local folders.
 IMAP4rev2 also provides the capability for an offline client to
 resynchronize with the server.

 IMAP4rev2 includes operations for creating, deleting, and renaming
 mailboxes; checking for new messages; removing messages permanently;
 setting and clearing flags; parsing per RFCs 5322, 2045, and 2231;
 searching; and selective fetching of message attributes, texts, and
 portions thereof. Messages in IMAP4rev2 are accessed by the use of
 numbers. These numbers are either message sequence numbers or unique
 identifiers.

 IMAP4rev2 does not specify a means of posting mail; this function is
 handled by a mail submission protocol such as the one specified in
 RFC 6409.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9051.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may

 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. How to Read This Document
 1.1. Organization of This Document
 1.2. Conventions Used in This Document
 1.3. Special Notes to Implementors
 2. Protocol Overview
 2.1. Link Level
 2.2. Commands and Responses
 2.2.1. Client Protocol Sender and Server Protocol Receiver
 2.2.2. Server Protocol Sender and Client Protocol Receiver
 2.3. Message Attributes
 2.3.1. Message Numbers
 2.3.2. Flags Message Attribute
 2.3.3. Internal Date Message Attribute
 2.3.4. RFC822.SIZE Message Attribute
 2.3.5. Envelope Structure Message Attribute
 2.3.6. Body Structure Message Attribute
 2.4. Message Texts
 3. State and Flow Diagram
 3.1. Not Authenticated State
 3.2. Authenticated State
 3.3. Selected State
 3.4. Logout State
 4. Data Formats
 4.1. Atom
 4.1.1. Sequence Set and UID Set
 4.2. Number
 4.3. String
 4.3.1. 8-Bit and Binary Strings
 4.4. Parenthesized List
 4.5. NIL
 5. Operational Considerations
 5.1. Mailbox Naming
 5.1.1. Mailbox Hierarchy Naming
 5.1.2. Namespaces
 5.2. Mailbox Size and Message Status Updates
 5.3. Response When No Command in Progress
 5.4. Autologout Timer
 5.5. Multiple Commands in Progress (Command Pipelining)
 6. Client Commands
 6.1. Client Commands - Any State
 6.1.1. CAPABILITY Command
 6.1.2. NOOP Command
 6.1.3. LOGOUT Command
 6.2. Client Commands - Not Authenticated State
 6.2.1. STARTTLS Command
 6.2.2. AUTHENTICATE Command
 6.2.3. LOGIN Command
 6.3. Client Commands - Authenticated State
 6.3.1. ENABLE Command
 6.3.2. SELECT Command
 6.3.3. EXAMINE Command
 6.3.4. CREATE Command
 6.3.5. DELETE Command
 6.3.6. RENAME Command
 6.3.7. SUBSCRIBE Command
 6.3.8. UNSUBSCRIBE Command
 6.3.9. LIST Command
 6.3.10. NAMESPACE Command
 6.3.11. STATUS Command
 6.3.12. APPEND Command
 6.3.13. IDLE Command
 6.4. Client Commands - Selected State
 6.4.1. CLOSE Command
 6.4.2. UNSELECT Command
 6.4.3. EXPUNGE Command

 6.4.4. SEARCH Command
 6.4.5. FETCH Command
 6.4.6. STORE Command
 6.4.7. COPY Command
 6.4.8. MOVE Command
 6.4.9. UID Command
 6.5. Client Commands - Experimental/Expansion
 7. Server Responses
 7.1. Server Responses - Generic Status Responses
 7.1.1. OK Response
 7.1.2. NO Response
 7.1.3. BAD Response
 7.1.4. PREAUTH Response
 7.1.5. BYE Response
 7.2. Server Responses - Server Status
 7.2.1. ENABLED Response
 7.2.2. CAPABILITY Response
 7.3. Server Responses - Mailbox Status
 7.3.1. LIST Response
 7.3.2. NAMESPACE Response
 7.3.3. STATUS Response
 7.3.4. ESEARCH Response
 7.3.5. FLAGS Response
 7.4. Server Responses - Mailbox Size
 7.4.1. EXISTS Response
 7.5. Server Responses - Message Status
 7.5.1. EXPUNGE Response
 7.5.2. FETCH Response
 7.6. Server Responses - Command Continuation Request
 8. Sample IMAP4rev2 Connection
 9. Formal Syntax
 10. Author’s Note
 11. Security Considerations
 11.1. TLS-Related Security Considerations
 11.2. STARTTLS Command versus Use of Implicit TLS Port
 11.3. Client Handling of Unsolicited Responses Not Suitable for
 the Current Connection State
 11.4. COPYUID and APPENDUID Response Codes
 11.5. LIST Command and Other Users’ Namespace
 11.6. Use of MD5
 11.7. Other Security Considerations
 12. IANA Considerations
 12.1. Updates to IMAP Capabilities Registry
 12.2. GSSAPI/SASL Service Name
 12.3. LIST Selection Options, LIST Return Options, and LIST
 Extended Data Items
 12.4. IMAP Mailbox Name Attributes and IMAP Response Codes
 13. References
 13.1. Normative References
 13.2. Informative References
 13.2.1. Related Protocols
 13.2.2. Historical Aspects of IMAP and Related Protocols
 Appendix A. Backward Compatibility with IMAP4rev1
 A.1. Mailbox International Naming Convention for Compatibility
 with IMAP4rev1
 Appendix B. Backward Compatibility with BINARY Extension
 Appendix C. Backward Compatibility with LIST-EXTENDED Extension
 Appendix D. 63-Bit Body Part and Message Sizes
 Appendix E. Changes from RFC 3501 / IMAP4rev1
 Appendix F. Other Recommended IMAP Extensions
 Acknowledgements
 Index
 Authors’ Addresses

1. How to Read This Document

1.1. Organization of This Document

 This document is written from the point of view of the implementor of
 an IMAP4rev2 client or server. Beyond the protocol overview in
 Section 2, it is not optimized for someone trying to understand the

 operation of the protocol. The material in Sections 3, 4, and 5
 provides the general context and definitions with which IMAP4rev2
 operates.

 Sections 6, 7, and 9 describe the IMAP commands, responses, and
 syntax, respectively. The relationships among these are such that it
 is almost impossible to understand any of them separately. In
 particular, do not attempt to deduce command syntax from the command
 section alone; instead, refer to "Formal Syntax" (Section 9).

1.2. Conventions Used in This Document

 "Conventions" are basic principles or procedures. Document
 conventions are noted in this section.

 In examples, "C:" and "S:" indicate lines sent by the client and
 server, respectively. Note that each line includes the terminating
 CRLF.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The word "can" (not "may") is used to refer to a possible
 circumstance or situation, as opposed to an optional facility of the
 protocol.

 "User" is used to refer to a human user, whereas "client" refers to
 the software being run by the user.

 "Connection" refers to the entire sequence of client/server
 interaction from the initial establishment of the network connection
 until its termination.

 "Session" refers to the sequence of client/server interaction from
 the time that a mailbox is selected (SELECT or EXAMINE command) until
 the time that selection ends (SELECT or EXAMINE of another mailbox,
 CLOSE command, UNSELECT command, or connection termination).

 The term "Implicit TLS" refers to the automatic negotiation of TLS
 whenever a TCP connection is made on a particular TCP port that is
 used exclusively by that server for TLS connections. The term
 "Implicit TLS" is intended to contrast with the use of the STARTTLS
 command in IMAP that is used by the client and the server to
 explicitly negotiate TLS on an established cleartext TCP connection.

 Characters are 8-bit UTF-8 (of which 7-bit US-ASCII is a subset),
 unless otherwise specified. Other character sets are indicated using
 a "CHARSET", as described in [MIME-IMT] and defined in [CHARSET].
 CHARSETs have important additional semantics in addition to defining
 a character set; refer to these documents for more detail.

 There are several protocol conventions in IMAP. These refer to
 aspects of the specification that are not strictly part of the IMAP
 protocol but reflect generally accepted practice. Implementations
 need to be aware of these conventions, and avoid conflicts whether or
 not they implement the convention. For example, "&" may not be used
 as a hierarchy delimiter since it conflicts with the Mailbox
 International Naming Convention, and other uses of "&" in mailbox
 names are impacted as well.

1.3. Special Notes to Implementors

 Implementors of the IMAP protocol are strongly encouraged to read the
 IMAP implementation recommendations document [IMAP-IMPLEMENTATION] in
 conjunction with this document, to help understand the intricacies of
 this protocol and how best to build an interoperable product.

 IMAP4rev2 is designed to be upwards compatible from the IMAP4rev1

 [RFC3501], IMAP2 [IMAP2], and unpublished IMAP2bis [IMAP2BIS]
 protocols. IMAP4rev2 is largely compatible with the IMAP4rev1
 protocol described in RFC 3501 and the IMAP4 protocol described in
 [RFC1730]; the exception being in certain facilities added in
 [RFC1730] and [RFC3501] that proved problematic and were subsequently
 removed or replaced by better alternatives. In the course of the
 evolution of IMAP4rev2, some aspects in the earlier protocols have
 become obsolete. Obsolete commands, responses, and data formats that
 an IMAP4rev2 implementation can encounter when used with an earlier
 implementation are described in Appendices A and E and
 [IMAP-OBSOLETE]. IMAP4rev2 supports 63-bit body parts and message
 sizes. IMAP4rev2 compatibility with BINARY and LIST-EXTENDED IMAP
 extensions are described in Appendices B and C, respectively.

 Other compatibility issues with IMAP2bis, the most common variant of
 the earlier protocol, are discussed in [IMAP-COMPAT]. A full
 discussion of compatibility issues with rare (and presumed extinct)
 variants of [IMAP2] is in [IMAP-HISTORICAL]; this document is
 primarily of historical interest.

 IMAP was originally developed for the older [RFC822] standard, and as
 a consequence, the "RFC822.SIZE" fetch item in IMAP incorporates
 "RFC822" in its name. "RFC822" should be interpreted as a reference
 to the updated [RFC5322] standard.

 IMAP4rev2 does not specify a means of posting mail; this function is
 handled by a mail submission protocol such as the one specified in
 [RFC6409].

2. Protocol Overview

2.1. Link Level

 The IMAP4rev2 protocol assumes a reliable data stream such as that
 provided by TCP. When TCP is used, an IMAP4rev2 server listens on
 port 143 (cleartext port) or port 993 (Implicit TLS port).

2.2. Commands and Responses

 An IMAP4rev2 connection consists of the establishment of a client/
 server network connection, an initial greeting from the server, and
 client/server interactions. These client/server interactions consist
 of a client command, server data, and a server completion result
 response.

 All interactions transmitted by client and server are in the form of
 lines, that is, strings that end with a CRLF. The protocol receiver
 of an IMAP4rev2 client or server is reading either a line or a
 sequence of octets with a known count followed by a line.

2.2.1. Client Protocol Sender and Server Protocol Receiver

 The client command begins an operation. Each client command is
 prefixed with an identifier (typically a short alphanumeric string,
 e.g., A0001, A0002, etc.) called a "tag". A different tag is
 generated by the client for each command. More formally: the client
 SHOULD generate a unique tag for every command, but a server MUST
 accept tag reuse.

 Clients MUST follow the syntax outlined in this specification
 strictly. It is a syntax error to send a command with missing or
 extraneous spaces or arguments.

 There are two cases in which a line from the client does not
 represent a complete command. In one case, a command argument is
 quoted with an octet count (see the description of literal in
 Section 4.3); in the other case, the command arguments require server
 feedback (see the AUTHENTICATE command in Section 6.2.2). In either
 case, the server sends a command continuation request response if it
 is ready for the octets (if appropriate) and the remainder of the
 command. This response is prefixed with the token "+".

 Note: If, instead, the server detected an error in the command, it
 sends a BAD completion response with a tag matching the command
 (as described below) to reject the command and prevent the client
 from sending any more of the command.

 It is also possible for the server to send a completion response
 for some other command (if multiple commands are in progress) or
 untagged data. In either case, the command continuation request
 is still pending; the client takes the appropriate action for the
 response and reads another response from the server. In all
 cases, the client MUST send a complete command (including
 receiving all command continuation request responses and sending
 command continuations for the command) before initiating a new
 command.

 The protocol receiver of an IMAP4rev2 server reads a command line
 from the client, parses the command and its arguments, and transmits
 server data and a server command completion result response.

2.2.2. Server Protocol Sender and Client Protocol Receiver

 Data transmitted by the server to the client and status responses
 that do not indicate command completion are prefixed with the token
 "*" and are called untagged responses.

 Server data MAY be sent as a result of a client command or MAY be
 sent unilaterally by the server. There is no syntactic difference
 between server data that resulted from a specific command and server
 data that were sent unilaterally.

 The server completion result response indicates the success or
 failure of the operation. It is tagged with the same tag as the
 client command that began the operation. Thus, if more than one
 command is in progress, the tag in a server completion response
 identifies the command to which the response applies. There are
 three possible server completion responses: OK (indicating success),
 NO (indicating failure), or BAD (indicating a protocol error such as
 unrecognized command or command syntax error).

 Servers SHOULD strictly enforce the syntax outlined in this
 specification. Any client command with a protocol syntax error,
 including (but not limited to) missing or extraneous spaces or
 arguments, SHOULD be rejected and the client given a BAD server
 completion response.

 The protocol receiver of an IMAP4rev2 client reads a response line
 from the server. It then takes action on the response based upon the
 first token of the response, which can be a tag, a "*", or a "+".

 A client MUST be prepared to accept any server response at all times.
 This includes server data that was not requested. Server data SHOULD
 be remembered (cached), so that the client can reference its
 remembered copy rather than sending a command to the server to
 request the data. In the case of certain server data, the data MUST
 be remembered, as specified elsewhere in this document.

 This topic is discussed in greater detail in "Server Responses" (see
 Section 7).

2.3. Message Attributes

 In addition to message text, each message has several attributes
 associated with it. These attributes can be retrieved individually
 or in conjunction with other attributes or message texts.

2.3.1. Message Numbers

 Messages in IMAP4rev2 are accessed by one of two numbers: the Unique
 Identifier (UID) or the message sequence number.

2.3.1.1. Unique Identifier (UID) Message Attribute

 A UID is an unsigned non-zero 32-bit value assigned to each message,
 which when used with the unique identifier validity value (see below)
 forms a 64-bit value that MUST NOT refer to any other message in the
 mailbox or any subsequent mailbox with the same name forever. Unique
 identifiers are assigned in a strictly ascending fashion in the
 mailbox; as each message is added to the mailbox, it is assigned a
 higher UID than those of all message(s) that are already in the
 mailbox. Unlike message sequence numbers, unique identifiers are not
 necessarily contiguous.

 The unique identifier of a message MUST NOT change during the session
 and SHOULD NOT change between sessions. Any change of unique
 identifiers between sessions MUST be detectable using the UIDVALIDITY
 mechanism discussed below. Persistent unique identifiers are
 required for a client to resynchronize its state from a previous
 session with the server (e.g., disconnected or offline access clients
 [IMAP-MODEL]); this is discussed further in [IMAP-DISC].

 Associated with every mailbox are two 32-bit unsigned non-zero values
 that aid in unique identifier handling: the next unique identifier
 value (UIDNEXT) and the unique identifier validity value
 (UIDVALIDITY).

 The next unique identifier value is the predicted value that will be
 assigned to a new message in the mailbox. Unless the unique
 identifier validity also changes (see below), the next unique
 identifier value MUST have the following two characteristics. First,
 the next unique identifier value MUST NOT change unless new messages
 are added to the mailbox; and second, the next unique identifier
 value MUST change whenever new messages are added to the mailbox,
 even if those new messages are subsequently expunged.

 | Note: The next unique identifier value is intended to provide a
 | means for a client to determine whether any messages have been
 | delivered to the mailbox since the previous time it checked
 | this value. It is not intended to provide any guarantee that
 | any message will have this unique identifier. A client can
 | only assume, at the time that it obtains the next unique
 | identifier value, that messages arriving after that time will
 | have a UID greater than or equal to that value.

 The unique identifier validity value is sent in a UIDVALIDITY
 response code in an OK untagged response at mailbox selection time.
 If unique identifiers from an earlier session fail to persist in this
 session, the unique identifier validity value MUST be greater than
 the one used in the earlier session. A good UIDVALIDITY value to use
 is a 32-bit representation of the current date/time when the value is
 assigned: this ensures that the value is unique and always increases.
 Another possible alternative is a global counter that gets
 incremented every time a mailbox is created.

 Note: Ideally, unique identifiers SHOULD persist at all times.
 Although this specification recognizes that failure to persist can
 be unavoidable in certain server environments, it strongly
 encourages message store implementation techniques that avoid this
 problem. For example:

 1. Unique identifiers MUST be strictly ascending in the mailbox at
 all times. If the physical message store is reordered by a non-
 IMAP agent, the unique identifiers in the mailbox MUST be
 regenerated, since the former unique identifiers are no longer
 strictly ascending as a result of the reordering.

 2. If the message store has no mechanism to store unique
 identifiers, it must regenerate unique identifiers at each
 session, and each session must have a unique UIDVALIDITY value.
 Note that this situation can be very disruptive to client message
 caching.

 3. If the mailbox is deleted/renamed and a new mailbox with the same
 name is created at a later date, the server must either keep
 track of unique identifiers from the previous instance of the
 mailbox or assign a new UIDVALIDITY value to the new instance of
 the mailbox.

 4. The combination of mailbox name, UIDVALIDITY, and UID must refer
 to a single, immutable (or expunged) message on that server
 forever. In particular, the internal date, RFC822.SIZE,
 envelope, body structure, and message texts (all BODY[...] fetch
 data items) MUST never change. This does not include message
 numbers, nor does it include attributes that can be set by a
 STORE command (such as FLAGS). When a message is expunged, its
 UID MUST NOT be reused under the same UIDVALIDITY value.

2.3.1.2. Message Sequence Number Message Attribute

 A message sequence number is a relative position from 1 to the number
 of messages in the mailbox. This position MUST be ordered by
 ascending unique identifiers. As each new message is added, it is
 assigned a message sequence number that is 1 higher than the number
 of messages in the mailbox before that new message was added.

 Message sequence numbers can be reassigned during the session. For
 example, when a message is permanently removed (expunged) from the
 mailbox, the message sequence number for all subsequent messages is
 decremented. The number of messages in the mailbox is also
 decremented. Similarly, a new message can be assigned a message
 sequence number that was once held by some other message prior to an
 expunge.

 In addition to accessing messages by relative position in the
 mailbox, message sequence numbers can be used in mathematical
 calculations. For example, if an untagged "11 EXISTS" is received,
 and previously an untagged "8 EXISTS" was received, three new
 messages have arrived with message sequence numbers of 9, 10, and 11.
 As another example, if message 287 in a 523-message mailbox has UID
 12345, there are exactly 286 messages that have lesser UIDs and 236
 messages that have greater UIDs.

2.3.2. Flags Message Attribute

 A message has a list of zero or more named tokens, known as "flags",
 associated with it. A flag is set by its addition to this list and
 is cleared by its removal. There are two types of flags in
 IMAP4rev2: system flags and keywords. A flag of either type can be
 permanent or session-only.

 A system flag is a flag name that is predefined in this specification
 and begins with "\". Certain system flags (\Deleted and \Seen) have
 special semantics described elsewhere in this document. The
 currently defined system flags are:

 \Seen Message has been read

 \Answered Message has been answered

 \Flagged Message is "flagged" for urgent/special attention

 \Deleted Message is "deleted" for removal by later EXPUNGE

 \Draft Message has not completed composition (marked as a
 draft).

 \Recent This flag was in use in IMAP4rev1 and is now
 deprecated.

 A keyword is defined by the server implementation. Keywords do not
 begin with "\". Servers MAY permit the client to define new keywords
 in the mailbox (see the description of the PERMANENTFLAGS response
 code for more information). Some keywords that start with "$" are

 also defined in this specification.

 This document defines several keywords that were not originally
 defined in [RFC3501] but were found to be useful by client
 implementations. These keywords SHOULD be supported (allowed in
 SEARCH and allowed and preserved in APPEND, COPY, and MOVE commands)
 by server implementations:

 $Forwarded
 Message has been forwarded to another email address by being
 embedded within, or attached to a new message. An email client
 sets this keyword when it successfully forwards the message to
 another email address. Typical usage of this keyword is to show a
 different (or additional) icon for a message that has been
 forwarded. Once set, the flag SHOULD NOT be cleared.

 $MDNSent
 Message Disposition Notification [RFC8098] was generated and sent
 for this message. See [RFC3503] for more details on how this
 keyword is used and for requirements on clients and servers.

 $Junk
 The user (or a delivery agent on behalf of the user) may choose to
 mark a message as definitely containing junk ($Junk; see also the
 related keyword $NotJunk). The $Junk keyword can be used to mark,
 group, or hide undesirable messages (and such messages might be
 moved or deleted later). See [IMAP-KEYWORDS-REG] for more
 information.

 $NotJunk
 The user (or a delivery agent on behalf of the user) may choose to
 mark a message as definitely not containing junk ($NotJunk; see
 also the related keyword $Junk). The $NotJunk keyword can be used
 to mark, group, or show messages that the user wants to see. See
 [IMAP-KEYWORDS-REG] for more information.

 $Phishing
 The $Phishing keyword can be used by a delivery agent to mark a
 message as highly likely to be a phishing email. A message that’s
 determined to be a phishing email by the delivery agent should
 also be considered a junk email and have the appropriate junk
 filtering applied, including setting the $Junk flag and placing
 the message in the \Junk special-use mailbox (see Section 7.3.1),
 if available.

 If both the $Phishing flag and the $Junk flag are set, the user
 agent should display an additional warning message to the user.
 Additionally, the user agent might display a warning, such as
 something of the form, "This message may be trying to steal your
 personal information," when the user clicks on any hyperlinks
 within the message.

 The requirement for both $Phishing and $Junk to be set before a
 user agent displays a warning is for better backwards
 compatibility with existing clients that understand the $Junk flag
 but not the $Phishing flag. This is so that when an unextended
 client removes the $Junk flag, an extended client will also show
 the correct state. See [IMAP-KEYWORDS-REG] for more information.

 $Junk and $NotJunk are mutually exclusive. If more than one of these
 is set for a message, the client MUST treat it as if none are set,
 and it SHOULD unset both of them on the IMAP server.

 Other registered keywords can be found in the "IMAP and JMAP
 Keywords" registry [IMAP-KEYWORDS-REG]. New keywords SHOULD be
 registered in this registry using the procedure specified in
 [RFC5788].

 A flag can be permanent or session-only on a per-flag basis.
 Permanent flags are those that the client can add or remove from the
 message flags permanently; that is, concurrent and subsequent

 sessions will see any change in permanent flags. Changes to session
 flags are valid only in that session.

2.3.3. Internal Date Message Attribute

 An Internal Date message attribute is the internal date and time of
 the message on the server. This is not the date and time in the
 [RFC5322] header but rather a date and time that reflects when the
 message was received. In the case of messages delivered via [SMTP],
 this is the date and time of final delivery of the message as defined
 by [SMTP]. In the case of messages created by the IMAP4rev2 COPY or
 MOVE command, this SHOULD be the same as the Internal Date attribute
 of the source message. In the case of messages created by the
 IMAP4rev2 APPEND command, this SHOULD be the date and time as
 specified in the APPEND command description. All other cases are
 implementation defined.

2.3.4. RFC822.SIZE Message Attribute

 RFC822.SIZE is the number of octets in the message when the message
 is expressed in [RFC5322] format. This size SHOULD match the result
 of a "FETCH BODY[]" command. If the message is internally stored in
 some other format, the server calculates the size and often stores it
 for later use to avoid the need for recalculation.

2.3.5. Envelope Structure Message Attribute

 An envelope structure is a parsed representation of the [RFC5322]
 header of the message. Note that the IMAP envelope structure is not
 the same as an [SMTP] envelope.

2.3.6. Body Structure Message Attribute

 A body structure is a parsed representation of the [MIME-IMB] body
 structure information of the message.

2.4. Message Texts

 In addition to being able to fetch the full [RFC5322] text of a
 message, IMAP4rev2 permits the fetching of portions of the full
 message text. Specifically, it is possible to fetch the [RFC5322]
 message header, the [RFC5322] message body, a [MIME-IMB] body part,
 or a [MIME-IMB] header.

3. State and Flow Diagram

 Once the connection between client and server is established, an
 IMAP4rev2 connection is in one of four states. The initial state is
 identified in the server greeting. Most commands are only valid in
 certain states. It is a protocol error for the client to attempt a
 command while the connection is in an inappropriate state, and the
 server will respond with a BAD or NO (depending upon server
 implementation) command completion result.

3.1. Not Authenticated State

 In the not authenticated state, the client MUST supply authentication
 credentials before most commands will be permitted. This state is
 entered when a connection starts unless the connection has been pre-
 authenticated.

3.2. Authenticated State

 In the authenticated state, the client is authenticated and MUST
 select a mailbox to access before commands that affect messages will
 be permitted. This state is entered when a pre-authenticated
 connection starts, when acceptable authentication credentials have
 been provided, after an error in selecting a mailbox, or after a
 successful CLOSE or UNSELECT command.

3.3. Selected State

 In a selected state, a mailbox has been selected to access. This
 state is entered when a mailbox has been successfully selected.

3.4. Logout State

 In the logout state, the connection is being terminated. This state
 can be entered as a result of a client request (via the LOGOUT
 command) or by unilateral action on the part of either the client or
 the server.

 If the client requests the logout state, the server MUST send an
 untagged BYE response and a tagged OK response to the LOGOUT command
 before the server closes the connection; and the client MUST read the
 tagged OK response to the LOGOUT command before the client closes the
 connection.

 A server SHOULD NOT unilaterally close the connection without first
 sending an untagged BYE response that contains the reason for doing
 so. A client SHOULD NOT unilaterally close the connection; instead,
 it SHOULD issue a LOGOUT command. If the server detects that the
 client has unilaterally closed the connection, the server MAY omit
 the untagged BYE response and simply close its connection.

 +----------------------+
 |connection established|
 +----------------------+
 ||
 \/
 +--------------------------------------+
 | server greeting |
 +--------------------------------------+
 || (1) || (2) || (3)
 \/ || ||
 +-----------------+ || ||
 |Not Authenticated| || ||
 +-----------------+ || ||
 || (7) || (4) || || | |
 || \/ \/ ||
 || +----------------+ ||
 || | Authenticated |<=++ ||
 || +----------------+ || ||
 || || (7) || (5) || (6) ||
 || || \/ || ||
 || || +--------+ || ||
 || || |Selected|==++ ||
 || || +--------+ ||
 || || || (7) ||
 \/ \/ \/ \/
 +--------------------------------------+
 | Logout |
 +--------------------------------------+
 ||
 \/
 +-------------------------------+
 |both sides close the connection|
 +-------------------------------+

 Legend for the above diagram:

 (1) connection without pre-authentication (OK greeting)
 (2) pre-authenticated connection (PREAUTH greeting)
 (3) rejected connection (BYE greeting)
 (4) successful LOGIN or AUTHENTICATE command
 (5) successful SELECT or EXAMINE command
 (6) CLOSE or UNSELECT command, unsolicited CLOSED response code, or
 failed SELECT or EXAMINE command
 (7) LOGOUT command, server shutdown, or connection closed

4. Data Formats

 IMAP4rev2 uses textual commands and responses. Data in IMAP4rev2 can
 be in one of several forms: atom, number, string, parenthesized list,
 or NIL. Note that a particular data item may take more than one
 form; for example, a data item defined as using "astring" syntax may
 be either an atom or a string.

4.1. Atom

 An atom consists of one or more non-special characters.

4.1.1. Sequence Set and UID Set

 A set of messages can be referenced by a sequence set containing
 either message sequence numbers or unique identifiers. See Section 9
 for details. A sequence set can contain ranges of sequence numbers
 (such as "5:50"), an enumeration of specific sequence numbers, or a
 combination of the above. A sequence set can use the special symbol
 "*" to represent the maximum sequence number in the mailbox. A
 sequence set never contains unique identifiers.

 A "UID set" is similar to the sequence set, but uses unique
 identifiers instead of message sequence numbers, and is not permitted
 to contain the special symbol "*".

4.2. Number

 A number consists of one or more digit characters and represents a
 numeric value.

4.3. String

 A string is in one of three forms: synchronizing literal, non-
 synchronizing literal, or quoted string. The synchronizing literal
 form is the general form of a string, without limitation on the
 characters the string may include. The non-synchronizing literal
 form is also the general form, but it has a length restriction. The
 quoted string form is an alternative that avoids the overhead of
 processing a literal, but has limitations on the characters that may
 be used.

 When the distinction between synchronizing and non-synchronizing
 literals is not important, this document only uses the term
 "literal".

 A synchronizing literal is a sequence of zero or more octets
 (including CR and LF), prefix-quoted with an octet count in the form
 of an open brace ("{"), the number of octets, a close brace ("}"),
 and a CRLF. In the case of synchronizing literals transmitted from
 server to client, the CRLF is immediately followed by the octet data.
 In the case of synchronizing literals transmitted from client to
 server, the client MUST wait to receive a command continuation
 request (described later in this document) before sending the octet
 data (and the remainder of the command).

 The non-synchronizing literal is an alternative form of synchronizing
 literal and may be used from client to server anywhere a
 synchronizing literal is permitted. The non-synchronizing literal
 form MUST NOT be sent from server to client. The non-synchronizing
 literal is distinguished from the synchronizing literal by having a
 plus ("+") between the octet count and the closing brace ("}"). The
 server does not generate a command continuation request in response
 to a non-synchronizing literal, and clients are not required to wait
 before sending the octets of a non-synchronizing literal. Unless
 otherwise specified in an IMAP extension, non-synchronizing literals
 MUST NOT be larger than 4096 octets. Any literal larger than 4096
 bytes MUST be sent as a synchronizing literal. (Non-synchronizing
 literals defined in this document are the same as non-synchronizing
 literals defined by the LITERAL- extension from [RFC7888]. See that
 document for details on how to handle invalid non-synchronizing
 literals longer than 4096 octets and for interaction with other IMAP
 extensions.)

 A quoted string is a sequence of zero or more Unicode characters,
 excluding CR and LF, encoded in UTF-8, with double quote (<">)
 characters at each end.

 The empty string is represented as "" (a quoted string with zero
 characters between double quotes), as {0} followed by a CRLF (a
 synchronizing literal with an octet count of 0), or as {0+} followed
 by a CRLF (a non-synchronizing literal with an octet count of 0).

 Note: Even if the octet count is 0, a client transmitting a
 synchronizing literal MUST wait to receive a command continuation
 request.

4.3.1. 8-Bit and Binary Strings

 8-bit textual and binary mail is supported through the use of a
 [MIME-IMB] content transfer encoding. IMAP4rev2 implementations MAY
 transmit 8-bit or multi-octet characters in literals but SHOULD do so
 only when the [CHARSET] is identified.

 IMAP4rev2 is compatible with [I18N-HDRS]. As a result, the
 identified charset for header-field values with 8-bit content is
 UTF-8 [UTF-8]. IMAP4rev2 implementations MUST accept and MAY
 transmit [UTF-8] text in quoted-strings as long as the string does
 not contain NUL, CR, or LF. This differs from IMAP4rev1
 implementations.

 Although a BINARY content transfer encoding is defined, unencoded
 binary strings are not permitted, unless returned in a <literal8> in
 response to a BINARY.PEEK[<section-binary>]<<partial>> or
 BINARY[<section-binary>]<<partial>> FETCH data item. A "binary
 string" is any string with NUL characters. A string with an
 excessive amount of CTL characters MAY also be considered to be
 binary. Unless returned in response to BINARY.PEEK[...]/BINARY[...]
 FETCH, client and server implementations MUST encode binary data into
 a textual form, such as base64, before transmitting the data.

4.4. Parenthesized List

 Data structures are represented as a "parenthesized list"; a sequence
 of data items, delimited by space, and bounded at each end by
 parentheses. A parenthesized list can contain other parenthesized
 lists, using multiple levels of parentheses to indicate nesting.

 The empty list is represented as () -- a parenthesized list with no
 members.

4.5. NIL

 The special form "NIL" represents the non-existence of a particular
 data item that is represented as a string or parenthesized list, as
 distinct from the empty string "" or the empty parenthesized list ().

 | Note: NIL is never used for any data item that takes the form
 | of an atom. For example, a mailbox name of "NIL" is a mailbox
 | named NIL as opposed to a non-existent mailbox name. This is
 | because mailbox uses "astring" syntax, which is an atom or a
 | string. Conversely, an addr-name of NIL is a non-existent
 | personal name, because addr-name uses "nstring" syntax, which
 | is NIL or a string, but never an atom.

 Examples:

 The following LIST response:

 * LIST () "/" NIL

 is equivalent to:

 * LIST () "/" "NIL"

 as LIST response ABNF is using "astring" for mailbox name.

 However, the following response:

 * FETCH 1 (BODY[1] NIL)

 is not equivalent to:

 * FETCH 1 (BODY[1] "NIL")

 The former indicates absence of the body part, while the latter means
 that it contains a string with the three characters "NIL".

5. Operational Considerations

 The following rules are listed here to ensure that all IMAP4rev2
 implementations interoperate properly.

5.1. Mailbox Naming

 In IMAP4rev2, mailbox names are encoded in Net-Unicode [NET-UNICODE]
 (this differs from IMAP4rev1). Client implementations MAY attempt to
 create Net-Unicode mailbox names and MUST interpret any 8-bit mailbox
 names returned by LIST as [NET-UNICODE]. Server implementations MUST
 prohibit the creation of 8-bit mailbox names that do not comply with
 Net-Unicode. However, servers MAY accept a denormalized UTF-8
 mailbox name and convert it to Unicode Normalization Form C (NFC) (as
 per Net-Unicode requirements) prior to mailbox creation. Servers
 that choose to accept such denormalized UTF-8 mailbox names MUST
 accept them in all IMAP commands that have a mailbox name parameter.
 In particular, SELECT <name> must open the same mailbox that was
 successfully created with CREATE <name>, even if <name> is a
 denormalized UTF-8 mailbox name.

 The case-insensitive mailbox name INBOX is a special name reserved to
 mean "the primary mailbox for this user on this server". (Note that
 this special name might not exist on some servers for some users, for
 example, if the user has no access to personal namespace.) The
 interpretation of all other names is implementation dependent.

 In particular, this specification takes no position on case
 sensitivity in non-INBOX mailbox names. Some server implementations
 are fully case sensitive in ASCII range; others preserve the case of
 a newly created name but otherwise are case insensitive; and yet
 others coerce names to a particular case. Client implementations
 must be able to interact with any of these.

 There are certain client considerations when creating a new mailbox
 name:

 1. Any character that is one of the atom-specials (see "Formal
 Syntax" in Section 9) will require that the mailbox name be
 represented as a quoted string or literal.

 2. CTL and other non-graphic characters are difficult to represent
 in a user interface and are best avoided. Servers MAY refuse to
 create mailbox names containing Unicode CTL characters.

 3. Although the list-wildcard characters ("%" and "*") are valid in
 a mailbox name, it is difficult to use such mailbox names with
 the LIST command due to the conflict with wildcard
 interpretation.

 4. Usually, a character (determined by the server implementation) is
 reserved to delimit levels of hierarchy.

 5. Two characters, "#" and "&", have meanings by convention and
 should be avoided except when used in that convention. See
 Section 5.1.2.1 and Appendix A.1, respectively.

5.1.1. Mailbox Hierarchy Naming

 If it is desired to export hierarchical mailbox names, mailbox names
 MUST be left-to-right hierarchical, using a single ASCII character to
 separate levels of hierarchy. The same hierarchy separator character
 is used for all levels of hierarchy within a single name.

5.1.2. Namespaces

 Personal Namespace:
 A namespace that the server considers within the personal scope of
 the authenticated user on a particular connection. Typically,
 only the authenticated user has access to mailboxes in their
 Personal Namespace. It is the part of the namespace that belongs
 to the user and is allocated for mailboxes. If an INBOX exists
 for a user, it MUST appear within the user’s Personal Namespace.
 In the typical case, there SHOULD be only one Personal Namespace
 per user on a server.

 Other Users’ Namespace:
 A namespace that consists of mailboxes from the Personal
 Namespaces of other users. To access mailboxes in the Other
 Users’ Namespace, the currently authenticated user MUST be
 explicitly granted access rights. For example, it is common for a
 manager to grant to their administrative support staff access
 rights to their mailbox. In the typical case, there SHOULD be
 only one Other Users’ Namespace per user on a server.

 Shared Namespace:
 A namespace that consists of mailboxes that are intended to be
 shared amongst users and do not exist within a user’s Personal
 Namespace.

 The namespaces a server uses MAY differ on a per-user basis.

5.1.2.1. Historic Mailbox Namespace Naming Convention

 By convention, the first hierarchical element of any mailbox name
 that begins with "#" identifies the "namespace" of the remainder of
 the name. This makes it possible to disambiguate between different
 types of mailbox stores, each of which have their own namespaces.

 For example, implementations that offer access to USENET
 newsgroups MAY use the "#news" namespace to partition the USENET
 newsgroup namespace from that of other mailboxes. Thus, the
 comp.mail.misc newsgroup would have a mailbox name of
 "#news.comp.mail.misc", and the name "comp.mail.misc" can refer to
 a different object (e.g., a user’s private mailbox).

 Namespaces that include the "#" character are not IMAP URL [IMAP-URL]
 friendly and require the "#" character to be represented as %23 when
 within URLs. As such, server implementors MAY instead consider using
 namespace prefixes that do not contain the "#" character.

5.1.2.2. Common Namespace Models

 The previous version of this protocol did not define a default server
 namespace. Two common namespace models have evolved:

 The "Personal Mailbox" model, in which the default namespace that is
 presented consists of only the user’s personal mailboxes. To access
 shared mailboxes, the user must use an escape mechanism to reach
 another namespace.

 The "Complete Hierarchy" model, in which the default namespace that
 is presented includes the user’s personal mailboxes along with any
 other mailboxes they have access to.

5.2. Mailbox Size and Message Status Updates

 At any time, a server can send data that the client did not request.

 Sometimes, such behavior is required by this specification and/or
 extensions. For example, agents other than the server may add
 messages to the mailbox (e.g., new message delivery); change the
 flags of the messages in the mailbox (e.g., simultaneous access to
 the same mailbox by multiple agents); or even remove messages from
 the mailbox. A server MUST send mailbox size updates automatically
 if a mailbox size change is observed during the processing of a
 command. A server SHOULD send message flag updates automatically,
 without requiring the client to request such updates explicitly.

 Special rules exist for server notification of a client about the
 removal of messages to prevent synchronization errors; see the
 description of the EXPUNGE response (Section 7.5.1) for more detail.
 In particular, it is NOT permitted to send an EXISTS response that
 would reduce the number of messages in the mailbox; only the EXPUNGE
 response can do this.

 Regardless of what implementation decisions a client makes on
 remembering data from the server, a client implementation MUST
 remember mailbox size updates. It MUST NOT assume that any command
 after the initial mailbox selection will return the size of the
 mailbox.

5.3. Response When No Command in Progress

 Server implementations are permitted to send an untagged response
 (except for EXPUNGE) while there is no command in progress. Server
 implementations that send such responses MUST deal with flow control
 considerations. Specifically, they MUST either (1) verify that the
 size of the data does not exceed the underlying transport’s available
 window size or (2) use non-blocking writes.

5.4. Autologout Timer

 If a server has an inactivity autologout timer that applies to
 sessions after authentication, the duration of that timer MUST be at
 least 30 minutes. The receipt of any command from the client during
 that interval resets the autologout timer.

 Note that this specification doesn’t have any restrictions on an
 autologout timer used before successful client authentication. In
 particular, servers are allowed to use a shortened pre-authentication
 timer to protect themselves from Denial-of-Service attacks.

5.5. Multiple Commands in Progress (Command Pipelining)

 The client MAY send another command without waiting for the
 completion result response of a command, subject to ambiguity rules
 (see below) and flow control constraints on the underlying data
 stream. Similarly, a server MAY begin processing another command
 before processing the current command to completion, subject to
 ambiguity rules. However, any command continuation request responses
 and command continuations MUST be negotiated before any subsequent
 command is initiated.

 The exception is if an ambiguity would result because of a command
 that would affect the results of other commands. If the server
 detects a possible ambiguity, it MUST execute commands to completion
 in the order given by the client.

 The most obvious example of ambiguity is when a command would affect
 the results of another command. One example is a FETCH that would
 cause \Seen flags to be set and a SEARCH UNSEEN command.

 A non-obvious ambiguity occurs with commands that permit an untagged
 EXPUNGE response (commands other than FETCH, STORE, and SEARCH),
 since an untagged EXPUNGE response can invalidate sequence numbers in
 a subsequent command. This is not a problem for FETCH, STORE, or
 SEARCH commands because servers are prohibited from sending EXPUNGE
 responses while any of those commands are in progress. Therefore, if
 the client sends any command other than FETCH, STORE, or SEARCH, it

 MUST wait for the completion result response before sending a command
 with message sequence numbers.

 Note: EXPUNGE responses are permitted while UID FETCH, UID STORE,
 and UID SEARCH are in progress. If the client sends a UID
 command, it MUST wait for a completion result response before
 sending a command that uses message sequence numbers (this may
 include UID SEARCH). Any message sequence numbers in an argument
 to UID SEARCH are associated with messages prior to the effect of
 any untagged EXPUNGE responses returned by the UID SEARCH.

 For example, the following non-waiting command sequences are invalid:

 FETCH + NOOP + STORE

 STORE + COPY + FETCH

 COPY + COPY

 The following are examples of valid non-waiting command sequences:

 FETCH + STORE + SEARCH + NOOP

 STORE + COPY + EXPUNGE

 UID SEARCH + UID SEARCH may be valid or invalid as a non-waiting
 command sequence, depending upon whether or not the second UID SEARCH
 contains message sequence numbers.

 Use of a SEARCH result variable (see Section 6.4.4.1) creates direct
 dependency between two commands. See Section 6.4.4.2 for more
 considerations about pipelining such dependent commands.

6. Client Commands

 IMAP4rev2 commands are described in this section. Commands are
 organized by the state in which the command is permitted. Commands
 that are permitted in multiple states are listed in the minimum
 permitted state (for example, commands valid in authenticated and
 selected states are listed in the authenticated state commands).

 Command arguments, identified by "Arguments:" in the command
 descriptions below, are described by function, not by syntax. The
 precise syntax of command arguments is described in "Formal Syntax"
 (Section 9).

 Some commands cause specific server responses to be returned; these
 are identified by "Responses:" in the command descriptions below.
 See the response descriptions in "Responses" (Section 7) for
 information on these responses and in "Formal Syntax" (Section 9) for
 the precise syntax of these responses. It is possible for server
 data to be transmitted as a result of any command. Thus, commands
 that do not specifically require server data specify "no specific
 responses for this command" instead of "none".

 The "Result:" in the command description refers to the possible
 tagged status responses to a command and any special interpretation
 of these status responses.

 The state of a connection is only changed by successful commands that
 are documented as changing state. A rejected command (BAD response)
 never changes the state of the connection or of the selected mailbox.
 A failed command (NO response) generally does not change the state of
 the connection or of the selected mailbox, with the exception of the
 SELECT and EXAMINE commands.

6.1. Client Commands - Any State

 The following commands are valid in any state: CAPABILITY, NOOP, and
 LOGOUT.

6.1.1. CAPABILITY Command

 Arguments: none

 Responses: REQUIRED untagged response: CAPABILITY

 Result: OK - capability completed
 BAD - arguments invalid

 The CAPABILITY command requests a listing of capabilities (e.g.,
 extensions and/or modifications of server behavior) that the server
 supports. The server MUST send a single untagged CAPABILITY response
 with "IMAP4rev2" as one of the listed capabilities before the
 (tagged) OK response.

 A capability name that begins with "AUTH=" indicates that the server
 supports that particular authentication mechanism as defined in the
 Simple Authentication and Security Layer (SASL) [SASL]. All such
 names are, by definition, part of this specification.

 Other capability names refer to extensions, revisions, or amendments
 to this specification. See the documentation of the CAPABILITY
 response in Section 7.2.2 for additional information. If IMAP4rev1
 capability is not advertised, no capabilities, beyond the base
 IMAP4rev2 set defined in this specification, are enabled without
 explicit client action to invoke the capability. If both IMAP4rev1
 and IMAP4rev2 capabilities are advertised, no capabilities, beyond
 the base IMAP4rev1 set specified in [RFC3501], are enabled without
 explicit client action to invoke the capability.

 Client and server implementations MUST implement the STARTTLS
 (Section 6.2.1) and LOGINDISABLED capabilities on cleartext ports.
 Client and server implementations MUST also implement AUTH=PLAIN
 (described in [PLAIN]) capability on both cleartext and Implicit TLS
 ports. See the Security Considerations (Section 11) for important
 information.

 Unless otherwise specified, all registered extensions to IMAP4rev1
 are also valid extensions to IMAP4rev2.

 Example:

 C: abcd CAPABILITY
 S: * CAPABILITY IMAP4rev2 STARTTLS AUTH=GSSAPI
 LOGINDISABLED
 S: abcd OK CAPABILITY completed
 C: efgh STARTTLS
 S: efgh OK STARTTLS completed
 <TLS negotiation, further commands are under TLS layer>
 C: ijkl CAPABILITY
 S: * CAPABILITY IMAP4rev2 AUTH=GSSAPI AUTH=PLAIN
 S: ijkl OK CAPABILITY completed

6.1.2. NOOP Command

 Arguments: none

 Responses: no specific responses for this command (but see below)

 Result: OK - noop completed
 BAD - command unknown or arguments invalid

 The NOOP command always succeeds. It does nothing.

 Since any command can return a status update as untagged data, the
 NOOP command can be used as a periodic poll for new messages or
 message status updates during a period of inactivity (the IDLE
 command; see Section 6.3.13) should be used instead of NOOP if real-
 time updates to mailbox state are desirable). The NOOP command can
 also be used to reset any inactivity autologout timer on the server.

 Example:

 C: a002 NOOP
 S: a002 OK NOOP completed
 . . .
 C: a047 NOOP
 S: * 22 EXPUNGE
 S: * 23 EXISTS
 S: * 14 FETCH (UID 1305 FLAGS (\Seen \Deleted))
 S: a047 OK NOOP completed

6.1.3. LOGOUT Command

 Arguments: none

 Responses: REQUIRED untagged response: BYE

 Result: OK - logout completed
 BAD - command unknown or arguments invalid

 The LOGOUT command informs the server that the client is done with
 the connection. The server MUST send a BYE untagged response before
 the (tagged) OK response, and then close the network connection.

 Example:

 C: A023 LOGOUT
 S: * BYE IMAP4rev2 Server logging out
 S: A023 OK LOGOUT completed
 (Server and client then close the connection)

6.2. Client Commands - Not Authenticated State

 In the not authenticated state, the AUTHENTICATE or LOGIN command
 establishes authentication and enters the authenticated state. The
 AUTHENTICATE command provides a general mechanism for a variety of
 authentication techniques, privacy protection, and integrity
 checking, whereas the LOGIN command uses a conventional user name and
 plaintext password pair and has no means of establishing privacy
 protection or integrity checking.

 The STARTTLS command is an alternative form of establishing session
 privacy protection and integrity checking but does not by itself
 establish authentication or enter the authenticated state.

 Server implementations MAY allow access to certain mailboxes without
 establishing authentication. This can be done by means of the
 ANONYMOUS [SASL] authenticator described in [ANONYMOUS]. An older
 convention is a LOGIN command using the userid "anonymous"; in this
 case, a password is required although the server may choose to accept
 any password. The restrictions placed on anonymous users are
 implementation dependent.

 Once authenticated (including as anonymous), it is not possible to
 re-enter not authenticated state.

 In addition to the universal commands (CAPABILITY, NOOP, and LOGOUT),
 the following commands are valid in the not authenticated state:
 STARTTLS, AUTHENTICATE, and LOGIN. See the Security Considerations
 (Section 11) for important information about these commands.

6.2.1. STARTTLS Command

 Arguments: none

 Responses: no specific response for this command

 Result: OK - starttls completed, begin TLS negotiation
 NO - TLS negotiation can’t be initiated, due to server
 configuration error
 BAD - STARTTLS received after a successful TLS

 negotiation or arguments invalid

 Note that the STARTTLS command is available only on cleartext ports.
 The server MUST always respond with a tagged BAD response when the
 STARTTLS command is received on an Implicit TLS port.

 A TLS [TLS-1.3] negotiation begins immediately after the CRLF at the
 end of the tagged OK response from the server. Once a client issues
 a STARTTLS command, it MUST NOT issue further commands until a server
 response is seen and the TLS negotiation is complete. Some past
 server implementations incorrectly implemented STARTTLS processing
 and are known to contain STARTTLS plaintext command injection
 vulnerability [CERT-555316]. In order to avoid this vulnerability,
 server implementations MUST do one of the following if any data is
 received in the same TCP buffer after the CRLF that starts the
 STARTTLS command:

 1. Extra data from the TCP buffer is interpreted as the beginning of
 the TLS handshake. (If the data is in cleartext, this will
 result in the TLS handshake failing.)

 2. Extra data from the TCP buffer is thrown away.

 Note that the first option is friendlier to clients that pipeline the
 beginning of the STARTTLS command with TLS handshake data.

 After successful TLS negotiation, the server remains in the non-
 authenticated state, even if client credentials are supplied during
 the TLS negotiation. This does not preclude an authentication
 mechanism such as EXTERNAL (defined in [SASL]) from using client
 identity determined by the TLS negotiation.

 Once TLS has been started, the client MUST discard cached information
 about server capabilities and SHOULD reissue the CAPABILITY command.
 This is necessary to protect against active attacks that alter the
 capabilities list prior to STARTTLS. The server MAY advertise
 different capabilities and, in particular, SHOULD NOT advertise the
 STARTTLS capability, after a successful STARTTLS command.

 Example:

 C: a001 CAPABILITY
 S: * CAPABILITY IMAP4rev2 STARTTLS LOGINDISABLED
 S: a001 OK CAPABILITY completed
 C: a002 STARTTLS
 S: a002 OK Begin TLS negotiation now
 <TLS negotiation, further commands are under TLS layer>
 C: a003 CAPABILITY
 S: * CAPABILITY IMAP4rev2 AUTH=PLAIN
 S: a003 OK CAPABILITY completed
 C: a004 AUTHENTICATE PLAIN dGVzdAB0ZXN0AHRlc3Q=
 S: a004 OK Success (tls protection)

6.2.2. AUTHENTICATE Command

 Arguments: SASL authentication mechanism name

 OPTIONAL initial response

 Responses: continuation data can be requested

 Result: OK - authenticate completed, now in authenticated
 state
 NO - authenticate failure: unsupported authentication
 mechanism, credentials rejected
 BAD - command unknown or arguments invalid,
 authentication exchange canceled

 The AUTHENTICATE command indicates a [SASL] authentication mechanism
 to the server. If the server supports the requested authentication
 mechanism, it performs an authentication protocol exchange to

 authenticate and identify the client. It MAY also negotiate an
 OPTIONAL security layer for subsequent protocol interactions. If the
 requested authentication mechanism is not supported, the server
 SHOULD reject the AUTHENTICATE command by sending a tagged NO
 response.

 The AUTHENTICATE command supports the optional "initial response"
 feature defined in Section 4 of [SASL]. The client doesn’t need to
 use it. If a SASL mechanism supports "initial response", but it is
 not specified by the client, the server handles it as specified in
 Section 3 of [SASL].

 The service name specified by this protocol’s profile of [SASL] is
 "imap".

 The authentication protocol exchange consists of a series of server
 challenges and client responses that are specific to the
 authentication mechanism. A server challenge consists of a command
 continuation request response with the "+" token followed by a
 base64-encoded (see Section 4 of [RFC4648]) string. The client
 response consists of a single line consisting of a base64-encoded
 string. If the client wishes to cancel an authentication exchange,
 it issues a line consisting of a single "*". If the server receives
 such a response, or if it receives an invalid base64 string (e.g.,
 characters outside the base64 alphabet or non-terminal "="), it MUST
 reject the AUTHENTICATE command by sending a tagged BAD response.

 As with any other client response, the initial response MUST be
 encoded as base64. It also MUST be transmitted outside of a quoted
 string or literal. To send a zero-length initial response, the
 client MUST send a single pad character ("="). This indicates that
 the response is present, but it is a zero-length string.

 When decoding the base64 data in the initial response, decoding
 errors MUST be treated as in any normal SASL client response, i.e.,
 with a tagged BAD response. In particular, the server should check
 for any characters not explicitly allowed by the base64 alphabet, as
 well as any sequence of base64 characters that contains the pad
 character (’=’) anywhere other than the end of the string (e.g.,
 "=AAA" and "AAA=BBB" are not allowed).

 If the client uses an initial response with a SASL mechanism that
 does not support an initial response, the server MUST reject the
 command with a tagged BAD response.

 If a security layer is negotiated through the [SASL] authentication
 exchange, it takes effect immediately following the CRLF that
 concludes the authentication exchange for the client and the CRLF of
 the tagged OK response for the server.

 While client and server implementations MUST implement the
 AUTHENTICATE command itself, it is not required to implement any
 authentication mechanisms other than the PLAIN mechanism described in
 [PLAIN]. Also, an authentication mechanism is not required to
 support any security layers.

 Note: a server implementation MUST implement a configuration in
 which it does NOT permit any plaintext password mechanisms, unless
 the STARTTLS command has been negotiated, TLS has been negotiated
 on an Implicit TLS port, or some other mechanism that protects the
 session from password snooping has been provided. Server sites
 SHOULD NOT use any configuration that permits a plaintext password
 mechanism without such a protection mechanism against password
 snooping. Client and server implementations SHOULD implement
 additional [SASL] mechanisms that do not use plaintext passwords,
 such as the GSSAPI mechanism described in [RFC4752], the SCRAM-
 SHA-256/SCRAM-SHA-256-PLUS [SCRAM-SHA-256] mechanisms, and/or the
 EXTERNAL [SASL] mechanism for mutual TLS authentication. (Note
 that the SASL framework allows for the creation of SASL mechanisms
 that support 2-factor authentication (2FA); however, none are
 fully ready to be recommended by this document.)

 Servers and clients can support multiple authentication mechanisms.
 The server SHOULD list its supported authentication mechanisms in the
 response to the CAPABILITY command so that the client knows which
 authentication mechanisms to use.

 A server MAY include a CAPABILITY response code in the tagged OK
 response of a successful AUTHENTICATE command in order to send
 capabilities automatically. It is unnecessary for a client to send a
 separate CAPABILITY command if it recognizes these automatic
 capabilities. This should only be done if a security layer was not
 negotiated by the AUTHENTICATE command, because the tagged OK
 response as part of an AUTHENTICATE command is not protected by
 encryption/integrity checking. [SASL] requires the client to re-
 issue a CAPABILITY command in this case. The server MAY advertise
 different capabilities after a successful AUTHENTICATE command.

 If an AUTHENTICATE command fails with a NO response, the client MAY
 try another authentication mechanism by issuing another AUTHENTICATE
 command. It MAY also attempt to authenticate by using the LOGIN
 command (see Section 6.2.3 for more detail). In other words, the
 client MAY request authentication types in decreasing order of
 preference, with the LOGIN command as a last resort.

 The authorization identity passed from the client to the server
 during the authentication exchange is interpreted by the server as
 the user name whose privileges the client is requesting.

 Example:

 S: * OK [CAPABILITY IMAP4rev2 STARTTLS AUTH=GSSAPI]
 Capabilities
 C: A001 AUTHENTICATE GSSAPI
 S: +
 C: YIIB+wYJKoZIhvcSAQICAQBuggHqMIIB5qADAgEFoQMCAQ6iBw
 MFACAAAACjggEmYYIBIjCCAR6gAwIBBaESGxB1Lndhc2hpbmd0
 b24uZWR1oi0wK6ADAgEDoSQwIhsEaW1hcBsac2hpdmFtcy5jYW
 Mud2FzaGluZ3Rvbi5lZHWjgdMwgdCgAwIBAaEDAgEDooHDBIHA
 cS1GSa5b+fXnPZNmXB9SjL8Ollj2SKyb+3S0iXMljen/jNkpJX
 AleKTz6BQPzj8duz8EtoOuNfKgweViyn/9B9bccy1uuAE2HI0y
 C/PHXNNU9ZrBziJ8Lm0tTNc98kUpjXnHZhsMcz5Mx2GR6dGknb
 I0iaGcRerMUsWOuBmKKKRmVMMdR9T3EZdpqsBd7jZCNMWotjhi
 vd5zovQlFqQ2Wjc2+y46vKP/iXxWIuQJuDiisyXF0Y8+5GTpAL
 pHDc1/pIGmMIGjoAMCAQGigZsEgZg2on5mSuxoDHEA1w9bcW9n
 FdFxDKpdrQhVGVRDIzcCMCTzvUboqb5KjY1NJKJsfjRQiBYBdE
 NKfzK+g5DlV8nrw81uOcP8NOQCLR5XkoMHC0Dr/80ziQzbNqhx
 O6652Npft0LQwJvenwDI13YxpwOdMXzkWZN/XrEqOWp6GCgXTB
 vCyLWLlWnbaUkZdEYbKHBPjd8t/1x5Yg==
 S: + YGgGCSqGSIb3EgECAgIAb1kwV6ADAgEFoQMCAQ+iSzBJoAMC
 AQGiQgRAtHTEuOP2BXb9sBYFR4SJlDZxmg39IxmRBOhXRKdDA0
 uHTCOT9Bq3OsUTXUlk0CsFLoa8j+gvGDlgHuqzWHPSQg==
 C:
 S: + YDMGCSqGSIb3EgECAgIBAAD/////6jcyG4GE3KkTzBeBiVHe
 ceP2CWY0SR0fAQAgAAQEBAQ=
 C: YDMGCSqGSIb3EgECAgIBAAD/////3LQBHXTpFfZgrejpLlLImP
 wkhbfa2QteAQAgAG1yYwE=
 S: A001 OK GSSAPI authentication successful

 The following example demonstrates the use of an initial response.

 Example:

 S: * OK [CAPABILITY IMAP4rev2 STARTTLS AUTH=GSSAPI
 LOGINDISABLED] Server ready
 C: A01 STARTTLS
 S: A01 OK STARTTLS completed
 <TLS negotiation, further commands are under TLS layer>
 C: A02 CAPABILITY
 S: * CAPABILITY IMAP4rev2 AUTH=GSSAPI AUTH=PLAIN
 S: A02 OK CAPABILITY completed
 C: A03 AUTHENTICATE PLAIN dGVzdAB0ZXN0AHRlc3Q=

 S: A03 OK Success (tls protection)

 Note that because the initial response is optional, the following
 negotiation (which does not use the initial response) is still valid
 and MUST be supported by the server:

 ... client connects to server and negotiates a TLS
 protection layer ...
 C: C01 CAPABILITY
 S: * CAPABILITY IMAP4rev2 AUTH=PLAIN
 S: C01 OK Completed
 C: A01 AUTHENTICATE PLAIN
 S: +
 C: dGVzdAB0ZXN0AHRlc3Q=
 S: A01 OK Success (tls protection)

 Note that in the above example there is a space following the "+"
 from the server.

 The following is an example authentication using the SASL EXTERNAL
 mechanism (defined in [SASL]) under a TLS protection layer and an
 empty initial response:

 ... client connects to server and negotiates a TLS
 protection layer ...
 C: C01 CAPABILITY
 S: * CAPABILITY IMAP4rev2 AUTH=PLAIN AUTH=EXTERNAL
 S: C01 OK Completed
 C: A01 AUTHENTICATE EXTERNAL =
 S: A01 OK Success (tls protection)

 Note: The line breaks within server challenges and client responses
 are for editorial clarity and are not in real authenticators.

6.2.3. LOGIN Command

 Arguments: user name

 password

 Responses: no specific responses for this command

 Result: OK - login completed, now in authenticated state
 NO - login failure: user name or password rejected
 BAD - command unknown or arguments invalid

 The LOGIN command identifies the client to the server and carries the
 plaintext password authenticating this user. The LOGIN command
 SHOULD NOT be used except as a last resort (after attempting and
 failing to authenticate using the AUTHENTICATE command one or more
 times), and it is recommended that client implementations have a
 means to disable any automatic use of the LOGIN command.

 A server MAY include a CAPABILITY response code in the tagged OK
 response to a successful LOGIN command in order to send capabilities
 automatically. It is unnecessary for a client to send a separate
 CAPABILITY command if it recognizes these automatic capabilities.

 Example:

 C: a001 LOGIN SMITH SESAME
 S: a001 OK LOGIN completed

 Note: Use of the LOGIN command over an insecure network (such as the
 Internet) is a security risk, because anyone monitoring network
 traffic can obtain plaintext passwords. For that reason, clients
 MUST NOT use LOGIN on unsecure networks.

 Unless the client is accessing IMAP service on an Implicit TLS port
 [RFC8314], the STARTTLS command has been negotiated, or some other
 mechanism that protects the session from password snooping has been

 provided, a server implementation MUST implement a configuration in
 which it advertises the LOGINDISABLED capability and does NOT permit
 the LOGIN command. Server sites SHOULD NOT use any configuration
 that permits the LOGIN command without such a protection mechanism
 against password snooping. A client implementation MUST NOT send a
 LOGIN command if the LOGINDISABLED capability is advertised.

6.3. Client Commands - Authenticated State

 In the authenticated state, commands that manipulate mailboxes as
 atomic entities are permitted. Of these commands, SELECT and EXAMINE
 will select a mailbox for access and enter the selected state.

 In addition to the universal commands (CAPABILITY, NOOP, and LOGOUT),
 the following commands are valid in the authenticated state: ENABLE,
 SELECT, EXAMINE, NAMESPACE, CREATE, DELETE, RENAME, SUBSCRIBE,
 UNSUBSCRIBE, LIST, STATUS, APPEND, and IDLE.

6.3.1. ENABLE Command

 Arguments: capability names

 Responses: no specific responses for this command

 Result: OK - Relevant capabilities enabled
 BAD - No arguments, or syntax error in an argument

 Several IMAP extensions allow the server to return unsolicited
 responses specific to these extensions in certain circumstances.
 However, servers cannot send those unsolicited responses (with the
 exception of response codes (see Section 7.1) included in tagged or
 untagged OK/NO/BAD responses, which can always be sent) until they
 know that the clients support such extensions and thus will be able
 to correctly parse and process the extension response data.

 The ENABLE command provides an explicit indication from the client
 that it supports particular extensions. It is designed such that the
 client can send a simple constant string with the extensions it
 supports, and the server will enable the shared subset that both
 support.

 The ENABLE command takes a list of capability names and requests the
 server to enable the named extensions. Once enabled using ENABLE,
 each extension remains active until the IMAP connection is closed.
 For each argument, the server does the following:

 * If the argument is not an extension known to the server, the
 server MUST ignore the argument.

 * If the argument is an extension known to the server, and it is not
 specifically permitted to be enabled using ENABLE, the server MUST
 ignore the argument. (Note that knowing about an extension
 doesn’t necessarily imply supporting that extension.)

 * If the argument is an extension that is supported by the server
 and that needs to be enabled, the server MUST enable the extension
 for the duration of the connection. Note that once an extension
 is enabled, there is no way to disable it.

 If the ENABLE command is successful, the server MUST send an untagged
 ENABLED response (Section 7.2.1), which includes all enabled
 extensions as specified above. The ENABLED response is sent even if
 no extensions were enabled.

 Clients SHOULD only include extensions that need to be enabled by the
 server. For example, a client can enable IMAP4rev2-specific behavior
 when both IMAP4rev1 and IMAP4rev2 are advertised in the CAPABILITY
 response. Future RFCs may add to this list.

 The ENABLE command is only valid in the authenticated state, before
 any mailbox is selected. Clients MUST NOT issue ENABLE once they

 SELECT/EXAMINE a mailbox; however, server implementations don’t have
 to check that no mailbox is selected or was previously selected
 during the duration of a connection.

 The ENABLE command can be issued multiple times in a session. It is
 additive; that is, "ENABLE a b", followed by "ENABLE c", is the same
 as a single command "ENABLE a b c". When multiple ENABLE commands
 are issued, each corresponding ENABLED response SHOULD only contain
 extensions enabled by the corresponding ENABLE command, i.e., for the
 above example, the ENABLED response to "ENABLE c" should not contain
 "a" or "b".

 There are no limitations on pipelining ENABLE. For example, it is
 possible to send ENABLE and then immediately SELECT, or a LOGIN
 immediately followed by ENABLE.

 The server MUST NOT change the CAPABILITY list as a result of
 executing ENABLE; that is, a CAPABILITY command issued right after an
 ENABLE command MUST list the same capabilities as a CAPABILITY
 command issued before the ENABLE command. This is demonstrated in
 the following example. Note that below "X-GOOD-IDEA" is a fictitious
 extension capability that can be ENABLED.

 C: t1 CAPABILITY
 S: * CAPABILITY IMAP4rev2 ID LITERAL+ X-GOOD-IDEA
 S: t1 OK foo
 C: t2 ENABLE CONDSTORE X-GOOD-IDEA
 S: * ENABLED X-GOOD-IDEA
 S: t2 OK foo
 C: t3 CAPABILITY
 S: * CAPABILITY IMAP4rev2 ID LITERAL+ X-GOOD-IDEA
 S: t3 OK foo again

 In the following example, the client enables the Conditional Store
 (CONDSTORE) extension [RFC7162]:

 C: a1 ENABLE CONDSTORE
 S: * ENABLED CONDSTORE
 S: a1 OK Conditional Store enabled

6.3.1.1. Note to Designers of Extensions That May Use the ENABLE
 Command

 Designers of IMAP extensions are discouraged from creating extensions
 that require ENABLE unless there is no good alternative design.
 Specifically, extensions that cause potentially incompatible behavior
 changes to deployed server responses (and thus benefit from ENABLE)
 have a higher complexity cost than extensions that do not.

6.3.2. SELECT Command

 Arguments: mailbox name

 Responses: REQUIRED untagged responses: FLAGS, EXISTS, LIST
 REQUIRED OK untagged responses: PERMANENTFLAGS,
 UIDNEXT, UIDVALIDITY

 Result: OK - select completed, now in selected state
 NO - select failure, now in authenticated state: no
 such mailbox, can’t access mailbox
 BAD - command unknown or arguments invalid

 The SELECT command selects a mailbox so that messages in the mailbox
 can be accessed. Before returning an OK to the client, the server
 MUST send the following untagged data to the client. (The order of
 individual responses is not important.) Note that earlier versions
 of this protocol, such as the IMAP4rev1 version specified in
 [RFC2060], only required the FLAGS and EXISTS untagged responses and
 UIDVALIDITY response code. Client implementations that need to
 remain compatible with such older IMAP versions have to implement
 default behavior for missing data, as discussed with the individual

 items.

 FLAGS
 Defined flags in the mailbox. See the description of the FLAGS
 response in Section 7.3.5 for more detail.

 <n> EXISTS
 The number of messages in the mailbox. See the description of the
 EXISTS response in Section 7.4.1 for more detail.

 LIST
 The server MUST return a LIST response with the mailbox name. The
 list of mailbox attributes MUST be accurate. If the server allows
 denormalized UTF-8 mailbox names (see Section 5.1) and the
 supplied mailbox name differs from the normalized version, the
 server MUST return LIST with the OLDNAME extended data item. See
 Section 6.3.9.7 for more details.

 OK [PERMANENTFLAGS (<list of flags>)]
 A list of message flags that the client can change permanently.
 If this is missing, the client should assume that all flags can be
 changed permanently.

 OK [UIDNEXT <n>]
 The next unique identifier value. Refer to Section 2.3.1.1 for
 more information.

 OK [UIDVALIDITY <n>]
 The unique identifier validity value. Refer to Section 2.3.1.1
 for more information.

 Only one mailbox can be selected at a time in a connection;
 simultaneous access to multiple mailboxes requires multiple
 connections. The SELECT command automatically deselects any
 currently selected mailbox before attempting the new selection.
 Consequently, if a mailbox is selected and a SELECT command that
 fails is attempted, no mailbox is selected. When deselecting a
 selected mailbox, the server MUST return an untagged OK response with
 the "[CLOSED]" response code when the currently selected mailbox is
 closed (see Section 7.1).

 If the client is permitted to modify the mailbox, the server SHOULD
 prefix the text of the tagged OK response with the "[READ-WRITE]"
 response code.

 If the client is not permitted to modify the mailbox but is permitted
 read access, the mailbox is selected as read-only, and the server
 MUST prefix the text of the tagged OK response to SELECT with the
 "[READ-ONLY]" response code. Read-only access through SELECT differs
 from the EXAMINE command in that certain read-only mailboxes MAY
 permit the change of permanent state on a per-user (as opposed to
 global) basis. Netnews messages marked in a server-based .newsrc
 file are an example of such per-user permanent state that can be
 modified with read-only mailboxes.

 Example:

 C: A142 SELECT INBOX
 S: * 172 EXISTS
 S: * OK [UIDVALIDITY 3857529045] UIDs valid
 S: * OK [UIDNEXT 4392] Predicted next UID
 S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
 S: * OK [PERMANENTFLAGS (\Deleted \Seen *)] Limited
 S: * LIST () "/" INBOX
 S: A142 OK [READ-WRITE] SELECT completed

 Example:

 C: A142 SELECT INBOX
 S: * 172 EXISTS
 S: * OK [UIDVALIDITY 3857529045] UIDs valid

 S: * OK [UIDNEXT 4392] Predicted next UID
 S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
 S: * OK [PERMANENTFLAGS (\Deleted \Seen *)] Limited
 S: A142 OK [READ-WRITE] SELECT completed
 [...some time later...]
 C: A143 SELECT Drafts
 S: * OK [CLOSED] Previous mailbox is now closed
 S: * 5 EXISTS
 S: * OK [UIDVALIDITY 9877410381] UIDs valid
 S: * OK [UIDNEXT 102] Predicted next UID
 S: * LIST () "/" Drafts
 S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
 S: * OK [PERMANENTFLAGS (\Deleted \Seen \Answered
 \Flagged \Draft *)] System flags and keywords allowed
 S: A143 OK [READ-WRITE] SELECT completed

 Note that IMAP4rev1-compliant servers can also send the untagged
 RECENT response that was deprecated in IMAP4rev2, e.g., "* 0 RECENT".
 Pure IMAP4rev2 clients are advised to ignore the untagged RECENT
 response.

6.3.3. EXAMINE Command

 Arguments: mailbox name

 Responses: REQUIRED untagged responses: FLAGS, EXISTS, LIST
 REQUIRED OK untagged responses: PERMANENTFLAGS,
 UIDNEXT, UIDVALIDITY

 Result: OK - examine completed, now in selected state
 NO - examine failure, now in authenticated state: no
 such mailbox, can’t access mailbox
 BAD - command unknown or arguments invalid

 The EXAMINE command is identical to SELECT and returns the same
 output; however, the selected mailbox is identified as read-only. No
 changes to the permanent state of the mailbox, including per-user
 state, are permitted.

 The text of the tagged OK response to the EXAMINE command MUST begin
 with the "[READ-ONLY]" response code.

 Example:

 C: A932 EXAMINE blurdybloop
 S: * 17 EXISTS
 S: * OK [UIDVALIDITY 3857529045] UIDs valid
 S: * OK [UIDNEXT 4392] Predicted next UID
 S: * LIST () "/" blurdybloop
 S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
 S: * OK [PERMANENTFLAGS ()] No permanent flags permitted
 S: A932 OK [READ-ONLY] EXAMINE completed

6.3.4. CREATE Command

 Arguments: mailbox name

 Responses: OPTIONAL untagged response: LIST

 Result: OK - create completed
 NO - create failure: can’t create mailbox with that
 name
 BAD - command unknown or arguments invalid

 The CREATE command creates a mailbox with the given name. An OK
 response is returned only if a new mailbox with that name has been
 created. It is an error to attempt to create INBOX or a mailbox with
 a name that refers to an extant mailbox. Any error in creation will
 return a tagged NO response. If a client attempts to create a UTF-8
 mailbox name that is not a valid Net-Unicode name, the server MUST
 reject the creation or convert the name to Net-Unicode prior to

 creating the mailbox. If the server decides to convert (normalize)
 the name, it SHOULD return an untagged LIST with an OLDNAME extended
 data item, with the OLDNAME value being the supplied mailbox name and
 the name parameter being the normalized mailbox name. (See
 Section 6.3.9.7 for more details.)

 Mailboxes created in one IMAP session MAY be announced to other IMAP
 sessions using an unsolicited LIST response. If the server
 automatically subscribes a mailbox when it is created, then the
 unsolicited LIST response for each affected subscribed mailbox name
 MUST include the \Subscribed attribute.

 If the mailbox name is suffixed with the server’s hierarchy separator
 character (as returned from the server by a LIST command), this is a
 declaration that the client intends to create mailbox names under
 this name in the hierarchy. Server implementations that do not
 require this declaration MUST ignore the declaration. In any case,
 the name created is without the trailing hierarchy delimiter.

 If the server’s hierarchy separator character appears elsewhere in
 the name, the server SHOULD create any superior hierarchical names
 that are needed for the CREATE command to be successfully completed.
 In other words, an attempt to create "foo/bar/zap" on a server in
 which "/" is the hierarchy separator character SHOULD create foo/ and
 foo/bar/ if they do not already exist.

 If a new mailbox is created with the same name as a mailbox that was
 deleted, its unique identifiers MUST be greater than any unique
 identifiers used in the previous incarnation of the mailbox unless
 the new incarnation has a different unique identifier validity value.
 See the description of the UID command in Section 6.4.9 for more
 detail.

 Example:

 C: A003 CREATE owatagusiam/
 S: A003 OK CREATE completed
 C: A004 CREATE owatagusiam/blurdybloop
 S: A004 OK CREATE completed
 C: A005 CREATE NonNormalized
 S: * LIST () "/" "Normalized" ("OLDNAME" ("NonNormalized"))
 S: A005 OK CREATE completed

 (In the last example, imagine that "NonNormalized" is a non-NFC
 normalized Unicode mailbox name and that "Normalized" is its NFC
 normalized version.)

 | Note: The interpretation of this example depends on whether "/"
 | was returned as the hierarchy separator from LIST. If "/" is
 | the hierarchy separator, a new level of hierarchy named
 | "owatagusiam" with a member called "blurdybloop" is created.
 | Otherwise, two mailboxes at the same hierarchy level are
 | created.

6.3.5. DELETE Command

 Arguments: mailbox name

 Responses: OPTIONAL untagged response: LIST

 Result: OK - delete completed
 NO - delete failure: can’t delete mailbox with that
 name
 BAD - command unknown or arguments invalid

 The DELETE command permanently removes the mailbox with the given
 name. A tagged OK response is returned only if the mailbox has been
 deleted. It is an error to attempt to delete INBOX or a mailbox name
 that does not exist.

 The DELETE command MUST NOT remove inferior hierarchical names. For

 example, if a mailbox "foo" has an inferior "foo.bar" (assuming "."
 is the hierarchy delimiter character), removing "foo" MUST NOT remove
 "foo.bar". It is an error to attempt to delete a name that has
 inferior hierarchical names and also has the \Noselect mailbox name
 attribute (see the description of the LIST response (Section 7.3.1)
 for more details).

 It is permitted to delete a name that has inferior hierarchical names
 and does not have the \Noselect mailbox name attribute. If the
 server implementation does not permit deleting the name while
 inferior hierarchical names exist, then it SHOULD disallow the DELETE
 command by returning a tagged NO response. The NO response SHOULD
 include the HASCHILDREN response code. Alternatively, the server MAY
 allow the DELETE command, but it sets the \Noselect mailbox name
 attribute for that name.

 If the server returns an OK response, all messages in that mailbox
 are removed by the DELETE command.

 The value of the highest-used unique identifier of the deleted
 mailbox MUST be preserved so that a new mailbox created with the same
 name will not reuse the identifiers of the former incarnation, unless
 the new incarnation has a different unique identifier validity value.
 See the description of the UID command in Section 6.4.9 for more
 detail.

 If the server decides to convert (normalize) the mailbox name, it
 SHOULD return an untagged LIST with the "\NonExistent" attribute and
 OLDNAME extended data item, with the OLDNAME value being the supplied
 mailbox name and the name parameter being the normalized mailbox
 name. (See Section 6.3.9.7 for more details.)

 Mailboxes deleted in one IMAP session MAY be announced to other IMAP
 sessions using an unsolicited LIST response, containing the
 "\NonExistent" attribute.

 Example:

 C: A682 LIST "" *
 S: * LIST () "/" blurdybloop
 S: * LIST (\Noselect) "/" foo
 S: * LIST () "/" foo/bar
 S: A682 OK LIST completed
 C: A683 DELETE blurdybloop
 S: A683 OK DELETE completed
 C: A684 DELETE foo
 S: A684 NO Name "foo" has inferior hierarchical names
 C: A685 DELETE foo/bar
 S: A685 OK DELETE Completed
 C: A686 LIST "" *
 S: * LIST (\Noselect) "/" foo
 S: A686 OK LIST completed
 C: A687 DELETE foo
 S: A687 OK DELETE Completed

 Example:

 C: A82 LIST "" *
 S: * LIST () "." blurdybloop
 S: * LIST () "." foo
 S: * LIST () "." foo.bar
 S: A82 OK LIST completed
 C: A83 DELETE blurdybloop
 S: A83 OK DELETE completed
 C: A84 DELETE foo
 S: A84 OK DELETE Completed
 C: A85 LIST "" *
 S: * LIST () "." foo.bar
 S: A85 OK LIST completed
 C: A86 LIST "" %
 S: * LIST (\Noselect) "." foo

 S: A86 OK LIST completed

6.3.6. RENAME Command

 Arguments: existing mailbox name

 new mailbox name

 Responses: OPTIONAL untagged response: LIST

 Result: OK - rename completed
 NO - rename failure: can’t rename mailbox with that
 name, can’t rename to mailbox with that name
 BAD - command unknown or arguments invalid

 The RENAME command changes the name of a mailbox. A tagged OK
 response is returned only if the mailbox has been renamed. It is an
 error to attempt to rename from a mailbox name that does not exist or
 to a mailbox name that already exists. Any error in renaming will
 return a tagged NO response.

 If the name has inferior hierarchical names, then the inferior
 hierarchical names MUST also be renamed. For example, a rename of
 "foo" to "zap" will rename "foo/bar" (assuming "/" is the hierarchy
 delimiter character) to "zap/bar".

 If the server’s hierarchy separator character appears in the new
 mailbox name, the server SHOULD create any superior hierarchical
 names that are needed for the RENAME command to complete
 successfully. In other words, an attempt to rename "foo/bar/zap" to
 "baz/rag/zowie" on a server in which "/" is the hierarchy separator
 character in the corresponding namespace SHOULD create "baz/" and
 "baz/rag/" if they do not already exist.

 The value of the highest-used unique identifier of the old mailbox
 name MUST be preserved so that a new mailbox created with the same
 name will not reuse the identifiers of the former incarnation, unless
 the new incarnation has a different unique identifier validity value.
 See the description of the UID command in Section 6.4.9 for more
 detail.

 Renaming INBOX is permitted and does not result in a tagged BAD
 response, and it has special behavior: It moves all messages in INBOX
 to a new mailbox with the given name, leaving INBOX empty. If the
 server implementation supports inferior hierarchical names of INBOX,
 these are unaffected by a rename of INBOX. (Note that some servers
 disallow renaming INBOX by returning a tagged NO response, so clients
 need to be able to handle the failure of such RENAME commands.)

 If the server allows creation of mailboxes with names that are not
 valid Net-Unicode names, the server normalizes both the existing
 mailbox name parameter and the new mailbox name parameter. If the
 normalized version of any of these 2 parameters differs from the
 corresponding supplied version, the server SHOULD return an untagged
 LIST response with an OLDNAME extended data item, with the OLDNAME
 value being the supplied existing mailbox name and the name parameter
 being the normalized new mailbox name (see Section 6.3.9.7). This
 would allow the client to correlate the supplied name with the
 normalized name.

 Mailboxes renamed in one IMAP session MAY be announced to other IMAP
 sessions using an unsolicited LIST response with an OLDNAME extended
 data item.

 In both of the above cases, if the server automatically subscribes a
 mailbox when it is renamed, then the unsolicited LIST response for
 each affected subscribed mailbox name MUST include the \Subscribed
 attribute. No unsolicited LIST responses need to be sent for child
 mailboxes. When INBOX is successfully renamed, it is assumed that a
 new INBOX is created. No unsolicited LIST responses need to be sent
 for INBOX in this case.

 Examples:

 C: A682 LIST "" *
 S: * LIST () "/" blurdybloop
 S: * LIST (\Noselect) "/" foo
 S: * LIST () "/" foo/bar
 S: A682 OK LIST completed
 C: A683 RENAME blurdybloop sarasoop
 S: A683 OK RENAME completed
 C: A684 RENAME foo zowie
 S: A684 OK RENAME Completed
 C: A685 LIST "" *
 S: * LIST () "/" sarasoop
 S: * LIST (\Noselect) "/" zowie
 S: * LIST () "/" zowie/bar
 S: A685 OK LIST completed

 C: Z432 LIST "" *
 S: * LIST () "." INBOX
 S: * LIST () "." INBOX.bar
 S: Z432 OK LIST completed
 C: Z433 RENAME INBOX old-mail
 S: Z433 OK RENAME completed
 C: Z434 LIST "" *
 S: * LIST () "." INBOX
 S: * LIST () "." INBOX.bar
 S: * LIST () "." old-mail
 S: Z434 OK LIST completed

 Note that renaming a mailbox doesn’t update subscription information
 on the original name. To keep subscription information in sync, the
 following sequence of commands can be used:

 C: 1001 RENAME X Y
 C: 1002 SUBSCRIBE Y
 C: 1003 UNSUBSCRIBE X

 Note that the above sequence of commands doesn’t account for updating
 the subscription for any child mailboxes of mailbox X.

6.3.7. SUBSCRIBE Command

 Arguments: mailbox

 Responses: no specific responses for this command

 Result: OK - subscribe completed
 NO - subscribe failure: can’t subscribe to that name
 BAD - command unknown or arguments invalid

 The SUBSCRIBE command adds the specified mailbox name to the server’s
 set of "active" or "subscribed" mailboxes as returned by the LIST
 (SUBSCRIBED) command. This command returns a tagged OK response if
 the subscription is successful or if the mailbox is already
 subscribed.

 A server MAY validate the mailbox argument to SUBSCRIBE to verify
 that it exists. However, it SHOULD NOT unilaterally remove an
 existing mailbox name from the subscription list even if a mailbox by
 that name no longer exists.

 | Note: This requirement is because a server site can choose to
 | routinely remove a mailbox with a well-known name (e.g.,
 | "system-alerts") after its contents expire, with the intention
 | of recreating it when new contents are appropriate.

 Example:

 C: A002 SUBSCRIBE #news.comp.mail.mime
 S: A002 OK SUBSCRIBE completed

6.3.8. UNSUBSCRIBE Command

 Arguments: mailbox name

 Responses: no specific responses for this command

 Result: OK - unsubscribe completed
 NO - unsubscribe failure: can’t unsubscribe that name
 BAD - command unknown or arguments invalid

 The UNSUBSCRIBE command removes the specified mailbox name from the
 server’s set of "active" or "subscribed" mailboxes as returned by the
 LIST (SUBSCRIBED) command. This command returns a tagged OK response
 if the unsubscription is successful or if the mailbox is not
 subscribed.

 Example:

 C: A002 UNSUBSCRIBE #news.comp.mail.mime
 S: A002 OK UNSUBSCRIBE completed

6.3.9. LIST Command

 Arguments (basic):
 reference name
 mailbox name with possible wildcards

 Arguments (extended):
 selection options (OPTIONAL)
 reference name
 mailbox patterns
 return options (OPTIONAL)

 Responses: untagged responses: LIST

 Result: OK - list completed
 NO - list failure: can’t list that reference or
 mailbox name
 BAD - command unknown or arguments invalid

 The LIST command returns a subset of mailbox names from the complete
 set of all mailbox names available to the client. Zero or more
 untagged LIST responses are returned, containing the name attributes,
 hierarchy delimiter, name, and possible extension information; see
 the description of the LIST response (Section 7.3.1) for more detail.

 The LIST command SHOULD return its data quickly, without undue delay.
 For example, it should not go to excess trouble to calculate the
 \Marked or \Unmarked status or perform other processing; if each name
 requires 1 second of processing, then a list of 1200 names would take
 20 minutes!

 The extended LIST command, originally introduced in [RFC5258],
 provides capabilities beyond that of the original IMAP LIST command.
 The extended syntax is being used if one or more of the following
 conditions is true:

 1. the first word after the command name begins with a parenthesis
 ("LIST selection options");

 2. the second word after the command name begins with a parenthesis;
 and

 3. the LIST command has more than 2 parameters ("LIST return
 options").

 An empty ("" string) reference name argument indicates that the
 mailbox name is interpreted as by SELECT. The returned mailbox names
 MUST match the supplied mailbox name pattern(s). A non-empty
 reference name argument is the name of a mailbox or a level of

 mailbox hierarchy, and it indicates the context in which the mailbox
 name is interpreted. Clients SHOULD use the empty reference
 argument.

 In the basic syntax only, an empty ("" string) mailbox name argument
 is a special request to return the hierarchy delimiter and the root
 name of the name given in the reference. The value returned as the
 root MAY be the empty string if the reference is non-rooted or is an
 empty string. In all cases, a hierarchy delimiter (or NIL if there
 is no hierarchy) is returned. This permits a client to get the
 hierarchy delimiter (or find out that the mailbox names are flat)
 even when no mailboxes by that name currently exist.

 In the extended syntax, any mailbox name arguments that are empty
 strings are ignored. There is no special meaning for empty mailbox
 names when the extended syntax is used.

 The reference and mailbox name arguments are interpreted into a
 canonical form that represents an unambiguous left-to-right
 hierarchy. The returned mailbox names will be in the interpreted
 form, which we call a "canonical LIST pattern": the canonical pattern
 constructed internally by the server from the reference and mailbox
 name arguments.

 Note: The interpretation of the reference argument is
 implementation defined. It depends on whether the server
 implementation has a concept of the "current working directory"
 and leading "break out characters", which override the current
 working directory.

 For example, on a server that exports a UNIX or NT file system,
 the reference argument contains the current working directory, and
 the mailbox name argument contains the name as interpreted in the
 current working directory.

 If a server implementation has no concept of break out characters,
 the canonical form is normally the reference name appended with
 the mailbox name. Note that if the server implements the
 namespace convention (Section 5.1.2.1), "#" is a break out
 character and must be treated as such.

 If the reference argument is not a level of mailbox hierarchy
 (that is, it is a \NoInferiors name), and/or the reference
 argument does not end with the hierarchy delimiter, it is
 interpreted as implementation dependent. For example, a reference
 of "foo/bar" and mailbox name of "rag/baz" could be interpreted as
 "foo/bar/rag/baz", "foo/barrag/baz", or "foo/rag/baz". A client
 SHOULD NOT use such a reference argument except at the explicit
 request of the user. A hierarchical browser MUST NOT make any
 assumptions about server interpretation of the reference unless
 the reference is a level of mailbox hierarchy AND ends with the
 hierarchy delimiter.

 Any part of the reference argument that is included in the
 interpreted form SHOULD prefix the interpreted form. It SHOULD also
 be in the same form as the reference name argument. This rule
 permits the client to determine if the returned mailbox name is in
 the context of the reference argument or if something about the
 mailbox argument overrode the reference argument. Without this rule,
 the client would have to have knowledge of the server’s naming
 semantics including what characters are "breakouts" that override a
 naming context.

 Here are some examples of how references and mailbox names might be
 interpreted on a UNIX-based server:

 +==============+==============+===================+
 | Reference | Mailbox Name | Interpretation |
 +==============+==============+===================+
 | ˜smith/Mail/ | foo.* | ˜smith/Mail/foo.* |
 +--------------+--------------+-------------------+

 | archive/ | % | archive/% |
 +--------------+--------------+-------------------+
 | #news. | comp.mail.* | #news.comp.mail.* |
 +--------------+--------------+-------------------+
 | ˜smith/Mail/ | /usr/doc/foo | /usr/doc/foo |
 +--------------+--------------+-------------------+
 | archive/ | ˜fred/Mail/* | ˜fred/Mail/* |
 +--------------+--------------+-------------------+

 Table 1

 The first three examples above demonstrate interpretations in the
 context of the reference argument. Note that "˜smith/Mail" SHOULD
 NOT be transformed into something like "/u2/users/smith/Mail", or it
 would be impossible for the client to determine that the
 interpretation was in the context of the reference.

 The character "*" is a wildcard and matches zero or more characters
 at this position. The character "%" is similar to "*", but it does
 not match a hierarchy delimiter. If the "%" wildcard is the last
 character of a mailbox name argument, matching levels of hierarchy
 are also returned. If these levels of hierarchy are not also
 selectable mailboxes, they are returned with the \Noselect mailbox
 name attribute (see the description of the LIST response
 (Section 7.3.1) for more details).

 Any syntactically valid pattern that is not accepted by a server for
 any reason MUST be silently ignored, i.e., it results in no LIST
 responses, and the LIST command still returns a tagged OK response.

 Selection options tell the server to limit the mailbox names that are
 selected by the LIST operation. If selection options are used, the
 mailboxes returned are those that match both the list of canonical
 LIST patterns and the selection options. Unless a particular
 selection option provides special rules, the selection options are
 cumulative: a mailbox that matches the mailbox patterns is selected
 only if it also matches all of the selection options. (An example of
 a selection option with special rules is the RECURSIVEMATCH option.)

 Return options control what information is returned for each matched
 mailbox. Return options MUST NOT cause the server to report
 information about additional mailbox names other than those that
 match the canonical LIST patterns and selection options. If no
 return options are specified, the client is only expecting
 information about mailbox attributes. The server MAY return other
 information about the matched mailboxes, and clients MUST be able to
 handle that situation.

 Initial selection options and return options are defined in the
 following subsections, and new ones will also be defined in
 extensions. Initial options defined in this document MUST be
 supported. Each non-initial option will be enabled by a capability
 string (one capability may enable multiple options), and a client
 MUST NOT send an option for which the server has not advertised
 support. A server MUST respond to options it does not recognize with
 a BAD response. The client SHOULD NOT specify any option more than
 once; however, if the client does this, the server MUST act as if it
 received the option only once. The order in which options are
 specified by the client is not significant.

 In general, each selection option except RECURSIVEMATCH will have a
 corresponding return option with the same name. The REMOTE selection
 option is an anomaly in this regard and does not have a corresponding
 return option. That is because it expands, rather than restricts,
 the set of mailboxes that are returned. Future extensions to this
 specification should keep this parallelism in mind and define a pair
 of corresponding selection and return options.

 Server implementations are permitted to "hide" otherwise accessible
 mailboxes from the wildcard characters, by preventing certain
 characters or names from matching a wildcard in certain situations.

 For example, a UNIX-based server might restrict the interpretation of
 "*" so that an initial "/" character does not match.

 The special name INBOX is included in the output from LIST, if INBOX
 is supported by this server for this user and if the uppercase string
 "INBOX" matches the interpreted reference and mailbox name arguments
 with wildcards as described above. The criteria for omitting INBOX
 is whether SELECT INBOX will return a failure; it is not relevant
 whether the user’s real INBOX resides on this or some other server.

6.3.9.1. LIST Selection Options

 The selection options defined in this specification are as follows:

 SUBSCRIBED
 Causes the LIST command to list subscribed names rather than the
 existing mailboxes. This will often be a subset of the actual
 mailboxes. It’s also possible for this list to contain the names
 of mailboxes that don’t exist. In any case, the list MUST include
 exactly those mailbox names that match the canonical list pattern
 and are subscribed to.

 This option defines a mailbox attribute, "\Subscribed", that
 indicates that a mailbox name is subscribed to. The "\Subscribed"
 attribute MUST be supported and MUST be accurately computed when
 the SUBSCRIBED selection option is specified.

 Note that the SUBSCRIBED selection option implies the SUBSCRIBED
 return option (see below).

 REMOTE
 Causes the LIST command to show remote mailboxes as well as local
 ones, as described in [RFC2193]. This option is intended to
 replace the RLIST command and, in conjunction with the SUBSCRIBED
 selection option, the RLSUB command. Servers that don’t support
 the concept of remote mailboxes can ignore this option.

 This option defines a mailbox attribute, "\Remote", that indicates
 that a mailbox is a remote mailbox. The "\Remote" attribute MUST
 be accurately computed when the REMOTE option is specified.

 The REMOTE selection option has no interaction with other options.
 Its effect is to tell the server to apply the other options, if
 any, to remote mailboxes, in addition to local ones. In
 particular, it has no interaction with RECURSIVEMATCH (see below).
 A request for (REMOTE RECURSIVEMATCH) is invalid, because a
 request for (RECURSIVEMATCH) is also invalid. A request for
 (REMOTE RECURSIVEMATCH SUBSCRIBED) is asking for all subscribed
 mailboxes, both local and remote.

 RECURSIVEMATCH
 Forces the server to return information about parent mailboxes
 that don’t match other selection options but have some
 submailboxes that do. Information about children is returned in
 the CHILDINFO extended data item, as described in Section 6.3.9.6.

 Note 1: In order for a parent mailbox to be returned, it still
 has to match the canonical LIST pattern.

 Note 2: When returning the CHILDINFO extended data item, it
 doesn’t matter whether or not the submailbox matches the
 canonical LIST pattern. See also Example 9 in Section 6.3.9.8.

 The RECURSIVEMATCH option MUST NOT occur as the only selection
 option (or only with REMOTE), as it only makes sense when other
 selection options are also used. The server MUST return a BAD
 tagged response in such case.

 Note that even if the RECURSIVEMATCH option is specified, the
 client MUST still be able to handle cases when a CHILDINFO
 extended data item is returned and there are no submailboxes that

 meet the selection criteria of the subsequent LIST command, as
 they can be deleted/renamed after the LIST response was sent but
 before the client had a chance to access them.

6.3.9.2. LIST Return Options

 The return options defined in this specification are as follows:

 SUBSCRIBED
 Causes the LIST command to return subscription state for all
 matching mailbox names. The "\Subscribed" attribute MUST be
 supported and MUST be accurately computed when the SUBSCRIBED
 return option is specified. Furthermore, all other mailbox
 attributes MUST be accurately computed (this differs from the
 behavior of the obsolete LSUB command from [RFC3501]). Note that
 the above requirements don’t override the requirement for the LIST
 command to return results quickly (see Section 6.3.9), i.e.,
 server implementations need to compute results quickly and
 accurately. For example, server implementors might need to create
 quick access indices.

 CHILDREN
 Requests mailbox child information as originally proposed in
 [RFC3348]. See Section 6.3.9.5, below, for details.

 STATUS
 Requests STATUS response for each matching mailbox.

 This option takes STATUS data items as parameters. For each
 selectable mailbox matching the list pattern and selection
 options, the server MUST return an untagged LIST response followed
 by an untagged STATUS response containing the information
 requested in the STATUS return option, except for some cases
 described below.

 If an attempted STATUS for a listed mailbox fails because the
 mailbox can’t be selected (e.g., if the "l" Access Control List
 (ACL) right [RFC4314] is granted to the mailbox and the "r" right
 is not granted, or is due to a race condition between LIST and
 STATUS changing the mailbox to \NoSelect), the STATUS response
 MUST NOT be returned, and the LIST response MUST include the
 \NoSelect attribute. This means the server may have to buffer the
 LIST reply until it has successfully looked up the necessary
 STATUS information.

 If the server runs into unexpected problems while trying to look
 up the STATUS information, it MAY drop the corresponding STATUS
 reply. In such a situation, the LIST command would still return a
 tagged OK reply.

 See the note in the discussion of the STATUS command in
 Section 6.3.11 for information about obtaining status on the
 currently selected mailbox.

6.3.9.3. General Principles for Returning LIST Responses

 This section outlines several principles that can be used by server
 implementations of this document to decide whether a LIST response
 should be returned, as well as how many responses and what kind of
 information they may contain.

 1. At most, one LIST response should be returned for each mailbox
 name that matches the canonical LIST pattern. Server
 implementors must not assume that clients will be able to
 assemble mailbox attributes and other information returned in
 multiple LIST responses.

 2. There are only two reasons for including a matching mailbox name
 in the responses to the LIST command (note that the server is
 allowed to return unsolicited responses at any time, and such
 responses are not governed by this rule):

 A. The mailbox name also satisfies the selection criteria.

 B. The mailbox name doesn’t satisfy the selection criteria, but
 it has at least one descendant mailbox name that satisfies
 the selection criteria and that doesn’t match the canonical
 LIST pattern.

 For more information on this case, see the CHILDINFO extended
 data item described in Section 6.3.9.6. Note that the
 CHILDINFO extended data item can only be returned when the
 RECURSIVEMATCH selection option is specified.

 3. Attributes returned in the same LIST response are treated
 additively. For example, the following response

 S: * LIST (\Subscribed \NonExistent) "/" "Fruit/Peach"

 means that the "Fruit/Peach" mailbox doesn’t exist, but it is
 subscribed.

6.3.9.4. Additional LIST-Related Requirements on Clients

 All clients MUST treat a LIST attribute with a stronger meaning as
 implying any attribute that can be inferred from it. (See
 Section 7.3.1 for the list of currently defined attributes.) For
 example, the client must treat the presence of the \NoInferiors
 attribute as if the \HasNoChildren attribute was also sent by the
 server.

 The following table summarizes inference rules.

 +====================+===================+
 | returned attribute | implied attribute |
 +====================+===================+
 | \NoInferiors | \HasNoChildren |
 +--------------------+-------------------+
 | \NonExistent | \NoSelect |
 +--------------------+-------------------+

 Table 2

6.3.9.5. The CHILDREN Return Option

 The CHILDREN return option is simply an indication that the client
 wants information about whether or not mailboxes contain child
 mailboxes; a server MAY provide it even if the option is not
 specified.

 Many IMAP clients present the user with a hierarchical view of the
 mailboxes that a user has access to. Rather than initially
 presenting the entire mailbox hierarchy to the user, it is often
 preferable to show the user a collapsed outline list of the mailbox
 hierarchy (particularly if there is a large number of mailboxes).
 The user can then expand the collapsed outline hierarchy as needed.
 It is common to include a visual clue (such as a ’’+’’) within the
 collapsed hierarchy to indicate that there are child mailboxes under
 a particular mailbox. When the visual clue is clicked, the hierarchy
 list is expanded to show the child mailboxes. The CHILDREN return
 option provides a mechanism for a client to efficiently determine
 whether a particular mailbox has children, without issuing a LIST ""
 * or a LIST "" % for each mailbox name. The CHILDREN return option
 defines two new attributes that MUST be returned within a LIST
 response: \HasChildren and \HasNoChildren. Although these attributes
 MAY be returned in response to any LIST command, the CHILDREN return
 option is provided to indicate that the client particularly wants
 this information. If the CHILDREN return option is present, the
 server MUST return these attributes even if their computation is
 expensive.

 \HasChildren

 The presence of this attribute indicates that the mailbox has
 child mailboxes. A server SHOULD NOT set this attribute if
 there are child mailboxes and the user does not have permission
 to access any of them. In this case, \HasNoChildren SHOULD be
 used. In many cases, however, a server may not be able to
 efficiently compute whether a user has access to any child
 mailbox. Note that even though the \HasChildren attribute for a
 mailbox must be correct at the time of processing the mailbox, a
 client must be prepared to deal with a situation when a mailbox
 is marked with the \HasChildren attribute, but no child mailbox
 appears in the response to the LIST command. This might happen,
 for example, due to child mailboxes being deleted or made
 inaccessible to the user (using access control) by another
 client before the server is able to list them.

 \HasNoChildren
 The presence of this attribute indicates that the mailbox has NO
 child mailboxes that are accessible to the currently
 authenticated user.

 It is an error for the server to return both a \HasChildren and a
 \HasNoChildren attribute in the same LIST response.

 Note: the \HasNoChildren attribute should not be confused with the
 \NoInferiors attribute, which indicates that no child mailboxes exist
 now and none can be created in the future.

6.3.9.6. CHILDINFO Extended Data Item

 The CHILDINFO extended data item MUST NOT be returned unless the
 client has specified the RECURSIVEMATCH selection option.

 The CHILDINFO extended data item in a LIST response describes the
 selection criteria that has caused it to be returned and indicates
 that the mailbox has at least one descendant mailbox that matches the
 selection criteria.

 Note: Some servers allow for mailboxes to exist without requiring
 their parent to exist. For example, the mailbox "Customers/ABC" can
 exist while the mailbox "Customers" does not. As the CHILDINFO
 extended data item is not allowed if the RECURSIVEMATCH selection
 option is not specified, such servers SHOULD use the "\NonExistent
 \HasChildren" attribute pair to signal to the client that there is a
 descendant mailbox that matches the selection criteria. See Example
 11 in Section 6.3.9.8.

 The returned selection criteria allows the client to distinguish a
 solicited response from an unsolicited one, as well as to distinguish
 among solicited responses caused by multiple pipelined LIST commands
 that specify different criteria.

 Servers SHOULD only return a non-matching mailbox name along with
 CHILDINFO if at least one matching child is not also being returned.
 That is, servers SHOULD suppress redundant CHILDINFO responses.

 Examples 8 and 10 in Section 6.3.9.8 demonstrate the difference
 between the present CHILDINFO extended data item and the
 "\HasChildren" attribute.

 The following table summarizes interaction between the "\NonExistent"
 attribute and CHILDINFO (the first column indicates whether the
 parent mailbox exists):

 +========+===========+====================+=====================+
 | Exists | Meets the | Has a child that | Returned IMAP4rev2/ |
 | | selection | meets the | LIST-EXTENDED |
 | | criteria | selection criteria | attributes and |
 | | | | CHILDINFO |
 +========+===========+====================+=====================+
 | no | no | no | no LIST response |
 | | | | returned |

 +--------+-----------+--------------------+---------------------+
 | yes | no | no | no LIST response |
 | | | | returned |
 +--------+-----------+--------------------+---------------------+
 | no | yes | no | (\NonExistent |
 | | | | <attr>) |
 +--------+-----------+--------------------+---------------------+
 | yes | yes | no | (<attr>) |
 +--------+-----------+--------------------+---------------------+
 | no | no | yes | (\NonExistent) + |
 | | | | CHILDINFO |
 +--------+-----------+--------------------+---------------------+
 | yes | no | yes | () + CHILDINFO |
 +--------+-----------+--------------------+---------------------+
 | no | yes | yes | (\NonExistent |
 | | | | <attr>) + CHILDINFO |
 +--------+-----------+--------------------+---------------------+
 | yes | yes | yes | (<attr>) + |
 | | | | CHILDINFO |
 +--------+-----------+--------------------+---------------------+

 Table 3

 where <attr> is one or more attributes that correspond to the
 selection criteria; for example, for the SUBSCRIBED option, the
 <attr> is \Subscribed.

6.3.9.7. OLDNAME Extended Data Item

 The OLDNAME extended data item is included when a mailbox name is
 created (with the CREATE command), renamed (with the RENAME command),
 or deleted (with the DELETE command). (When a mailbox is deleted,
 the "\NonExistent" attribute is also included.) IMAP extensions can
 specify other conditions when the OLDNAME extended data item should
 be included.

 If the server allows denormalized mailbox names (see Section 5.1) in
 SELECT/EXAMINE, CREATE, RENAME, or DELETE, it SHOULD return an
 unsolicited LIST response that includes the OLDNAME extended data
 item, whenever the supplied mailbox name differs from the resulting
 normalized mailbox name. From the client point of view, this is
 indistinguishable from another user renaming or deleting the mailbox,
 as specified in the previous paragraph.

 A deleted mailbox can be announced as follows:

 S: * LIST (\NonExistent) "." "INBOX.DeletedMailbox"

 Example of a renamed mailbox:

 S: * LIST () "/" "NewMailbox" ("OLDNAME" ("OldMailbox"))

6.3.9.8. LIST Command Examples

 This example shows some uses of the basic LIST command:

 Example:

 C: A101 LIST "" ""
 S: * LIST (\Noselect) "/" ""
 S: A101 OK LIST Completed
 C: A102 LIST #news.comp.mail.misc ""
 S: * LIST (\Noselect) "." #news.
 S: A102 OK LIST Completed
 C: A103 LIST /usr/staff/jones ""
 S: * LIST (\Noselect) "/" /
 S: A103 OK LIST Completed
 C: A202 LIST ˜/Mail/ %
 S: * LIST (\Noselect) "/" ˜/Mail/foo
 S: * LIST () "/" ˜/Mail/meetings
 S: A202 OK LIST completed

 Extended examples:

 1: The first example shows the complete local hierarchy that will
 be used for the other examples.

 C: A01 LIST "" "*"
 S: * LIST (\Marked \NoInferiors) "/" "inbox"
 S: * LIST () "/" "Fruit"
 S: * LIST () "/" "Fruit/Apple"
 S: * LIST () "/" "Fruit/Banana"
 S: * LIST () "/" "Tofu"
 S: * LIST () "/" "Vegetable"
 S: * LIST () "/" "Vegetable/Broccoli"
 S: * LIST () "/" "Vegetable/Corn"
 S: A01 OK done

 2: In the next example, we will see the subscribed mailboxes. This
 is similar to, but not equivalent with, the now deprecated <LSUB
 "" "*"> (see [RFC3501] for more details on the LSUB command).
 Note that the mailbox called "Fruit/Peach" is subscribed to, but
 it does not actually exist (perhaps it was deleted while still
 subscribed). The "Fruit" mailbox is not subscribed to, but it
 has two subscribed children. The "Vegetable" mailbox is
 subscribed and has two children; one of them is subscribed as
 well.

 C: A02 LIST (SUBSCRIBED) "" "*"
 S: * LIST (\Marked \NoInferiors \Subscribed) "/" "inbox"
 S: * LIST (\Subscribed) "/" "Fruit/Banana"
 S: * LIST (\Subscribed \NonExistent) "/" "Fruit/Peach"
 S: * LIST (\Subscribed) "/" "Vegetable"
 S: * LIST (\Subscribed) "/" "Vegetable/Broccoli"
 S: A02 OK done

 3: The next example shows the use of the CHILDREN option. The
 client, without having to list the second level of hierarchy,
 now knows which of the top-level mailboxes have submailboxes
 (children) and which do not. Note that it’s not necessary for
 the server to return the \HasNoChildren attribute for the inbox,
 because the \NoInferiors attribute already implies that and has
 a stronger meaning.

 C: A03 LIST () "" "%" RETURN (CHILDREN)
 S: * LIST (\Marked \NoInferiors) "/" "inbox"
 S: * LIST (\HasChildren) "/" "Fruit"
 S: * LIST (\HasNoChildren) "/" "Tofu"
 S: * LIST (\HasChildren) "/" "Vegetable"
 S: A03 OK done

 4: In this example, we see more mailboxes that reside on another
 server. This is similar to the command <RLIST "" "%">.

 C: A04 LIST (REMOTE) "" "%" RETURN (CHILDREN)
 S: * LIST (\Marked \NoInferiors) "/" "inbox"
 S: * LIST (\HasChildren) "/" "Fruit"
 S: * LIST (\HasNoChildren) "/" "Tofu"
 S: * LIST (\HasChildren) "/" "Vegetable"
 S: * LIST (\Remote \HasNoChildren) "/" "Bread"
 S: * LIST (\HasChildren \Remote) "/" "Meat"
 S: A04 OK done

 5: The following example also requests the server to include
 mailboxes that reside on another server. The server returns
 information about all mailboxes that are subscribed. This is
 similar to the command <RLSUB "" "*"> (see [RFC2193] for more
 details on RLSUB). We also see the use of two selection
 options.

 C: A05 LIST (REMOTE SUBSCRIBED) "" "*"
 S: * LIST (\Marked \NoInferiors \Subscribed) "/" "inbox"

 S: * LIST (\Subscribed) "/" "Fruit/Banana"
 S: * LIST (\Subscribed \NonExistent) "/" "Fruit/Peach"
 S: * LIST (\Subscribed) "/" "Vegetable"
 S: * LIST (\Subscribed) "/" "Vegetable/Broccoli"
 S: * LIST (\Remote \Subscribed) "/" "Bread"
 S: A05 OK done

 6: The following example requests the server to include mailboxes
 that reside on another server. The server is asked to return
 subscription information for all returned mailboxes. This is
 different from the example above.

 Note that the output of this command is not a superset of the
 output in the previous example, as it doesn’t include a LIST
 response for the non-existent "Fruit/Peach".

 C: A06 LIST (REMOTE) "" "*" RETURN (SUBSCRIBED)
 S: * LIST (\Marked \NoInferiors \Subscribed) "/" "inbox"
 S: * LIST () "/" "Fruit"
 S: * LIST () "/" "Fruit/Apple"
 S: * LIST (\Subscribed) "/" "Fruit/Banana"
 S: * LIST () "/" "Tofu"
 S: * LIST (\Subscribed) "/" "Vegetable"
 S: * LIST (\Subscribed) "/" "Vegetable/Broccoli"
 S: * LIST () "/" "Vegetable/Corn"
 S: * LIST (\Remote \Subscribed) "/" "Bread"
 S: * LIST (\Remote) "/" "Meat"
 S: A06 OK done

 7: The following example demonstrates the difference between the
 \HasChildren attribute and the CHILDINFO extended data item.

 Let’s assume there is the following hierarchy:

 C: C01 LIST "" "*"
 S: * LIST (\Marked \NoInferiors) "/" "inbox"
 S: * LIST () "/" "Foo"
 S: * LIST () "/" "Foo/Bar"
 S: * LIST () "/" "Foo/Baz"
 S: * LIST () "/" "Moo"
 S: C01 OK done

 If the client asks RETURN (CHILDREN), it will get this:

 C: CA3 LIST "" "%" RETURN (CHILDREN)
 S: * LIST (\Marked \NoInferiors) "/" "inbox"
 S: * LIST (\HasChildren) "/" "Foo"
 S: * LIST (\HasNoChildren) "/" "Moo"
 S: CA3 OK done

 A) Let’s also assume that the mailbox "Foo/Baz" is the only
 subscribed mailbox. Then we get this result:

 C: C02 LIST (SUBSCRIBED) "" "*"
 S: * LIST (\Subscribed) "/" "Foo/Baz"
 S: C02 OK done

 Now, if the client issues <LIST (SUBSCRIBED) "" "%">, the
 server will return no mailboxes (as the mailboxes "Moo",
 "Foo", and "Inbox" are NOT subscribed). However, if the
 client issues this:

 C: C04 LIST (SUBSCRIBED RECURSIVEMATCH) "" "%"
 S: * LIST () "/" "Foo" ("CHILDINFO" ("SUBSCRIBED"))
 S: C04 OK done

 (that is, the mailbox "Foo" is not subscribed, but it has a
 child that is), then A1 or A2 occurs.

 A1) If the mailbox "Foo" had also been subscribed, the last
 command would return this:

 C: C04 LIST (SUBSCRIBED RECURSIVEMATCH) "" "%"
 S: * LIST (\Subscribed) "/" "Foo" ("CHILDINFO"
 ("SUBSCRIBED"))
 S: C04 OK done

 or even this:

 C: C04 LIST (SUBSCRIBED RECURSIVEMATCH) "" "%"
 S: * LIST (\Subscribed \HasChildren) "/" "Foo"
 ("CHILDINFO" ("SUBSCRIBED"))
 S: C04 OK done

 A2) If we assume instead that the mailbox "Foo" is not part
 of the original hierarchy and is not subscribed, the
 last command will give this result:

 C: C04 LIST (SUBSCRIBED RECURSIVEMATCH) "" "%"
 S: * LIST (\NonExistent) "/" "Foo" ("CHILDINFO"
 ("SUBSCRIBED"))
 S: C04 OK done

 B) Now, let’s assume that no mailbox is subscribed. In this
 case, the command <LIST (SUBSCRIBED RECURSIVEMATCH) "" "%">
 will return no responses, as there are no subscribed
 children (even though "Foo" has children).

 C) And finally, suppose that only the mailboxes "Foo" and "Moo"
 are subscribed. In that case, we see this result:

 C: C04 LIST (SUBSCRIBED RECURSIVEMATCH) "" "%" RETURN
 (CHILDREN)
 S: * LIST (\HasChildren \Subscribed) "/" "Foo"
 S: * LIST (\HasNoChildren \Subscribed) "/" "Moo"
 S: C04 OK done

 (which means that the mailbox "Foo" has children, but none
 of them is subscribed).

 8: The following example demonstrates that the CHILDINFO extended
 data item is returned whether or not child mailboxes match the
 canonical LIST pattern.

 Let’s assume there is the following hierarchy:

 C: D01 LIST "" "*"
 S: * LIST (\Marked \NoInferiors) "/" "inbox"
 S: * LIST () "/" "foo2"
 S: * LIST () "/" "foo2/bar1"
 S: * LIST () "/" "foo2/bar2"
 S: * LIST () "/" "baz2"
 S: * LIST () "/" "baz2/bar2"
 S: * LIST () "/" "baz2/bar22"
 S: * LIST () "/" "baz2/bar222"
 S: * LIST () "/" "eps2"
 S: * LIST () "/" "eps2/mamba"
 S: * LIST () "/" "qux2/bar2"
 S: D01 OK done

 And that the following mailboxes are subscribed:

 C: D02 LIST (SUBSCRIBED) "" "*"
 S: * LIST (\Subscribed) "/" "foo2/bar1"
 S: * LIST (\Subscribed) "/" "foo2/bar2"
 S: * LIST (\Subscribed) "/" "baz2/bar2"
 S: * LIST (\Subscribed) "/" "baz2/bar22"
 S: * LIST (\Subscribed) "/" "baz2/bar222"
 S: * LIST (\Subscribed) "/" "eps2"
 S: * LIST (\Subscribed) "/" "eps2/mamba"
 S: * LIST (\Subscribed) "/" "qux2/bar2"
 S: D02 OK done

 The client issues the following command first:

 C: D03 LIST (RECURSIVEMATCH SUBSCRIBED) "" "*2"
 S: * LIST () "/" "foo2" ("CHILDINFO" ("SUBSCRIBED"))
 S: * LIST (\Subscribed) "/" "foo2/bar2"
 S: * LIST (\Subscribed) "/" "baz2/bar2"
 S: * LIST (\Subscribed) "/" "baz2/bar22"
 S: * LIST (\Subscribed) "/" "baz2/bar222"
 S: * LIST (\Subscribed) "/" "eps2" ("CHILDINFO" ("SUBSCRIBED"))
 S: * LIST (\Subscribed) "/" "qux2/bar2"
 S: D03 OK done

 and the server may also include the following (but this would
 violate a restriction in Section 6.3.9.6, because CHILDINFO is
 redundant):

 S: * LIST () "/" "baz2" ("CHILDINFO" ("SUBSCRIBED"))
 S: * LIST (\NonExistent) "/" "qux2" ("CHILDINFO" ("SUBSCRIBED"))

 The CHILDINFO extended data item is returned for mailboxes
 "foo2", "baz2", and "eps2" because all of them have subscribed
 children, even though for the mailbox "foo2", only one of the
 two subscribed children matches the pattern; for the mailbox
 "baz2", all of the subscribed children match the pattern; and
 for the mailbox "eps2", none of the subscribed children match
 the pattern.

 Note that if the client issues the following:

 C: D03 LIST (RECURSIVEMATCH SUBSCRIBED) "" "*"
 S: * LIST () "/" "foo2" ("CHILDINFO" ("SUBSCRIBED"))
 S: * LIST (\Subscribed) "/" "foo2/bar1"
 S: * LIST (\Subscribed) "/" "foo2/bar2"
 S: * LIST () "/" "baz2" ("CHILDINFO" ("SUBSCRIBED"))
 S: * LIST (\Subscribed) "/" "baz2/bar2"
 S: * LIST (\Subscribed) "/" "baz2/bar22"
 S: * LIST (\Subscribed) "/" "baz2/bar222"
 S: * LIST (\Subscribed) "/" "eps2" ("CHILDINFO" ("SUBSCRIBED"))
 S: * LIST (\Subscribed) "/" "eps2/mamba"
 S: * LIST (\Subscribed) "/" "qux2/bar2"
 S: D03 OK done

 the LIST responses for mailboxes "foo2", "baz2", and "eps2"
 still have the CHILDINFO extended data item, even though this
 information is redundant and the client can determine it by
 itself.

 9: The following example shows usage of an extended syntax for the
 mailbox pattern. It also demonstrates that the presence of the
 CHILDINFO extended data item doesn’t necessarily imply
 \HasChildren.

 C: a1 LIST "" ("foo")
 S: * LIST () "/" foo
 S: a1 OK done

 C: a2 LIST (SUBSCRIBED) "" "foo/*"
 S: * LIST (\Subscribed \NonExistent) "/" foo/bar
 S: a2 OK done

 C: a3 LIST (SUBSCRIBED RECURSIVEMATCH) "" foo RETURN (CHILDREN)
 S: * LIST (\HasNoChildren) "/" foo ("CHILDINFO" ("SUBSCRIBED"))
 S: a3 OK done

 10: The following example shows how a server that supports missing
 mailbox hierarchy elements can signal to a client that didn’t
 specify the RECURSIVEMATCH selection option that there is a
 child mailbox that matches the selection criteria.

 C: a1 LIST (REMOTE) "" *

 S: * LIST () "/" music/rock
 S: * LIST (\Remote) "/" also/jazz
 S: a1 OK done

 C: a2 LIST () "" %
 S: * LIST (\NonExistent \HasChildren) "/" music
 S: a2 OK done

 C: a3 LIST (REMOTE) "" %
 S: * LIST (\NonExistent \HasChildren) "/" music
 S: * LIST (\NonExistent \HasChildren) "/" also
 S: a3 OK done

 C: a3.1 LIST "" (% music/rock)
 S: * LIST () "/" music/rock
 S: a3.1 OK done

 Because "music/rock" is the only mailbox under "music", there’s
 no need for the server to also return "music". However, clients
 must handle both cases.

 11: The following examples show use of the STATUS return option.

 C: A01 LIST "" % RETURN (STATUS (MESSAGES UNSEEN))
 S: * LIST () "." "INBOX"
 S: * STATUS "INBOX" (MESSAGES 17 UNSEEN 16)
 S: * LIST () "." "foo"
 S: * STATUS "foo" (MESSAGES 30 UNSEEN 29)
 S: * LIST (\NoSelect) "." "bar"
 S: A01 OK List completed.

 The "bar" mailbox isn’t selectable, so it has no STATUS reply.

 C: A02 LIST (SUBSCRIBED RECURSIVEMATCH) "" % RETURN (STATUS
 (MESSAGES))
 S: * LIST (\Subscribed) "." "INBOX"
 S: * STATUS "INBOX" (MESSAGES 17)
 S: * LIST () "." "foo" (CHILDINFO ("SUBSCRIBED"))
 S: A02 OK List completed.

 The LIST reply for "foo" is returned because it has matching
 children, but no STATUS reply is returned because "foo" itself
 doesn’t match the selection criteria.

6.3.10. NAMESPACE Command

 Arguments: none

 Responses: REQUIRED untagged responses: NAMESPACE

 Result: OK - command completed
 NO - Can’t complete the command
 BAD - arguments invalid

 The NAMESPACE command causes a single untagged NAMESPACE response to
 be returned. The untagged NAMESPACE response contains the prefix and
 hierarchy delimiter to the server’s Personal Namespace(s), Other
 Users’ Namespace(s), and Shared Namespace(s) that the server wishes
 to expose. The response will contain a NIL for any namespace class
 that is not available. The namespace-response-extensions ABNF non-
 terminal is defined for extensibility and MAY be included in the
 NAMESPACE response.

 Example 1:

 In this example, a server supports a single Personal Namespace. No
 leading prefix is used on personal mailboxes, and "/" is the
 hierarchy delimiter.

 C: A001 NAMESPACE
 S: * NAMESPACE (("" "/")) NIL NIL

 S: A001 OK NAMESPACE command completed

 Example 2:

 A user logged on anonymously to a server. No personal mailboxes are
 associated with the anonymous user, and the user does not have access
 to the Other Users’ Namespace. No prefix is required to access
 shared mailboxes, and the hierarchy delimiter is "."

 C: A001 NAMESPACE
 S: * NAMESPACE NIL NIL (("" "."))
 S: A001 OK NAMESPACE command completed

 Example 3:

 A server that contains a Personal Namespace and a single Shared
 Namespace.

 C: A001 NAMESPACE
 S: * NAMESPACE (("" "/")) NIL (("Public Folders/" "/"))
 S: A001 OK NAMESPACE command completed

 Example 4:

 A server that contains a Personal Namespace, Other Users’ Namespace,
 and multiple Shared Namespaces. Note that the hierarchy delimiter
 used within each namespace can be different.

 C: A001 NAMESPACE
 S: * NAMESPACE (("" "/")) (("˜" "/")) (("#shared/" "/")
 ("#public/" "/")("#ftp/" "/")("#news." "."))
 S: A001 OK NAMESPACE command completed

 The prefix string allows a client to do things such as automatically
 create personal mailboxes or LIST all available mailboxes within a
 namespace.

 Example 5:

 A server that supports only the Personal Namespace, with a leading
 prefix of INBOX to personal mailboxes and a hierarchy delimiter of
 ".".

 C: A001 NAMESPACE
 S: * NAMESPACE (("INBOX." ".")) NIL NIL
 S: A001 OK NAMESPACE command completed

 Automatically create a mailbox to store sent items.

 C: A002 CREATE "INBOX.Sent Mail"
 S: A002 OK CREATE command completed

 Although a server will typically support only a single Personal
 Namespace, and a single Other User’s Namespace, circumstances exist
 where there MAY be multiples of these, and a client MUST be prepared
 for them. If a client is configured such that it is required to
 create a certain mailbox, there can be circumstances where it is
 unclear which Personal Namespaces it should create the mailbox in.
 In these situations, a client SHOULD let the user select which
 namespaces to create the mailbox in, or just use the first Personal
 Namespace.

 Example 6:

 In this example, a server supports two Personal Namespaces. In
 addition to the regular Personal Namespace, the user has an
 additional Personal Namespace that allows access to mailboxes in an
 MH format mailstore.

 The client is configured to save a copy of all mail sent by the user
 into a mailbox with the \Sent attribute (see Section 7.3.1).

 Furthermore, after a message is deleted from a mailbox, the client is
 configured to move that message to a mailbox with the \Trash
 attribute. The server signals with the \NonExistent mailbox
 attribute that the corresponding mailboxes don’t exist yet and that
 it is possible to create them. Once created, they could be used for
 \Sent or \Trash purposes, and the server will no longer include the
 \NonExistent mailbox attribute for them.

 Note that this example demonstrates how some extension parameters can
 be passed to further describe the #mh namespace. See the fictitious
 "X-PARAM" extension parameter.

 C: A001 NAMESPACE
 S: * NAMESPACE (("" "/")("#mh/" "/" "X-PARAM"
 ("FLAG1" "FLAG2"))) NIL NIL
 S: A001 OK NAMESPACE command completed

 C: A002 LIST (SPECIAL-USE) "" "*"
 S: * LIST (\NonExistent \Archive) "/" Archives
 S: * LIST (\NonExistent \Drafts) "/" Drafts
 S: * LIST (\NonExistent \Junk) "/" Junk
 S: * LIST (\NonExistent \Sent) "/" "Sent Mail"
 S: * LIST (\NonExistent \Trash) "/" "Deleted Items"
 S: A002 OK LIST Completed

 C: A003 LIST (SPECIAL-USE) "#mh/" "*"
 S: * LIST (\NonExistent \Archive) "/" "#mh/Archives"
 S: * LIST (\NonExistent \Drafts) "/" "#mh/Drafts"
 S: * LIST (\NonExistent \Junk) "/" "#mh/Junk"
 S: * LIST (\NonExistent \Sent) "/" "#mh/Sent Mail"
 S: * LIST (\NonExistent \Trash) "/" "#mh/Deleted Items"
 S: A003 OK LIST Completed

 It is desired to keep only one copy of sent mail. It is unclear
 which Personal Namespace the client should use to create the ’Sent
 Mail’ mailbox. The user is prompted to select a namespace, and only
 one ’Sent Mail’ mailbox is created.

 C: A004 CREATE "Sent Mail"
 S: A004 OK CREATE command completed

 The client is designed so that it keeps two ’Deleted Items’
 mailboxes, one for each namespace.

 C: A005 CREATE "Delete Items"
 S: A005 OK CREATE command completed

 C: A006 CREATE "#mh/Deleted Items"
 S: A006 OK CREATE command completed

 The next level of hierarchy following the Other Users’ Namespace
 prefix SHOULD consist of <username>, where <username> is a user name
 as per the LOGIN or AUTHENTICATE command.

 A client can construct a LIST command by appending a "%" to the Other
 Users’ Namespace prefix to discover the Personal Namespaces of other
 users that are available to the currently authenticated user.

 In response to such a LIST command, a server SHOULD NOT return user
 names that have not granted access to their personal mailboxes to the
 user in question.

 A server MAY return a LIST response containing only the names of
 users that have explicitly granted access to the user in question.

 Alternatively, a server MAY return NO to such a LIST command,
 requiring that a user name be included with the Other Users’
 Namespace prefix before listing any other user’s mailboxes.

 Example 7:

 A server that supports providing a list of other user’s mailboxes
 that are accessible to the currently logged on user.

 C: A001 NAMESPACE
 S: * NAMESPACE (("" "/")) (("Other Users/" "/")) NIL
 S: A001 OK NAMESPACE command completed

 C: A002 LIST "" "Other Users/%"
 S: * LIST () "/" "Other Users/Mike"
 S: * LIST () "/" "Other Users/Karen"
 S: * LIST () "/" "Other Users/Matthew"
 S: * LIST () "/" "Other Users/Tesa"
 S: A002 OK LIST command completed

 Example 8:

 A server that does not support providing a list of other user’s
 mailboxes that are accessible to the currently logged on user. The
 mailboxes are listable if the client includes the name of the other
 user with the Other Users’ Namespace prefix.

 C: A001 NAMESPACE
 S: * NAMESPACE (("" "/")) (("#Users/" "/")) NIL
 S: A001 OK NAMESPACE command completed

 In this example, the currently logged on user has access to the
 Personal Namespace of user Mike, but the server chose to suppress
 this information in the LIST response. However, by appending the
 user name Mike (received through user input) to the Other Users’
 Namespace prefix, the client is able to get a listing of the personal
 mailboxes of user Mike.

 C: A002 LIST "" "#Users/%"
 S: A002 NO The requested item could not be found.

 C: A003 LIST "" "#Users/Mike/%"
 S: * LIST () "/" "#Users/Mike/INBOX"
 S: * LIST () "/" "#Users/Mike/Foo"
 S: A003 OK LIST command completed.

 A prefix string might not contain a hierarchy delimiter, because in
 some cases, it is not needed as part of the prefix.

 Example 9:

 A server that allows access to the Other Users’ Namespace by
 prefixing the others’ mailboxes with a ’˜’ followed by <username>,
 where <username> is a user name as per the LOGIN or AUTHENTICATE
 command.

 C: A001 NAMESPACE
 S: * NAMESPACE (("" "/")) (("˜" "/")) NIL
 S: A001 OK NAMESPACE command completed

 List the mailboxes for user mark

 C: A002 LIST "" "˜mark/%"
 S: * LIST () "/" "˜mark/INBOX"
 S: * LIST () "/" "˜mark/foo"
 S: A002 OK LIST command completed

6.3.11. STATUS Command

 Arguments: mailbox name

 status data item names

 Responses: REQUIRED untagged responses: STATUS

 Result: OK - status completed
 NO - status failure: no status for that name

 BAD - command unknown or arguments invalid

 The STATUS command requests the status of the indicated mailbox. It
 does not change the currently selected mailbox, nor does it affect
 the state of any messages in the queried mailbox.

 The STATUS command provides an alternative to opening a second
 IMAP4rev2 connection and doing an EXAMINE command on a mailbox to
 query that mailbox’s status without deselecting the current mailbox
 in the first IMAP4rev2 connection.

 Unlike the LIST command, the STATUS command is not guaranteed to be
 fast in its response. Under certain circumstances, it can be quite
 slow. In some implementations, the server is obliged to open the
 mailbox as "read-only" internally to obtain certain status
 information. Also unlike the LIST command, the STATUS command does
 not accept wildcards.

 Note: The STATUS command is intended to access the status of
 mailboxes other than the currently selected mailbox. Because the
 STATUS command can cause the mailbox to be opened internally, and
 because this information is available by other means on the
 selected mailbox, the STATUS command SHOULD NOT be used on the
 currently selected mailbox. However, servers MUST be able to
 execute the STATUS command on the selected mailbox. (This might
 also implicitly happen when the STATUS return option is used in a
 LIST command.)

 The STATUS command MUST NOT be used as a "check for new messages
 in the selected mailbox" operation (refer to Sections 7 and 7.4.1
 for more information about the proper method for new message
 checking).

 STATUS SIZE (see below) can take a significant amount of time,
 depending upon server implementation. Clients should use STATUS
 SIZE cautiously.

 The currently defined status data items that can be requested are:

 MESSAGES
 The number of messages in the mailbox.

 UIDNEXT
 The next unique identifier value of the mailbox. Refer to
 Section 2.3.1.1 for more information.

 UIDVALIDITY
 The unique identifier validity value of the mailbox. Refer to
 Section 2.3.1.1 for more information.

 UNSEEN
 The number of messages that do not have the \Seen flag set.

 DELETED
 The number of messages that have the \Deleted flag set.

 SIZE
 The total size of the mailbox in octets. This is not strictly
 required to be an exact value, but it MUST be equal to or greater
 than the sum of the values of the RFC822.SIZE FETCH message data
 items (see Section 6.4.5) of all messages in the mailbox.

 Example:

 C: A042 STATUS blurdybloop (UIDNEXT MESSAGES)
 S: * STATUS blurdybloop (MESSAGES 231 UIDNEXT 44292)
 S: A042 OK STATUS completed

6.3.12. APPEND Command

 Arguments: mailbox name

 OPTIONAL flag parenthesized list

 OPTIONAL date/time string

 message literal

 Responses: OPTIONAL untagged response: LIST

 Result: OK - append completed
 NO - append error: can’t append to that mailbox, error
 in flags or date/time or message text
 BAD - command unknown or arguments invalid

 The APPEND command appends the literal argument as a new message to
 the end of the specified destination mailbox. This argument SHOULD
 be in the format of an [RFC5322] or [I18N-HDRS] message. 8-bit
 characters are permitted in the message. A server implementation
 that is unable to preserve 8-bit data properly MUST be able to
 reversibly convert 8-bit APPEND data to 7 bits using a [MIME-IMB]
 content transfer encoding.

 Note: There may be exceptions, such as draft messages, in which
 required [RFC5322] header fields are omitted in the message
 literal argument to APPEND. The full implications of doing so
 must be understood and carefully weighed.

 If a flag parenthesized list is specified, the flags SHOULD be set in
 the resulting message; otherwise, the flag list of the resulting
 message is set to "empty" by default.

 If a date-time is specified, the internal date SHOULD be set in the
 resulting message; otherwise, the internal date of the resulting
 message is set to the current date and time by default.

 If the append is unsuccessful for any reason, the mailbox MUST be
 restored to its state before the APPEND attempt (other than possibly
 keeping the changed mailbox’s UIDNEXT value); no partial appending is
 permitted.

 If the destination mailbox does not exist, a server MUST return an
 error and MUST NOT automatically create the mailbox. Unless it is
 certain that the destination mailbox cannot be created, the server
 MUST send the response code "[TRYCREATE]" as the prefix of the text
 of the tagged NO response. This gives a hint to the client that it
 can attempt a CREATE command and retry the APPEND if the CREATE is
 successful.

 On successful completion of an APPEND, the server returns an
 APPENDUID response code (see Section 7.1), unless otherwise specified
 below.

 In the case of a mailbox that has permissions set so that the client
 can APPEND to the mailbox, but not SELECT or EXAMINE it, the server
 MUST NOT send an APPENDUID response code as it would disclose
 information about the mailbox.

 In the case of a mailbox that has UIDNOTSTICKY status (see
 Section 7.1), the server MAY omit the APPENDUID response code as it
 is not meaningful.

 If the mailbox is currently selected, normal new message actions
 SHOULD occur. Specifically, the server SHOULD notify the client
 immediately via an untagged EXISTS response. If the server does not
 do so, the client MAY issue a NOOP command after one or more APPEND
 commands.

 If the server decides to convert (normalize) the mailbox name, it
 SHOULD return an untagged LIST with an OLDNAME extended data item,
 with the OLDNAME value being the supplied mailbox name and the name
 parameter being the normalized mailbox name. (See Section 6.3.9.7

 for more details.)

 Example:

 C: A003 APPEND saved-messages (\Seen) {326}
 S: + Ready for literal data
 C: Date: Mon, 7 Feb 1994 21:52:25 -0800 (PST)
 C: From: Fred Foobar <foobar@Blurdybloop.example>
 C: Subject: afternoon meeting
 C: To: mooch@owatagu.siam.edu.example
 C: Message-Id: <B27397-0100000@Blurdybloop.example>
 C: MIME-Version: 1.0
 C: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII
 C:
 C: Hello Joe, do you think we can meet at 3:30 tomorrow?
 C:
 S: A003 OK APPEND completed

 Example:

 C: A003 APPEND saved-messages (\Seen) {297+}
 C: Date: Mon, 7 Feb 1994 21:52:25 -0800 (PST)
 C: From: Fred Foobar <foobar@example.com>
 C: Subject: afternoon meeting
 C: To: mooch@example.com
 C: Message-Id: <B27397-0100000@example.com>
 C: MIME-Version: 1.0
 C: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII
 C:
 C: Hello Joe, do you think we can meet at 3:30 tomorrow?
 C:
 S: A003 OK [APPENDUID 38505 3955] APPEND completed
 C: A004 COPY 2:4 meeting
 S: A004 OK [COPYUID 38505 304,319:320 3956:3958] Done
 C: A005 UID COPY 305:310 meeting
 S: A005 OK No matching messages, so nothing copied
 C: A006 COPY 2 funny
 S: A006 OK Done
 C: A007 SELECT funny
 S: * 1 EXISTS
 S: * OK [UIDVALIDITY 3857529045] Validity session-only
 S: * OK [UIDNEXT 2] Predicted next UID
 S: * NO [UIDNOTSTICKY] Non-persistent UIDs
 S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
 S: * OK [PERMANENTFLAGS (\Deleted \Seen)] Limited
 S: * LIST () "." funny
 S: A007 OK [READ-WRITE] SELECT completed

 In this example, A003 and A004 demonstrate successful appending and
 copying to a mailbox that returns the UIDs assigned to the messages.
 A005 is an example in which no messages were copied; this is because
 in A003, we see that message 2 had UID 304, and message 3 had UID
 319; therefore, UIDs 305 through 310 do not exist (refer to
 Section 2.3.1.1 for further explanation). A006 is an example of a
 message being copied that did not return a COPYUID; and, as expected,
 A007 shows that the mail store containing that mailbox does not
 support persistent UIDs.

 | Note: The APPEND command is not used for message delivery,
 | because it does not provide a mechanism to transfer [SMTP]
 | envelope information.

6.3.13. IDLE Command

 Arguments: none

 Responses: continuation data will be requested; the client sends
 the continuation data "DONE" to end the command

 Result: OK - IDLE completed after client sent "DONE"
 NO - failure: the server will not allow the IDLE

 command at this time
 BAD - command unknown or arguments invalid

 Without the IDLE command, a client would need to poll the server for
 changes to the selected mailbox (new mail, deletions, and flag
 changes). It’s often more desirable to have the server transmit
 updates to the client in real time. This allows a user to see new
 mail immediately. The IDLE command allows a client to tell the
 server that it’s ready to accept such real-time updates.

 The IDLE command is sent from the client to the server when the
 client is ready to accept unsolicited update messages. The server
 requests a response to the IDLE command using the continuation ("+")
 response. The IDLE command remains active until the client responds
 to the continuation, and as long as an IDLE command is active, the
 server is now free to send untagged EXISTS, EXPUNGE, FETCH, and other
 responses at any time. If the server chooses to send unsolicited
 FETCH responses, they MUST include a UID FETCH item.

 The IDLE command is terminated by the receipt of a "DONE"
 continuation from the client; such response satisfies the server’s
 continuation request. At that point, the server MAY send any
 remaining queued untagged responses and then MUST immediately send
 the tagged response to the IDLE command and prepare to process other
 commands. As for other commands, the processing of any new command
 may cause the sending of unsolicited untagged responses, subject to
 the ambiguity limitations. The client MUST NOT send a command while
 the server is waiting for the DONE, since the server will not be able
 to distinguish a command from a continuation.

 The server MAY consider a client inactive if it has an IDLE command
 running, and if such a server has an inactivity timeout, it MAY log
 the client off implicitly at the end of its timeout period. Because
 of that, clients using IDLE are advised to terminate IDLE and reissue
 it at least every 29 minutes to avoid being logged off. This still
 allows a client to receive immediate mailbox updates even though it
 need only "poll" at half hour intervals.

 Example:

 C: A001 SELECT INBOX
 S: * FLAGS (\Deleted \Seen \Flagged)
 S: * OK [PERMANENTFLAGS (\Deleted \Seen \Flagged)] Limited
 S: * 3 EXISTS
 S: * OK [UIDVALIDITY 1]
 S: * OK [UIDNEXT 1]
 S: * LIST () "/" INBOX
 S: A001 OK [READ-WRITE] SELECT completed
 C: A002 IDLE
 S: + idling
 ...time passes; new mail arrives...
 S: * 4 EXISTS
 C: DONE
 S: A002 OK IDLE terminated
 ...another client expunges message 2 now...
 C: A003 FETCH 4 ALL
 S: * 4 FETCH (...)
 S: A003 OK FETCH completed
 C: A004 IDLE
 S: * 2 EXPUNGE
 S: * 3 EXISTS
 S: + idling
 ...time passes; another client expunges message 3...
 S: * 3 EXPUNGE
 S: * 2 EXISTS
 ...time passes; new mail arrives...
 S: * 3 EXISTS
 C: DONE
 S: A004 OK IDLE terminated
 C: A005 FETCH 3 ALL
 S: * 3 FETCH (...)

 S: A005 OK FETCH completed
 C: A006 IDLE

6.4. Client Commands - Selected State

 In the selected state, commands that manipulate messages in a mailbox
 are permitted.

 In addition to the universal commands (CAPABILITY, NOOP, and LOGOUT),
 and the authenticated state commands (SELECT, EXAMINE, NAMESPACE,
 CREATE, DELETE, RENAME, SUBSCRIBE, UNSUBSCRIBE, LIST, STATUS, and
 APPEND), the following commands are valid in the selected state:
 CLOSE, UNSELECT, EXPUNGE, SEARCH, FETCH, STORE, COPY, MOVE, and UID.

6.4.1. CLOSE Command

 Arguments: none

 Responses: no specific responses for this command

 Result: OK - close completed, now in authenticated state
 BAD - command unknown or arguments invalid

 The CLOSE command permanently removes all messages that have the
 \Deleted flag set from the currently selected mailbox, and it returns
 to the authenticated state from the selected state. No untagged
 EXPUNGE responses are sent.

 No messages are removed, and no error is given, if the mailbox is
 selected by an EXAMINE command or is otherwise selected as read-only.

 Even if a mailbox is selected, a SELECT, EXAMINE, or LOGOUT command
 MAY be issued without previously issuing a CLOSE command. The
 SELECT, EXAMINE, and LOGOUT commands implicitly close the currently
 selected mailbox without doing an expunge. However, when many
 messages are deleted, a CLOSE-LOGOUT or CLOSE-SELECT sequence is
 considerably faster than an EXPUNGE-LOGOUT or EXPUNGE-SELECT because
 no untagged EXPUNGE responses (which the client would probably
 ignore) are sent.

 Example:

 C: A341 CLOSE
 S: A341 OK CLOSE completed

6.4.2. UNSELECT Command

 Arguments: none

 Responses: no specific responses for this command

 Result: OK - unselect completed, now in authenticated state
 BAD - no mailbox selected, or argument supplied but
 none permitted

 The UNSELECT command frees a session’s resources associated with the
 selected mailbox and returns the server to the authenticated state.
 This command performs the same actions as CLOSE, except that no
 messages are permanently removed from the currently selected mailbox.

 Example:

 C: A342 UNSELECT
 S: A342 OK Unselect completed

6.4.3. EXPUNGE Command

 Arguments: none

 Responses: untagged responses: EXPUNGE

 Result: OK - expunge completed
 NO - expunge failure: can’t expunge (e.g., permission
 denied)
 BAD - command unknown or arguments invalid

 The EXPUNGE command permanently removes all messages that have the
 \Deleted flag set from the currently selected mailbox. Before
 returning an OK to the client, an untagged EXPUNGE response is sent
 for each message that is removed.

 Example:

 C: A202 EXPUNGE
 S: * 3 EXPUNGE
 S: * 3 EXPUNGE
 S: * 5 EXPUNGE
 S: * 8 EXPUNGE
 S: A202 OK EXPUNGE completed

 Note: In this example, messages 3, 4, 7, and 11 had the \Deleted flag
 set. See the description of the EXPUNGE response (Section 7.5.1) for
 further explanation.

6.4.4. SEARCH Command

 Arguments: OPTIONAL result specifier

 OPTIONAL [CHARSET] specification

 searching criteria (one or more)

 Responses: OPTIONAL untagged response: ESEARCH

 Result: OK - search completed
 NO - search error: can’t search that [CHARSET] or
 criteria
 BAD - command unknown or arguments invalid

 The SEARCH command searches the mailbox for messages that match the
 given searching criteria.

 The SEARCH command may contain result options. Result options
 control what kind of information is returned about messages matching
 the search criteria in an untagged ESEARCH response. If no result
 option is specified or empty list of options is specified as "()",
 ALL is assumed (see below). The order of individual options is
 arbitrary. Individual options may contain parameters enclosed in
 parentheses. (However, if an option has a mandatory parameter, which
 can always be represented as a number or a sequence-set, the option
 parameter does not need the enclosing parentheses. See "Formal
 Syntax" (Section 9) for more details.) If an option has parameters,
 they consist of atoms and/or strings and/or lists in a specific
 order. Any options not defined by extensions that the server
 supports MUST be rejected with a BAD response.

 Note that IMAP4rev1 used SEARCH responses [RFC3501] instead of
 ESEARCH responses. Clients that support only IMAP4rev2 MUST ignore
 SEARCH responses.

 This document specifies the following result options:

 MIN
 Return the lowest message number/UID that satisfies the SEARCH
 criteria.

 If the SEARCH results in no matches, the server MUST NOT include
 the MIN result option in the ESEARCH response; however, it still
 MUST send the ESEARCH response.

 MAX
 Return the highest message number/UID that satisfies the SEARCH

 criteria.

 If the SEARCH results in no matches, the server MUST NOT include
 the MAX result option in the ESEARCH response; however, it still
 MUST send the ESEARCH response.

 ALL
 Return all message numbers/UIDs that satisfy the SEARCH criteria
 using the sequence-set syntax. Note that the client MUST NOT
 assume that messages/UIDs will be listed in any particular order.

 If the SEARCH results in no matches, the server MUST NOT include
 the ALL result option in the ESEARCH response; however, it still
 MUST send the ESEARCH response.

 COUNT
 Return the number of messages that satisfy the SEARCH criteria.
 This result option MUST always be included in the ESEARCH
 response.

 SAVE
 This option tells the server to remember the result of the SEARCH
 or UID SEARCH command (as well as any command based on SEARCH,
 e.g., SORT and THREAD [RFC5256]) and store it in an internal
 variable that we will reference as the "search result variable".
 The client can use the "$" marker to reference the content of this
 internal variable. The "$" marker can be used instead of message
 sequence or UID sequence in order to indicate that the server
 should substitute it with the list of messages from the search
 result variable. Thus, the client can use the result of the
 latest remembered SEARCH command as a parameter to another
 command. See Section 6.4.4.1 for details on how the value of the
 search result variable is determined, how it is affected by other
 commands executed, and how the SAVE return option interacts with
 other return options.

 In absence of any other SEARCH result option, the SAVE result
 option also suppresses any ESEARCH response that would have been
 otherwise returned by the SEARCH command.

 Note: future extensions to this document can allow servers to return
 multiple ESEARCH responses for a single extended SEARCH command.
 However, all options specified above MUST result in a single ESEARCH
 response if used by themselves or in combination. This guarantee
 simplifies processing in IMAP4rev2 clients. Future SEARCH extensions
 that relax this restriction will have to describe how results from
 multiple ESEARCH responses are to be combined.

 Searching criteria consist of one or more search keys.

 When multiple keys are specified, the result is the intersection (AND
 function) of all the messages that match those keys. For example,
 the criteria DELETED FROM "SMITH" SINCE 1-Feb-1994 refers to all
 deleted messages from Smith with INTERNALDATE greater than February
 1, 1994. A search key can also be a parenthesized list of one or
 more search keys (e.g., for use with the OR and NOT keys).

 Server implementations MAY exclude [MIME-IMB] body parts with
 terminal content media types other than TEXT and MESSAGE from
 consideration in SEARCH matching.

 The OPTIONAL [CHARSET] specification consists of the word "CHARSET"
 followed by the name of a character set from the registry
 [CHARSET-REG]. It indicates the [CHARSET] of the strings that appear
 in the search criteria. [MIME-IMB] content transfer encodings and
 [MIME-HDRS] strings in [RFC5322]/[MIME-IMB] headers MUST be decoded
 before comparing text. Servers MUST support US-ASCII and UTF-8
 charsets; other CHARSETs MAY be supported. Clients SHOULD use UTF-8.
 Note that if CHARSET is not provided, IMAP4rev2 servers MUST assume
 UTF-8, so selecting CHARSET UTF-8 is redundant. It is permitted for
 improved compatibility with existing IMAP4rev1 clients.

 If the server does not support the specified [CHARSET], it MUST
 return a tagged NO response (not a BAD). This response SHOULD
 contain the BADCHARSET response code, which MAY list the CHARSETs
 supported by the server.

 In all search keys that use strings, and unless otherwise specified,
 a message matches the key if the string is a substring of the
 associated text. The matching SHOULD be case insensitive for
 characters within the ASCII range. Consider using [IMAP-I18N] for
 language-sensitive, case-insensitive searching. Note that the empty
 string is a substring; this is useful when performing a HEADER search
 in order to test for a header field presence in the message.

 The defined search keys are as follows. Refer to "Formal Syntax"
 (Section 9) for the precise syntactic definitions of the arguments.

 <sequence set>
 Messages with message sequence numbers corresponding to the
 specified message sequence number set.

 ALL
 All messages in the mailbox; the default initial key for ANDing.

 ANSWERED
 Messages with the \Answered flag set.

 BCC <string>
 Messages that contain the specified string in the envelope
 structure’s Blind Carbon Copy (BCC) field.

 BEFORE <date>
 Messages whose internal date (disregarding time and timezone) is
 earlier than the specified date.

 BODY <string>
 Messages that contain the specified string in the body of the
 message. Unlike TEXT (see below), this doesn’t match any header
 fields. Servers are allowed to implement flexible matching for
 this search key, for example, by matching "swim" to both "swam"
 and "swum" in English language text or only performing full word
 matching (where "swim" will not match "swimming").

 CC <string>
 Messages that contain the specified string in the envelope
 structure’s CC field.

 DELETED
 Messages with the \Deleted flag set.

 DRAFT
 Messages with the \Draft flag set.

 FLAGGED
 Messages with the \Flagged flag set.

 FROM <string>
 Messages that contain the specified string in the envelope
 structure’s FROM field.

 HEADER <field-name> <string>
 Messages that have a header field with the specified field-name
 (as defined in [RFC5322]) and that contain the specified string in
 the text of the header field (what comes after the colon). If the
 string to search is zero-length, this matches all messages that
 have a header field with the specified field-name regardless of
 the contents. Servers should use a substring search for this
 SEARCH item, as clients can use it for automatic processing not
 initiated by end users. For example, this can be used when
 searching for Message-ID or Content-Type header field values that
 need to be exact or for searches in header fields that the IMAP

 server might not know anything about.

 KEYWORD <flag>
 Messages with the specified keyword flag set.

 LARGER <n>
 Messages with an RFC822.SIZE larger than the specified number of
 octets.

 NOT <search-key>
 Messages that do not match the specified search key.

 ON <date>
 Messages whose internal date (disregarding time and timezone) is
 within the specified date.

 OR <search-key1> <search-key2>
 Messages that match either search key.

 SEEN
 Messages that have the \Seen flag set.

 SENTBEFORE <date>
 Messages whose [RFC5322] Date: header field (disregarding time and
 timezone) is earlier than the specified date.

 SENTON <date>
 Messages whose [RFC5322] Date: header field (disregarding time and
 timezone) is within the specified date.

 SENTSINCE <date>
 Messages whose [RFC5322] Date: header field (disregarding time and
 timezone) is within or later than the specified date.

 SINCE <date>
 Messages whose internal date (disregarding time and timezone) is
 within or later than the specified date.

 SMALLER <n>
 Messages with an RFC822.SIZE smaller than the specified number of
 octets.

 SUBJECT <string>
 Messages that contain the specified string in the envelope
 structure’s SUBJECT field.

 TEXT <string>
 Messages that contain the specified string in the header
 (including MIME header fields) or body of the message. Servers
 are allowed to implement flexible matching for this search key,
 for example, matching "swim" to both "swam" and "swum" in English
 language text or only performing full-word matching (where "swim"
 will not match "swimming").

 TO <string>
 Messages that contain the specified string in the envelope
 structure’s TO field.

 UID <sequence set>
 Messages with unique identifiers corresponding to the specified
 unique identifier set. Sequence-set ranges are permitted.

 UNANSWERED
 Messages that do not have the \Answered flag set.

 UNDELETED
 Messages that do not have the \Deleted flag set.

 UNDRAFT
 Messages that do not have the \Draft flag set.

 UNFLAGGED
 Messages that do not have the \Flagged flag set.

 UNKEYWORD <flag>
 Messages that do not have the specified keyword flag set.

 UNSEEN
 Messages that do not have the \Seen flag set.

 Example:

 C: A282 SEARCH RETURN (MIN COUNT) FLAGGED
 SINCE 1-Feb-1994 NOT FROM "Smith"
 S: * ESEARCH (TAG "A282") MIN 2 COUNT 3
 S: A282 OK SEARCH completed

 Example:

 C: A283 SEARCH RETURN () FLAGGED
 SINCE 1-Feb-1994 NOT FROM "Smith"
 S: * ESEARCH (TAG "A283") ALL 2,10:11
 S: A283 OK SEARCH completed

 Example:

 C: A284 SEARCH TEXT "string not in mailbox"
 S: * ESEARCH (TAG "A284")
 S: A284 OK SEARCH completed
 C: A285 SEARCH CHARSET UTF-8 TEXT {12}
 S: + Ready for literal text
 C: Ð¾Ñ\202Ð¿Ñ\203Ñ\201Ðº
 S: * ESEARCH (TAG "A285") ALL 43
 S: A285 OK SEARCH completed

 The following example demonstrates finding the first unseen message
 in the mailbox:

 Example:

 C: A284 SEARCH RETURN (MIN) UNSEEN
 S: * ESEARCH (TAG "A284") MIN 4
 S: A284 OK SEARCH completed

 The following example demonstrates that if the ESEARCH UID indicator
 is present, all data in the ESEARCH response is referring to UIDs;
 for example, the MIN result specifier will be followed by a UID.

 Example:

 C: A285 UID SEARCH RETURN (MIN MAX) 1:5000
 S: * ESEARCH (TAG "A285") UID MIN 7 MAX 3800
 S: A285 OK SEARCH completed

 The following example demonstrates returning the number of deleted
 messages:

 Example:

 C: A286 SEARCH RETURN (COUNT) DELETED
 S: * ESEARCH (TAG "A286") COUNT 15
 S: A286 OK SEARCH completed

6.4.4.1. SAVE Result Option and SEARCH Result Variable

 Upon successful completion of a SELECT or an EXAMINE command (after
 the tagged OK response), the current search result variable is reset
 to the empty sequence.

 A successful SEARCH command with the SAVE result option sets the
 value of the search result variable to the list of messages found in

 the SEARCH command. For example, if no messages were found, the
 search result variable will contain the empty sequence.

 Any of the following SEARCH commands MUST NOT change the search
 result variable:

 a SEARCH command that caused the server to return the BAD tagged
 response,

 a SEARCH command with no SAVE result option that caused the server
 to return NO tagged response, and

 a successful SEARCH command with no SAVE result option.

 A SEARCH command with the SAVE result option that caused the server
 to return the NO tagged response sets the value of the search result
 variable to the empty sequence.

 When a message listed in the search result variable is EXPUNGEd, it
 is automatically removed from the list. Implementors are reminded
 that if the server stores the list as a list of message numbers, it
 MUST automatically adjust them when notifying the client about
 expunged messages, as described in Section 7.5.1.

 If the server decides to send a new UIDVALIDITY value while the
 mailbox is opened, it causes the resetting of the search variable to
 the empty sequence.

 Note that even if the "$" marker contains the empty sequence of
 messages, it must be treated by all commands accepting message sets
 as parameters as a valid, but non-matching, list of messages. For
 example, the "FETCH $" command would return a tagged OK response and
 no FETCH responses. See also Example 5 in Section 6.4.4.4.

 The SAVE result option doesn’t change whether the server would return
 items corresponding to MIN, MAX, ALL, or COUNT result options.

 When the SAVE result option is combined with the MIN or MAX result
 option, and both ALL and COUNT result options are absent, the
 corresponding MIN/MAX is returned (if the search result is not
 empty), but the "$" marker would contain a single message as returned
 in the MIN/MAX return item.

 If the SAVE result option is combined with both MIN and MAX result
 options, and both ALL and COUNT result options are absent, the "$"
 marker would contain zero messages, one message, or two messages as
 returned in the MIN/MAX return items.

 If the SAVE result option is combined with the ALL and/or COUNT
 result option(s), the "$" marker would always contain all messages
 found by the SEARCH or UID SEARCH command.

 The following table summarizes the additional requirement on ESEARCH
 server implementations described in this section.

 +==============================+====================+
 | Combination of Result Option | "$" Marker Value |
 +==============================+====================+
 | SAVE MIN | MIN |
 +------------------------------+--------------------+
 | SAVE MAX | MAX |
 +------------------------------+--------------------+
 | SAVE MIN MAX | MIN & MAX |
 +------------------------------+--------------------+
 | SAVE * [m] | all found messages |
 +------------------------------+--------------------+

 Table 4

 where ’*’ means "ALL" and/or "COUNT", and ’[m]’ means optional "MIN"
 and/or "MAX"

 Implementation note: server implementors should note that "$" can
 reference IMAP message sequences or UID sequences, depending on the
 context where it is used. For example, the "$" marker can be set as
 a result of a SEARCH (SAVE) command and used as a parameter to a UID
 FETCH command (which accepts a UID sequence, not a message sequence),
 or the "$" marker can be set as a result of a UID SEARCH (SAVE)
 command and used as a parameter to a FETCH command (which accepts a
 message sequence, not a UID sequence). Server implementations need
 to automatically map the "$" marker value to message numbers or UIDs,
 depending on the context where the "$" marker is used.

6.4.4.2. Multiple Commands in Progress

 Use of a SEARCH RETURN (SAVE) command followed by a command using the
 "$" marker creates direct dependency between the two commands. As
 directed by Section 5.5, a server MUST execute the two commands in
 the order they were received.

 A client MAY pipeline a SEARCH RETURN (SAVE) command with one or more
 commands using the "$" marker, as long as this doesn’t create an
 ambiguity, as described in Section 5.5. Examples 7-9 in
 Section 6.4.4.4 explain this in more details.

6.4.4.3. Refusing to Save Search Results

 In some cases, the server MAY refuse to save a SEARCH (SAVE) result,
 for example, if an internal limit on the number of saved results is
 reached. In this case, the server MUST return a tagged NO response
 containing the NOTSAVED response code and set the search result
 variable to the empty sequence, as described in Section 6.4.4.1.

6.4.4.4. Examples Showing Use of the SAVE Result Option

 Only in this section: explanatory comments in examples that start
 with // are not part of the protocol.

 1. The following example demonstrates how the client can use the
 result of a SEARCH command to FETCH headers of interesting
 messages:

 Example 1:

 C: A282 SEARCH RETURN (SAVE) FLAGGED SINCE 1-Feb-1994
 NOT FROM "Smith"
 S: A282 OK SEARCH completed, result saved
 C: A283 FETCH $ (UID INTERNALDATE FLAGS BODY.PEEK[HEADER])
 S: * 2 FETCH (UID 14 ...
 S: * 84 FETCH (UID 100 ...
 S: * 882 FETCH (UID 1115 ...
 S: A283 OK completed

 The client can also pipeline the two commands:

 Example 2:

 C: A282 SEARCH RETURN (SAVE) FLAGGED SINCE 1-Feb-1994
 NOT FROM "Smith"
 C: A283 FETCH $ (UID INTERNALDATE FLAGS BODY.PEEK[HEADER])
 S: A282 OK SEARCH completed
 S: * 2 FETCH (UID 14 ...
 S: * 84 FETCH (UID 100 ...
 S: * 882 FETCH (UID 1115 ...
 S: A283 OK completed

 2. The following example demonstrates that the result of one SEARCH
 command can be used as input to another SEARCH command:

 Example 3:

 C: A300 SEARCH RETURN (SAVE) SINCE 1-Jan-2004

 NOT FROM "Smith"
 S: A300 OK SEARCH completed
 C: A301 UID SEARCH UID $ SMALLER 4096
 S: * ESEARCH (TAG "A301") UID ALL 17,900,901
 S: A301 OK completed

 Note that the second command in Example 3 can be replaced with:

 C: A301 UID SEARCH $ SMALLER 4096

 and the result of the command would be the same.

 3. The following example shows that the "$" marker can be combined
 with other message numbers using the OR SEARCH criterion.

 Example 4:

 C: P282 SEARCH RETURN (SAVE) SINCE 1-Feb-1994
 NOT FROM "Smith"
 S: P282 OK SEARCH completed
 C: P283 SEARCH CHARSET UTF-8 (OR $ 1,3000:3021) TEXT {8+}
 C: Ð¼Ð°Ñ\202Ñ\214
 S: * ESEARCH (TAG "P283") ALL 882,1102,3003,3005:3006
 S: P283 OK completed

 4. The following example demonstrates that a failed SEARCH sets the
 search result variable to the empty list. The server doesn’t
 implement the KOI8-R charset.

 Example 5:

 C: B282 SEARCH RETURN (SAVE) SINCE 1-Feb-1994
 NOT FROM "Smith"
 S: B282 OK SEARCH completed
 C: B283 SEARCH RETURN (SAVE) CHARSET KOI8-R
 (OR $ 1,3000:3021) TEXT {4}
 C: XXXX
 S: B283 NO [BADCHARSET UTF-8] KOI8-R is not supported
 //After this command, the saved result variable contains
 //no messages. A client that wants to reissue the B283
 //SEARCH command with another CHARSET would have to reissue
 //the B282 command as well. One possible workaround for
 //this is to include the desired CHARSET parameter
 //in the earliest SEARCH RETURN (SAVE) command in a
 //sequence of related SEARCH commands, to cause
 //the earliest SEARCH in the sequence to fail.
 //A better approach might be to always use CHARSET UTF-8
 //instead.

 Note: Since this document format is restricted to 7-bit ASCII
 text, it is not possible to show actual KOI8-R data. The "XXXX"
 is a placeholder for what would be 4 octets of 8-bit data in an
 actual transaction.

 5. The following example demonstrates that it is not an error to use
 the "$" marker when it contains no messages.

 Example 6:

 C: E282 SEARCH RETURN (SAVE) SINCE 28-Oct-2006
 NOT FROM "Eric"
 C: E283 COPY $ "Other Messages"
 //The "$" contains no messages
 S: E282 OK SEARCH completed
 S: E283 OK COPY completed, nothing copied

 Example 7:

 C: F282 SEARCH RETURN (SAVE) KEYWORD $Junk
 C: F283 COPY $ "Junk"
 C: F284 STORE $ +FLAGS.Silent (\Deleted)

 S: F282 OK SEARCH completed
 S: F283 OK COPY completed
 S: F284 OK STORE completed

 Example 8:

 C: G282 SEARCH RETURN (SAVE) KEYWORD $Junk
 C: G283 SEARCH RETURN (ALL) SINCE 28-Oct-2006
 FROM "Eric"
 // The server can execute the two SEARCH commands
 // in any order, as they don’t have any dependency.
 // For example, it may return:
 S: * ESEARCH (TAG "G283") ALL 3:15,27,29:103
 S: G283 OK SEARCH completed
 S: G282 OK SEARCH completed

 The following example demonstrates that the result of the second
 SEARCH RETURN (SAVE) always overrides the result of the first.

 Example 9:

 C: H282 SEARCH RETURN (SAVE) KEYWORD $Junk
 C: H283 SEARCH RETURN (SAVE) SINCE 28-Oct-2006
 FROM "Eric"
 S: H282 OK SEARCH completed
 S: H283 OK SEARCH completed
 // At this point "$" would contain results of H283

 The following example demonstrates behavioral difference for
 different combinations of ESEARCH result options.

 Example 10:

 C: C282 SEARCH RETURN (ALL) SINCE 12-Feb-2006
 NOT FROM "Smith"
 S: * ESEARCH (TAG "C283") ALL 2,10:15,21
 //$ value hasn’t changed
 S: C282 OK SEARCH completed

 C: C283 SEARCH RETURN (ALL SAVE) SINCE 12-Feb-2006
 NOT FROM "Smith"
 S: * ESEARCH (TAG "C283") ALL 2,10:15,21
 //$ value is 2,10:15,21
 S: C283 OK SEARCH completed

 C: C284 SEARCH RETURN (SAVE MIN) SINCE 12-Feb-2006
 NOT FROM "Smith"
 S: * ESEARCH (TAG "C284") MIN 2
 //$ value is 2
 S: C284 OK SEARCH completed

 C: C285 SEARCH RETURN (MAX SAVE MIN) SINCE
 12-Feb-2006 NOT FROM "Smith"
 S: * ESEARCH (TAG "C285") MIN 2 MAX 21
 //$ value is 2,21
 S: C285 OK SEARCH completed

 C: C286 SEARCH RETURN (MAX SAVE MIN COUNT)
 SINCE 12-Feb-2006 NOT FROM "Smith"
 S: * ESEARCH (TAG "C286") MIN 2 MAX 21 COUNT 8
 //$ value is 2,10:15,21
 S: C286 OK SEARCH completed

 C: C286 SEARCH RETURN (ALL SAVE MIN) SINCE
 12-Feb-2006 NOT FROM "Smith"
 S: * ESEARCH (TAG "C286") MIN 2 ALL 2,10:15,21
 //$ value is 2,10:15,21
 S: C286 OK SEARCH completed

6.4.5. FETCH Command

 Arguments: sequence set

 message data item names or macro

 Responses: untagged responses: FETCH

 Result: OK - fetch completed
 NO - fetch error: can’t fetch that data
 BAD - command unknown or arguments invalid

 The FETCH command retrieves data associated with a message in the
 mailbox. The data items to be fetched can be either a single atom or
 a parenthesized list.

 Most data items, identified in the formal syntax (Section 9) under
 the msg-att-static rule, are static and MUST NOT change for any
 particular message. Other data items, identified in the formal
 syntax under the msg-att-dynamic rule, MAY change either as a result
 of a STORE command or due to external events.

 For example, if a client receives an ENVELOPE for a message when
 it already knows the envelope, it can safely ignore the newly
 transmitted envelope.

 There are three macros that specify commonly used sets of data items
 and can be used instead of data items. A macro must be used by
 itself and not in conjunction with other macros or data items.

 ALL
 Macro equivalent to: (FLAGS INTERNALDATE RFC822.SIZE ENVELOPE)

 FAST
 Macro equivalent to: (FLAGS INTERNALDATE RFC822.SIZE)

 FULL
 Macro equivalent to: (FLAGS INTERNALDATE RFC822.SIZE ENVELOPE
 BODY)

 Several data items reference "section" or "section-binary". See
 Section 6.4.5.1 for their detailed definition.

 The currently defined data items that can be fetched are:

 BINARY[<section-binary>]<<partial>>
 Requests that the specified section be transmitted after
 performing decoding of the section’s Content-Transfer-Encoding.

 The <partial> argument, if present, requests that a subset of the
 data be returned. The semantics of a partial FETCH BINARY command
 are the same as for a partial FETCH BODY command, with the
 exception that the <partial> arguments refer to the DECODED
 section data.

 Note that this data item can only be requested for leaf body
 parts: those that have media types other than multipart/*,
 message/rfc822, or message/global.

 BINARY.PEEK[<section-binary>]<<partial>>
 An alternate form of BINARY[<section-binary>] that does not
 implicitly set the \Seen flag.

 BINARY.SIZE[<section-binary>]
 Requests the decoded size of the section (i.e., the size to expect
 in response to the corresponding FETCH BINARY request).

 Note: client authors are cautioned that this might be an expensive
 operation for some server implementations. Needlessly issuing
 this request could result in degraded performance due to servers
 having to calculate the value every time the request is issued.

 Note that this data item can only be requested for leaf body

 parts: those that have media types other than multipart/*,
 message/rfc822, or message/global.

 BODY
 Non-extensible form of BODYSTRUCTURE.

 BODY[<section>]<<partial>>
 The text of a particular body section. If BODY[] is specified
 (the section specification is omitted), the FETCH is requesting
 the [RFC5322] expression of the entire message.

 It is possible to fetch a substring of the designated text. This
 is done by appending an open angle bracket ("<"), the octet
 position of the first desired octet, a period, the maximum number
 of octets desired, and a close angle bracket (">") to the part
 specifier. If the starting octet is beyond the end of the text,
 an empty string is returned.

 Any partial fetch that attempts to read beyond the end of the text
 is truncated as appropriate. A partial fetch that starts at octet
 0 is returned as a partial fetch, even if this truncation
 happened.

 Note: This means that BODY[]<0.2048> of a 1500-octet message
 will return BODY[]<0> with a literal of size 1500, not BODY[].

 Note: A substring fetch of a HEADER.FIELDS or HEADER.FIELDS.NOT
 part specifier is calculated after subsetting the header.

 The \Seen flag is implicitly set; if this causes the flags to
 change, they SHOULD be included as part of the FETCH responses.

 BODY.PEEK[<section>]<<partial>>
 An alternate form of BODY[<section>] that does not implicitly set
 the \Seen flag.

 BODYSTRUCTURE
 The [MIME-IMB] body structure of the message. This is computed by
 the server by parsing the [MIME-IMB] header fields in the
 [RFC5322] header and [MIME-IMB] headers. See Section 7.5.2 for
 more details.

 ENVELOPE
 The envelope structure of the message. This is computed by the
 server by parsing the [RFC5322] header into the component parts,
 defaulting various fields as necessary. See Section 7.5.2 for
 more details.

 FLAGS
 The flags that are set for this message.

 INTERNALDATE
 The internal date of the message.

 RFC822.SIZE
 The size of the message, as defined in Section 2.3.4.

 UID
 The unique identifier for the message.

 Example:

 C: A654 FETCH 2:4 (FLAGS BODY[HEADER.FIELDS (DATE FROM)])
 S: * 2 FETCH
 S: * 3 FETCH
 S: * 4 FETCH
 S: A654 OK FETCH completed

6.4.5.1. FETCH Section Specification

 Several FETCH data items reference "section" or "section-binary".

 The section specification is a set of zero or more part specifiers
 delimited by periods. A part specifier is either a part number or
 one of the following: HEADER, HEADER.FIELDS, HEADER.FIELDS.NOT, MIME,
 and TEXT. (Non-numeric part specifiers have to be the last specifier
 in a section specification.) An empty section specification refers
 to the entire message, including the header.

 Every message has at least one part number. Messages that do not use
 MIME, and MIME messages that are not multipart and have no
 encapsulated message within them, only have a part 1.

 Multipart messages are assigned consecutive part numbers, as they
 occur in the message. If a particular part is of type message or
 multipart, its parts MUST be indicated by a period followed by the
 part number within that nested multipart part.

 A part of type MESSAGE/RFC822 or MESSAGE/GLOBAL also has nested part
 numbers, referring to parts of the MESSAGE part’s body.

 The HEADER, HEADER.FIELDS, HEADER.FIELDS.NOT, and TEXT part
 specifiers can be the sole part specifier or can be prefixed by one
 or more numeric part specifiers, provided that the numeric part
 specifier refers to a part of type MESSAGE/RFC822 or MESSAGE/GLOBAL.
 The MIME part specifier MUST be prefixed by one or more numeric part
 specifiers.

 The HEADER, HEADER.FIELDS, and HEADER.FIELDS.NOT part specifiers
 refer to the [RFC5322] header of the message or of an encapsulated
 [MIME-IMT] MESSAGE/RFC822 or MESSAGE/GLOBAL message. HEADER.FIELDS
 and HEADER.FIELDS.NOT are followed by a list of field-names (as
 defined in [RFC5322]) and return a subset of the header. The subset
 returned by HEADER.FIELDS contains only those header fields with a
 field-name that matches one of the names in the list; similarly, the
 subset returned by HEADER.FIELDS.NOT contains only the header fields
 with a non-matching field-name. The field-matching is ASCII-range
 case insensitive but is otherwise exact. Subsetting does not exclude
 the [RFC5322] delimiting blank line between the header and the body;
 the blank line is included in all header fetches, except in the case
 of a message that has no body and no blank line.

 The MIME part specifier refers to the [MIME-IMB] header for this
 part.

 The TEXT part specifier refers to the text body of the message,
 omitting the [RFC5322] header.

 Here is an example of a complex message with some of its part
 specifiers:

 HEADER ([RFC5322] header of the message)
 TEXT ([RFC5322] text body of the message) MULTIPART/MIXED
 1 TEXT/PLAIN
 2 APPLICATION/OCTET-STREAM
 3 MESSAGE/RFC822
 3.HEADER ([RFC5322] header of the message)
 3.TEXT ([RFC5322] text body of the message) MULTIPART/MIXED
 3.1 TEXT/PLAIN
 3.2 APPLICATION/OCTET-STREAM
 4 MULTIPART/MIXED
 4.1 IMAGE/GIF
 4.1.MIME ([MIME-IMB] header for the IMAGE/GIF)
 4.2 MESSAGE/RFC822
 4.2.HEADER ([RFC5322] header of the message)
 4.2.TEXT ([RFC5322] text body of the message) MULTIPART/MIXED
 4.2.1 TEXT/PLAIN
 4.2.2 MULTIPART/ALTERNATIVE
 4.2.2.1 TEXT/PLAIN
 4.2.2.2 TEXT/RICHTEXT

6.4.6. STORE Command

 Arguments: sequence set

 message data item name

 value for message data item

 Responses: untagged responses: FETCH

 Result: OK - store completed
 NO - store error: can’t store that data
 BAD - command unknown or arguments invalid

 The STORE command alters data associated with a message in the
 mailbox. Normally, STORE will return the updated value of the data
 with an untagged FETCH response. A suffix of ".SILENT" in the data
 item name prevents the untagged FETCH, and the server SHOULD assume
 that the client has determined the updated value itself or does not
 care about the updated value.

 Note: Regardless of whether or not the ".SILENT" suffix was used,
 the server SHOULD send an untagged FETCH response if a change to a
 message’s flags from an external source is observed. The intent
 is that the status of the flags is determinate without a race
 condition.

 The currently defined data items that can be stored are:

 FLAGS <flag list>
 Replace the flags for the message with the argument. The new
 value of the flags is returned as if a FETCH of those flags was
 done.

 FLAGS.SILENT <flag list>
 Equivalent to FLAGS, but without returning a new value.

 +FLAGS <flag list>
 Add the argument to the flags for the message. The new value of
 the flags is returned as if a FETCH of those flags was done.

 +FLAGS.SILENT <flag list>
 Equivalent to +FLAGS, but without returning a new value.

 -FLAGS <flag list>
 Remove the argument from the flags for the message. The new value
 of the flags is returned as if a FETCH of those flags was done.

 -FLAGS.SILENT <flag list>
 Equivalent to -FLAGS, but without returning a new value.

 Example:

 C: A003 STORE 2:4 +FLAGS (\Deleted)
 S: * 2 FETCH (FLAGS (\Deleted \Seen))
 S: * 3 FETCH (FLAGS (\Deleted))
 S: * 4 FETCH (FLAGS (\Deleted \Flagged \Seen))
 S: A003 OK STORE completed

6.4.7. COPY Command

 Arguments: sequence set

 mailbox name

 Responses: no specific responses for this command

 Result: OK - copy completed
 NO - copy error: can’t copy those messages or to that
 name
 BAD - command unknown or arguments invalid

 The COPY command copies the specified message(s) to the end of the

 specified destination mailbox. The flags and internal date of the
 message(s) SHOULD be preserved in the copy.

 If the destination mailbox does not exist, a server MUST return an
 error. It MUST NOT automatically create the mailbox. Unless it is
 certain that the destination mailbox can not be created, the server
 MUST send the response code "[TRYCREATE]" as the prefix of the text
 of the tagged NO response. This gives a hint to the client that it
 can attempt a CREATE command and retry the COPY if the CREATE is
 successful.

 If the COPY command is unsuccessful for any reason, server
 implementations MUST restore the destination mailbox to its state
 before the COPY attempt (other than possibly incrementing UIDNEXT),
 i.e., partial copy MUST NOT be done.

 On successful completion of a COPY, the server returns a COPYUID
 response code (see Section 7.1). Two exceptions to this requirement
 are listed below.

 In the case of a mailbox that has permissions set so that the client
 can COPY to the mailbox, but not SELECT or EXAMINE it, the server
 MUST NOT send a COPYUID response code as it would disclose
 information about the mailbox.

 In the case of a mailbox that has UIDNOTSTICKY status (see
 Section 7.1), the server MAY omit the COPYUID response code as it is
 not meaningful.

 Example:

 C: A003 COPY 2:4 MEETING
 S: A003 OK [COPYUID 38505 304,319:320 3956:3958] COPY completed

6.4.8. MOVE Command

 Arguments: sequence set

 mailbox name

 Responses: no specific responses for this command

 Result: OK - move completed
 NO - move error: can’t move those messages or to that
 name
 BAD - command unknown or arguments invalid

 The MOVE command moves the specified message(s) to the end of the
 specified destination mailbox. The flags and internal date of the
 message(s) SHOULD be preserved.

 This means that a new message is created in the target mailbox with a
 new UID, the original message is removed from the source mailbox, and
 it appears to the client as a single action. This has the same
 effect for each message as this sequence:

 1. [UID] COPY

 2. [UID] STORE +FLAGS.SILENT \DELETED

 3. UID EXPUNGE

 Although the effect of the MOVE is the same as the preceding steps,
 the semantics are not identical: the intermediate states produced by
 those steps do not occur, and the response codes are different. In
 particular, though the COPY and EXPUNGE response codes will be
 returned, response codes for a STORE MUST NOT be generated, and the
 \Deleted flag MUST NOT be set for any message.

 Unlike the COPY command, MOVE of a set of messages might fail partway
 through the set. Regardless of whether the command is successful in

 moving the entire set, each individual message MUST be either moved
 or unaffected. The server MUST leave each message in a state where
 it is in at least one of the source or target mailboxes (no message
 can be lost or orphaned). The server SHOULD NOT leave any message in
 both mailboxes (it would be bad for a partial failure to result in a
 bunch of duplicate messages). This is true even if the server
 returns a tagged NO response to the command.

 If the destination mailbox does not exist, a server MUST return an
 error. It MUST NOT automatically create the mailbox. Unless it is
 certain that the destination mailbox cannot be created, the server
 MUST send the response code "[TRYCREATE]" as the prefix of the text
 of the tagged NO response. This gives a hint to the client that it
 can attempt a CREATE command and retry the MOVE if the CREATE is
 successful.

 Because of the similarity of MOVE to COPY, extensions that affect
 COPY affect MOVE in the same way. Response codes listed in
 Section 7.1, as well as those defined by extensions, are sent as
 indicated for COPY.

 Servers send COPYUID in response to a MOVE or a UID MOVE (see
 Section 6.4.9) command. For additional information about COPYUID,
 see Section 7.1. Note that there are several exceptions listed in
 Section 6.4.7 that allow servers not to return COPYUID.

 Servers are also REQUIRED to send the COPYUID response code in an
 untagged OK before sending EXPUNGE or similar responses. (Sending
 COPYUID in the tagged OK, as described in Section 6.4.7, means that
 clients first receive an EXPUNGE for a message and afterwards COPYUID
 for the same message. It can be unnecessarily difficult to process
 that sequence usefully.)

 An example:

 C: a UID MOVE 42:69 foo
 S: * OK [COPYUID 432432 42:69 1202:1229]
 S: * 22 EXPUNGE
 ...More EXPUNGE responses from the server...
 S: a OK Done

 Note that the server may send unrelated EXPUNGE responses as well, if
 any happen to have been expunged at the same time; this is normal
 IMAP operation.

 Note that moving a message to the currently selected mailbox (that
 is, where the source and target mailboxes are the same) is allowed
 when copying the message to the currently selected mailbox is
 allowed.

 The server may send EXPUNGE responses before the tagged response, so
 the client cannot safely send more commands with message sequence
 number arguments while the server is processing MOVE.

 MOVE and UID MOVE can be pipelined with other commands, but care has
 to be taken. Both commands modify sequence numbers and also allow
 unrelated EXPUNGE responses. The renumbering of other messages in
 the source mailbox following any EXPUNGE response can be surprising
 and makes it unsafe to pipeline any command that relies on message
 sequence numbers after a MOVE or UID MOVE. Similarly, MOVE cannot be
 pipelined with a command that might cause message renumbering. See
 Section 5.5 for more information about ambiguities as well as
 handling requirements for both clients and servers.

6.4.9. UID Command

 Arguments: command name

 command arguments

 Responses: untagged responses: FETCH, ESEARCH, EXPUNGE

 Result: OK - UID command completed
 NO - UID command error
 BAD - command unknown or arguments invalid

 The UID command has three forms. In the first form, it takes as its
 arguments a COPY, MOVE, FETCH, or STORE command with arguments
 appropriate for the associated command. However, the numbers in the
 sequence-set argument are unique identifiers instead of message
 sequence numbers. Sequence-set ranges are permitted, but there is no
 guarantee that unique identifiers will be contiguous.

 A non-existent unique identifier is ignored without any error message
 generated. Thus, it is possible for a UID FETCH command to return an
 OK without any data or a UID COPY, UID MOVE, or UID STORE to return
 an OK without performing any operations.

 In the second form, the UID command takes an EXPUNGE command with an
 extra parameter that specifies a sequence set of UIDs to operate on.
 The UID EXPUNGE command permanently removes all messages that have
 both the \Deleted flag set and a UID that is included in the
 specified sequence set from the currently selected mailbox. If a
 message either does not have the \Deleted flag set or has a UID that
 is not included in the specified sequence set, it is not affected.

 UID EXPUNGE is particularly useful for disconnected use clients. By
 using UID EXPUNGE instead of EXPUNGE when resynchronizing with the
 server, the client can ensure that it does not inadvertently remove
 any messages that have been marked as \Deleted by other clients
 between the time that the client was last connected and the time the
 client resynchronizes.

 Example:

 C: A003 UID EXPUNGE 3000:3002
 S: * 3 EXPUNGE
 S: * 3 EXPUNGE
 S: * 3 EXPUNGE
 S: A003 OK UID EXPUNGE completed

 In the third form, the UID command takes a SEARCH command with SEARCH
 command arguments. The interpretation of the arguments is the same
 as with SEARCH; however, the numbers returned in an ESEARCH response
 for a UID SEARCH command are unique identifiers instead of message
 sequence numbers. Also, the corresponding ESEARCH response MUST
 include the UID indicator. For example, the command UID SEARCH 1:100
 UID 443:557 returns the unique identifiers corresponding to the
 intersection of two sequence sets, the message sequence number range
 1:100, and the UID range 443:557.

 Note: in the above example, the UID range 443:557 appears. The
 same comment about a non-existent unique identifier being ignored
 without any error message also applies here. Hence, even if
 neither UID 443 or 557 exist, this range is valid and would
 include an existing UID 495.

 Also note that a UID range of 559:* always includes the UID of the
 last message in the mailbox, even if 559 is higher than any
 assigned UID value. This is because the contents of a range are
 independent of the order of the range endpoints. Thus, any UID
 range with * as one of the endpoints indicates at least one
 message (the message with the highest numbered UID), unless the
 mailbox is empty.

 The number after the "*" in an untagged FETCH or EXPUNGE response is
 always a message sequence number, not a unique identifier, even for a
 UID command response. However, server implementations MUST
 implicitly include the UID message data item as part of any FETCH
 response caused by a UID command, regardless of whether a UID was
 specified as a message data item to the FETCH.

 Note: The rule about including the UID message data item as part of a
 FETCH response primarily applies to the UID FETCH and UID STORE
 commands, including a UID FETCH command that does not include UID as
 a message data item. Although it is unlikely that the other UID
 commands will cause an untagged FETCH, this rule applies to these
 commands as well.

 Example:

 C: A999 UID FETCH 4827313:4828442 FLAGS
 S: * 23 FETCH (FLAGS (\Seen) UID 4827313)
 S: * 24 FETCH (FLAGS (\Seen) UID 4827943)
 S: * 25 FETCH (FLAGS (\Seen) UID 4828442)
 S: A999 OK UID FETCH completed

6.5. Client Commands - Experimental/Expansion

 Each command that is not part of this specification MUST have at
 least one capability name (see Section 6.1.1) associated with it.
 (Multiple commands can be associated with the same capability name.)

 Server implementations MUST NOT send any added untagged responses
 (not specified in this specification), unless the client requested it
 by issuing the associated experimental command (specified in an
 extension document) or the ENABLE command (Section 6.3.1).

 The following example demonstrates how a client can check for the
 presence of a fictitious XPIG-LATIN capability that adds the XPIG-
 LATIN command and the XPIG-LATIN untagged response. (Note that for
 an extension, the command name and the capability name don’t have to
 be the same.)

 Example:

 C: a441 CAPABILITY
 S: * CAPABILITY IMAP4rev2 XPIG-LATIN
 S: a441 OK CAPABILITY completed
 C: A442 XPIG-LATIN
 S: * XPIG-LATIN ow-nay eaking-spay ig-pay atin-lay
 S: A442 OK XPIG-LATIN ompleted-cay

7. Server Responses

 Server responses are in three forms: status responses, server data,
 and command continuation requests. The information contained in a
 server response, identified by "Contents:" in the response
 descriptions below, is described by function, not by syntax. The
 precise syntax of server responses is described in "Formal Syntax"
 (Section 9).

 The client MUST be prepared to accept any response at all times.

 Status responses can be tagged or untagged. Tagged status responses
 indicate the completion result (OK, NO, or BAD status) of a client
 command and have a tag matching the command.

 Some status responses, and all server data, are untagged. An
 untagged response is indicated by the token "*" instead of a tag.
 Untagged status responses indicate server greeting or server status
 that does not indicate the completion of a command (for example, an
 impending system shutdown alert). For historical reasons, untagged
 server data responses are also called "unsolicited data", although
 strictly speaking, only unilateral server data is truly
 "unsolicited".

 Certain server data MUST be remembered by the client when it is
 received; this is noted in the description of that data. Such data
 conveys critical information that affects the interpretation of all
 subsequent commands and responses (e.g., updates reflecting the
 creation or destruction of messages).

 Other server data SHOULD be remembered for later reference; if the
 client does not need to remember the data, or if remembering the data
 has no obvious purpose (e.g., a SEARCH response when no SEARCH
 command is in progress), the data can be ignored.

 An example of unilateral untagged server data occurs when the IMAP
 connection is in the selected state. In the selected state, the
 server checks the mailbox for new messages as part of command
 execution. Normally, this is part of the execution of every command;
 hence, a NOOP command suffices to check for new messages. If new
 messages are found, the server sends an untagged EXISTS response
 reflecting the new size of the mailbox. Server implementations that
 offer multiple simultaneous access to the same mailbox SHOULD also
 send appropriate unilateral untagged FETCH and EXPUNGE responses if
 another agent changes the state of any message flags or expunges any
 messages.

 Command continuation request responses use the token "+" instead of a
 tag. These responses are sent by the server to indicate acceptance
 of an incomplete client command and readiness for the remainder of
 the command.

7.1. Server Responses - Generic Status Responses

 Status responses are OK, NO, BAD, PREAUTH, and BYE. OK, NO, and BAD
 can be tagged or untagged. PREAUTH and BYE are always untagged.

 Status responses MAY include an OPTIONAL "response code". A response
 code consists of data inside square brackets in the form of an atom,
 possibly followed by a space and arguments. The response code
 contains additional information or status codes for client software
 beyond the OK/NO/BAD condition and are defined when there is a
 specific action that a client can take based upon the additional
 information.

 The currently defined response codes are:

 ALERT
 The human-readable text contains a special alert that is presented
 to the user in a fashion that calls the user’s attention to the
 message. Content of ALERT response codes received on a connection
 without TLS or SASL security-layer confidentiality SHOULD be
 ignored by clients. If displayed, such alerts MUST be clearly
 marked as potentially suspicious. (Note that some existing
 clients are known to hyperlink returned text, which make them very
 dangerous.) Alerts received after successful establishment of a
 TLS/SASL confidentiality layer MUST be presented to the user.

 ALREADYEXISTS
 The operation attempts to create something that already exists,
 such as when a CREATE or RENAME command attempts to create a
 mailbox and there is already one of that name.

 C: o356 RENAME this that
 S: o356 NO [ALREADYEXISTS] Mailbox "that" already exists

 APPENDUID
 Followed by the UIDVALIDITY of the destination mailbox and the UID
 assigned to the appended message in the destination mailbox, it
 indicates that the message has been appended to the destination
 mailbox with that UID.

 If the server also supports the [MULTIAPPEND] extension, and if
 multiple messages were appended in the APPEND command, then the
 second value is a UID set containing the UIDs assigned to the
 appended messages, in the order they were transmitted in the
 APPEND command. This UID set may not contain extraneous UIDs or
 the symbol "*".

 Note: the UID set form of the APPENDUID response code MUST NOT
 be used if only a single message was appended. In particular,

 a server MUST NOT send a range such as 123:123. This is
 because a client that does not support [MULTIAPPEND] expects
 only a single UID and not a UID set.

 UIDs are assigned in strictly ascending order in the mailbox
 (refer to Section 2.3.1.1); note that a range of 12:10 is exactly
 equivalent to 10:12 and refers to the sequence 10,11,12.

 This response code is returned in a tagged OK response to the
 APPEND command.

 AUTHENTICATIONFAILED
 Authentication failed for some reason on which the server is
 unwilling to elaborate. Typically, this includes "unknown user"
 and "bad password".

 This is the same as not sending any response code, except that
 when a client sees AUTHENTICATIONFAILED, it knows that the problem
 wasn’t, e.g., UNAVAILABLE, so there’s no point in trying the same
 login/password again later.

 C: b LOGIN "fred" "foo"
 S: b NO [AUTHENTICATIONFAILED] Authentication failed

 AUTHORIZATIONFAILED
 Authentication succeeded in using the authentication identity, but
 the server cannot or will not allow the authentication identity to
 act as the requested authorization identity. This is only
 applicable when the authentication and authorization identities
 are different.

 C: c1 AUTHENTICATE PLAIN
 [...]
 S: c1 NO [AUTHORIZATIONFAILED] No such authorization-ID

 C: c2 AUTHENTICATE PLAIN
 [...]
 S: c2 NO [AUTHORIZATIONFAILED] Authenticator is not an admin

 BADCHARSET
 Optionally followed by a parenthesized list of charsets. A SEARCH
 failed because the given charset is not supported by this
 implementation. If the optional list of charsets is given, this
 lists the charsets that are supported by this implementation.

 CANNOT
 This operation violates some invariant of the server and can never
 succeed.

 C: l create "///////"
 S: l NO [CANNOT] Adjacent slashes are not supported

 CAPABILITY
 Followed by a list of capabilities. This can appear in the
 initial OK or PREAUTH response to transmit an initial capabilities
 list. It can also appear in tagged responses to LOGIN or
 AUTHENTICATE commands. This makes it unnecessary for a client to
 send a separate CAPABILITY command if it recognizes this response
 code and there was no change to the TLS and/or authentication
 state since it was received.

 CLIENTBUG
 The server has detected a client bug. This can accompany any of
 OK, NO, and BAD, depending on what the client bug is.

 C: k1 select "/archive/projects/experiment-iv"
 [...]
 S: k1 OK [READ-ONLY] Done
 C: k2 status "/archive/projects/experiment-iv" (messages)
 [...]
 S: k2 OK [CLIENTBUG] Done

 CLOSED
 The CLOSED response code has no parameters. A server returns the
 CLOSED response code when the currently selected mailbox is closed
 implicitly using the SELECT or EXAMINE command on another mailbox.
 The CLOSED response code serves as a boundary between responses
 for the previously opened mailbox (which was closed) and the newly
 selected mailbox; all responses before the CLOSED response code
 relate to the mailbox that was closed, and all subsequent
 responses relate to the newly opened mailbox.

 There is no need to return the CLOSED response code on completion
 of the CLOSE or the UNSELECT command (or similar), whose purpose
 is to close the currently selected mailbox without opening a new
 one.

 CONTACTADMIN
 The user should contact the system administrator or support desk.

 C: e login "fred" "foo"
 S: e NO [CONTACTADMIN]

 COPYUID
 Followed by the UIDVALIDITY of the destination mailbox, a UID set
 containing the UIDs of the message(s) in the source mailbox that
 were copied to the destination mailbox, followed by another UID
 set containing the UIDs assigned to the copied message(s) in the
 destination mailbox, indicates that the message(s) has been copied
 to the destination mailbox with the stated UID(s).

 The source UID set is in the order the message(s) was copied; the
 destination UID set corresponds to the source UID set and is in
 the same order. Neither of the UID sets may contain extraneous
 UIDs or the symbol "*".

 UIDs are assigned in strictly ascending order in the mailbox
 (refer to Section 2.3.1.1); note that a range of 12:10 is exactly
 equivalent to 10:12 and refers to the sequence 10,11,12.

 This response code is returned in a tagged OK response to the COPY
 or UID COPY command or in the untagged OK response to the MOVE or
 UID MOVE command.

 CORRUPTION
 The server discovered that some relevant data (e.g., the mailbox)
 are corrupt. This response code does not include any information
 about what’s corrupt, but the server can write that to its
 logfiles.

 C: i select "/archive/projects/experiment-iv"
 S: i NO [CORRUPTION] Cannot open mailbox

 EXPIRED
 Either authentication succeeded or the server no longer had the
 necessary data; either way, access is no longer permitted using
 that passphrase. The client or user should get a new passphrase.

 C: d login "fred" "foo"
 S: d NO [EXPIRED] That password isn’t valid any more

 EXPUNGEISSUED
 Someone else has issued an EXPUNGE for the same mailbox. The
 client may want to issue NOOP soon. [IMAP-MULTIACCESS] discusses
 this subject in depth.

 C: h search from maria@example.com
 S: * ESEARCH (TAG "h") ALL 1:3,5,8,13,21,42
 S: h OK [EXPUNGEISSUED] Search completed

 HASCHILDREN
 The mailbox delete operation failed because the mailbox has one or

 more children, and the server doesn’t allow deletion of mailboxes
 with children.

 C: m356 DELETE Notes
 S: o356 NO [HASCHILDREN] Mailbox "Notes" has children
 that need to be deleted first

 INUSE
 An operation has not been carried out because it involves sawing
 off a branch someone else is sitting on. Someone else may be
 holding an exclusive lock needed for this operation, or the
 operation may involve deleting a resource someone else is using,
 typically a mailbox.

 The operation may succeed if the client tries again later.

 C: g delete "/archive/projects/experiment-iv"
 S: g NO [INUSE] Mailbox in use

 LIMIT
 The operation ran up against an implementation limit of some kind,
 such as the number of flags on a single message or the number of
 flags used in a mailbox.

 C: m STORE 42 FLAGS f1 f2 f3 f4 f5 ... f250
 S: m NO [LIMIT] At most 32 flags in one mailbox supported

 NONEXISTENT
 The operation attempts to delete something that does not exist.
 Similar to ALREADYEXISTS.

 C: p RENAME this that
 S: p NO [NONEXISTENT] No such mailbox

 NOPERM
 The access control system (e.g., ACL; see [RFC4314]) does not
 permit this user to carry out an operation, such as selecting or
 creating a mailbox.

 C: f select "/archive/projects/experiment-iv"
 S: f NO [NOPERM] Access denied

 OVERQUOTA
 The user would be over quota after the operation. (The user may
 or may not be over quota already.)

 Note that if the server sends OVERQUOTA but doesn’t support the
 IMAP QUOTA extension defined by [RFC2087], then there is a quota,
 but the client cannot find out what the quota is.

 C: n1 uid copy 1:* oldmail
 S: n1 NO [OVERQUOTA] Sorry

 C: n2 uid copy 1:* oldmail
 S: n2 OK [OVERQUOTA] You are now over your soft quota

 PARSE
 The human-readable text represents an error in parsing the
 [RFC5322] header or [MIME-IMB] headers of a message in the
 mailbox.

 PERMANENTFLAGS
 Followed by a parenthesized list of flags and indicates which of
 the known flags the client can change permanently. Any flags that
 are in the FLAGS untagged response, but not in the PERMANENTFLAGS
 list, cannot be set permanently. The PERMANENTFLAGS list can also
 include the special flag *, which indicates that it is possible
 to create new keywords by attempting to store those keywords in
 the mailbox. If the client attempts to STORE a flag that is not
 in the PERMANENTFLAGS list, the server will either ignore the
 change or store the state change for the remainder of the current

 session only.

 There is no need for a server that included the special flag * to
 return a new PERMANENTFLAGS response code when a new keyword was
 successfully set on a message upon client request. However, if
 the server has a limit on the number of different keywords that
 can be stored in a mailbox and that limit is reached, the server
 MUST send a new PERMANENTFLAGS response code without the special
 flag *.

 PRIVACYREQUIRED
 The operation is not permitted due to a lack of data
 confidentiality. If TLS is not in use, the client could try
 STARTTLS (see Section 6.2.1) or alternatively reconnect on an
 Implicit TLS port, and then repeat the operation.

 C: d login "fred" "foo"
 S: d NO [PRIVACYREQUIRED] Connection offers no privacy

 C: d select inbox
 S: d NO [PRIVACYREQUIRED] Connection offers no privacy

 READ-ONLY
 The mailbox is selected as read-only, or its access while selected
 has changed from read-write to read-only.

 READ-WRITE
 The mailbox is selected as read-write, or its access while
 selected has changed from read-only to read-write.

 SERVERBUG
 The server encountered a bug in itself or violated one of its own
 invariants.

 C: j select "/archive/projects/experiment-iv"
 S: j NO [SERVERBUG] This should not happen

 TRYCREATE
 An APPEND, COPY, or MOVE attempt is failing because the target
 mailbox does not exist (as opposed to some other reason). This is
 a hint to the client that the operation can succeed if the mailbox
 is first created by the CREATE command.

 UIDNEXT
 Followed by a decimal number and indicates the next unique
 identifier value. Refer to Section 2.3.1.1 for more information.

 UIDNOTSTICKY
 The selected mailbox is supported by a mail store that does not
 support persistent UIDs; that is, UIDVALIDITY will be different
 each time the mailbox is selected. Consequently, APPEND or COPY
 to this mailbox will not return an APPENDUID or COPYUID response
 code.

 This response code is returned in an untagged NO response to the
 SELECT command.

 Note: servers SHOULD NOT have any UIDNOTSTICKY mail stores.
 This facility exists to support legacy mail stores in which it
 is technically infeasible to support persistent UIDs. This
 should be avoided when designing new mail stores.

 UIDVALIDITY
 Followed by a decimal number and indicates the unique identifier
 validity value. Refer to Section 2.3.1.1 for more information.

 UNAVAILABLE
 Temporary failure because a subsystem is down. For example, an
 IMAP server that uses a Lightweight Directory Access Protocol
 (LDAP) or Radius server for authentication might use this response
 code when the LDAP/Radius server is down.

 C: a LOGIN "fred" "foo"
 S: a NO [UNAVAILABLE] User’s backend down for maintenance

 UNKNOWN-CTE
 The server does not know how to decode the section’s Content-
 Transfer-Encoding.

 Client implementations MUST ignore response codes that they do not
 recognize.

7.1.1. OK Response

 Contents:
 OPTIONAL response code
 human-readable text

 The OK response indicates an information message from the server.
 When tagged, it indicates successful completion of the associated
 command. The human-readable text MAY be presented to the user as an
 information message. The untagged form indicates an information-only
 message; the nature of the information MAY be indicated by a response
 code.

 The untagged form is also used as one of three possible greetings at
 connection startup. It indicates that the connection is not yet
 authenticated and that a LOGIN or an AUTHENTICATE command is needed.

 Example:

 S: * OK IMAP4rev2 server ready
 C: A001 LOGIN fred blurdybloop
 S: * OK [ALERT] System shutdown in 10 minutes
 S: A001 OK LOGIN Completed

7.1.2. NO Response

 Contents:
 OPTIONAL response code
 human-readable text

 The NO response indicates an operational error message from the
 server. When tagged, it indicates unsuccessful completion of the
 associated command. The untagged form indicates a warning; the
 command can still complete successfully. The human-readable text
 describes the condition.

 Example:

 C: A222 COPY 1:2 owatagusiam
 S: * NO Disk is 98% full, please delete unnecessary data
 S: A222 OK COPY completed
 C: A223 COPY 3:200 blurdybloop
 S: * NO Disk is 98% full, please delete unnecessary data
 S: * NO Disk is 99% full, please delete unnecessary data
 S: A223 NO COPY failed: disk is full

7.1.3. BAD Response

 Contents:
 OPTIONAL response code
 human-readable text

 The BAD response indicates an error message from the server. When
 tagged, it reports a protocol-level error in the client’s command;
 the tag indicates the command that caused the error. The untagged
 form indicates a protocol-level error for which the associated
 command can not be determined; it can also indicate an internal
 server failure. The human-readable text describes the condition.

 Example:

 C: ...very long command line...
 S: * BAD Command line too long
 C: ...empty line...
 S: * BAD Empty command line
 C: A443 EXPUNGE
 S: * BAD Disk crash, attempting salvage to a new disk!
 S: * OK Salvage successful, no data lost
 S: A443 OK Expunge completed

7.1.4. PREAUTH Response

 Contents:
 OPTIONAL response code
 human-readable text

 The PREAUTH response is always untagged and is one of three possible
 greetings at connection startup. It indicates that the connection
 has already been authenticated by external means; thus, no LOGIN/
 AUTHENTICATE command is needed.

 Because PREAUTH moves the connection directly to the authenticated
 state, it effectively prevents the client from using the STARTTLS
 command (Section 6.2.1). For this reason, the PREAUTH response
 SHOULD only be returned by servers on connections that are protected
 by TLS (such as on an Implicit TLS port [RFC8314]) or protected
 through other means such as IPsec. Clients that require mandatory
 TLS MUST close the connection after receiving the PREAUTH response on
 a non-protected port.

 Example:

 S: * PREAUTH IMAP4rev2 server logged in as Smith

7.1.5. BYE Response

 Contents:
 OPTIONAL response code
 human-readable text

 The BYE response is always untagged and indicates that the server is
 about to close the connection. The human-readable text MAY be
 displayed to the user in a status report by the client. The BYE
 response is sent under one of four conditions:

 1. as part of a normal logout sequence. The server will close the
 connection after sending the tagged OK response to the LOGOUT
 command.

 2. as a panic shutdown announcement. The server closes the
 connection immediately.

 3. as an announcement of an inactivity autologout. The server
 closes the connection immediately.

 4. as one of three possible greetings at connection startup,
 indicating that the server is not willing to accept a connection
 from this client. The server closes the connection immediately.

 The difference between a BYE that occurs as part of a normal LOGOUT
 sequence (the first case) and a BYE that occurs because of a failure
 (the other three cases) is that the connection closes immediately in
 the failure case. In all cases, the client SHOULD continue to read
 response data from the server until the connection is closed; this
 will ensure that any pending untagged or completion responses are
 read and processed.

 Example:

 S: * BYE Autologout; idle for too long

7.2. Server Responses - Server Status

 These responses are always untagged. This is how server status data
 are transmitted from the server to the client.

7.2.1. ENABLED Response

 Contents: capability listing

 The ENABLED response occurs as a result of an ENABLE command. The
 capability listing contains a space-separated listing of capability
 names that the server supports and that were successfully enabled.
 The ENABLED response may contain no capabilities, which means that no
 extensions listed by the client were successfully enabled.

 Example:

 S: * ENABLED CONDSTORE QRESYNC

7.2.2. CAPABILITY Response

 Contents: capability listing

 The CAPABILITY response occurs as a result of a CAPABILITY command.
 The capability listing contains a space-separated listing of
 capability names that the server supports. The capability listing
 MUST include the atom "IMAP4rev2", but note that it doesn’t have to
 be the first capability listed. The order of capability names has no
 significance.

 Client and server implementations MUST implement the capabilities
 "AUTH=PLAIN" (described in [PLAIN]), and MUST implement "STARTTLS"
 and "LOGINDISABLED" on the cleartext port. See the Security
 Considerations (Section 11) for important information related to
 these capabilities.

 A capability name that begins with "AUTH=" indicates that the server
 supports that particular authentication mechanism [SASL].

 The LOGINDISABLED capability indicates that the LOGIN command is
 disabled, and that the server will respond with a tagged NO response
 to any attempt to use the LOGIN command even if the user name and
 password are valid (their validity will not be checked). An IMAP
 client MUST NOT issue the LOGIN command if the server advertises the
 LOGINDISABLED capability.

 Other capability names indicate that the server supports an
 extension, revision, or amendment to the IMAP4rev2 protocol. If
 IMAP4rev1 capability is not advertised, server responses MUST conform
 to this document until the client issues a command that uses an
 additional capability. If both IMAP4rev1 and IMAP4rev2 capabilities
 are advertised, server responses MUST conform to [RFC3501] until the
 client issues a command that uses an additional capability. (For
 example, the client can issue ENABLE IMAP4rev2 to enable
 IMAP4rev2-specific behavior.)

 Capability names SHOULD be registered with IANA using the RFC
 Required policy [RFC8126]. A server SHOULD NOT offer unregistered
 capability names.

 Client implementations SHOULD NOT require any capability name other
 than "IMAP4rev2", and possibly "STARTTLS" and "LOGINDISABLED" (on a
 cleartext port). Client implementations MUST ignore any unknown
 capability names.

 A server MAY send capabilities automatically, by using the CAPABILITY
 response code in the initial PREAUTH or OK responses and by sending
 an updated CAPABILITY response code in the tagged OK response as part
 of a successful authentication. It is unnecessary for a client to
 send a separate CAPABILITY command if it recognizes these automatic
 capabilities and there was no change to the TLS and/or authentication

 state since they were received.

 The list of capabilities returned by a server MAY change during the
 connection. In particular, it is quite common for the server to
 change the list of capabilities after successful TLS negotiation
 (STARTTLS command) and/or after successful authentication
 (AUTHENTICATE or LOGIN commands).

 Example:

 S: * CAPABILITY STARTTLS AUTH=GSSAPI IMAP4rev2 LOGINDISABLED
 XPIG-LATIN

 Note that in the above example, XPIG-LATIN is a fictitious capability
 name.

7.3. Server Responses - Mailbox Status

 These responses are always untagged. This is how mailbox status data
 are transmitted from the server to the client. Many of these
 responses typically result from a command with the same name.

7.3.1. LIST Response

 Contents:
 name attributes
 hierarchy delimiter
 name
 OPTIONAL extension data

 The LIST response occurs as a result of a LIST command. It returns a
 single name that matches the LIST specification. There can be
 multiple LIST responses for a single LIST command.

 The following base mailbox name attributes are defined:

 \NonExistent
 The "\NonExistent" attribute indicates that a mailbox name does
 not refer to an existing mailbox. Note that this attribute is not
 meaningful by itself, as mailbox names that match the canonical
 LIST pattern but don’t exist must not be returned unless one of
 the two conditions listed below is also satisfied:

 1. The mailbox name also satisfies the selection criteria (for
 example, it is subscribed and the "SUBSCRIBED" selection
 option has been specified).

 2. "RECURSIVEMATCH" has been specified, and the mailbox name has
 at least one descendant mailbox name that does not match the
 LIST pattern and does match the selection criteria.

 In practice, this means that the "\NonExistent" attribute is
 usually returned with one or more of "\Subscribed", "\Remote",
 "\HasChildren", or the CHILDINFO extended data item.

 The "\NonExistent" attribute implies "\NoSelect".

 \Noinferiors
 It is not possible for any child levels of hierarchy to exist
 under this name; no child levels exist now and none can be created
 in the future.

 \Noselect
 It is not possible to use this name as a selectable mailbox.

 \HasChildren
 The presence of this attribute indicates that the mailbox has
 child mailboxes. A server SHOULD NOT set this attribute if there
 are child mailboxes and the user does not have permission to
 access any of them. In this case, \HasNoChildren SHOULD be used.
 In many cases, however, a server may not be able to efficiently

 compute whether a user has access to any child mailboxes. Note
 that even though the \HasChildren attribute for a mailbox must be
 correct at the time of processing the mailbox, a client must be
 prepared to deal with a situation when a mailbox is marked with
 the \HasChildren attribute, but no child mailbox appears in the
 response to the LIST command. This might happen, for example, due
 to child mailboxes being deleted or made inaccessible to the user
 (using access control) by another client before the server is able
 to list them.

 \HasNoChildren
 The presence of this attribute indicates that the mailbox has NO
 child mailboxes that are accessible to the currently authenticated
 user.

 \Marked
 The mailbox has been marked "interesting" by the server; the
 mailbox probably contains messages that have been added since the
 last time the mailbox was selected.

 \Unmarked
 The mailbox does not contain any additional messages since the
 last time the mailbox was selected.

 \Subscribed
 The mailbox name was subscribed to using the SUBSCRIBE command.

 \Remote
 The mailbox is a remote mailbox.

 It is an error for the server to return both a \HasChildren and a
 \HasNoChildren attribute in the same LIST response. A client that
 encounters a LIST response with both \HasChildren and \HasNoChildren
 attributes present should act as if both are absent in the LIST
 response.

 Note: the \HasNoChildren attribute should not be confused with the
 \NoInferiors attribute, which indicates that no child mailboxes
 exist now and none can be created in the future.

 If it is not feasible for the server to determine whether or not the
 mailbox is "interesting", the server SHOULD NOT send either \Marked
 or \Unmarked. The server MUST NOT send more than one of \Marked,
 \Unmarked, and \Noselect for a single mailbox, and it MAY send none
 of these.

 In addition to the base mailbox name attributes defined above, an
 IMAP server MAY also include any or all of the following attributes
 that denote "role" (or "special-use") of a mailbox. These attributes
 are included along with base attributes defined above. A given
 mailbox may have none, one, or more than one of these attributes. In
 some cases, a special use is advice to a client about what to put in
 that mailbox. In other cases, it’s advice to a client about what to
 expect to find there.

 \All
 This mailbox presents all messages in the user’s message store.
 Implementations MAY omit some messages, such as, perhaps, those in
 \Trash and \Junk. When this special use is supported, it is
 almost certain to represent a virtual mailbox.

 \Archive
 This mailbox is used to archive messages. The meaning of an
 "archival" mailbox is server dependent; typically, it will be used
 to get messages out of the inbox, or otherwise keep them out of
 the user’s way, while still making them accessible.

 \Drafts
 This mailbox is used to hold draft messages -- typically, messages
 that are being composed but have not yet been sent. In some
 server implementations, this might be a virtual mailbox,

 containing messages from other mailboxes that are marked with the
 "\Draft" message flag. Alternatively, this might just be advice
 that a client put drafts here.

 \Flagged
 This mailbox presents all messages marked in some way as
 "important". When this special use is supported, it is likely to
 represent a virtual mailbox collecting messages (from other
 mailboxes) that are marked with the "\Flagged" message flag.

 \Junk
 This mailbox is where messages deemed to be junk mail are held.
 Some server implementations might put messages here automatically.
 Alternatively, this might just be advice to a client-side spam
 filter.

 \Sent
 This mailbox is used to hold copies of messages that have been
 sent. Some server implementations might put messages here
 automatically. Alternatively, this might just be advice that a
 client save sent messages here.

 \Trash
 This mailbox is used to hold messages that have been deleted or
 marked for deletion. In some server implementations, this might
 be a virtual mailbox, containing messages from other mailboxes
 that are marked with the "\Deleted" message flag. Alternatively,
 this might just be advice that a client that chooses not to use
 the IMAP "\Deleted" model should use as its trash location. In
 server implementations that strictly expect the IMAP "\Deleted"
 model, this special use is likely not to be supported.

 All special-use attributes are OPTIONAL, and any given server or
 message store may support any combination of the attributes, or none
 at all. In most cases, there will likely be at most one mailbox with
 a given attribute for a given user, but in some server or message
 store implementations, it might be possible for multiple mailboxes to
 have the same special-use attribute.

 Special-use attributes are likely to be user specific. User Adam
 might share his \Sent mailbox with user Barb, but that mailbox is
 unlikely to also serve as Barb’s \Sent mailbox.

 Other mailbox name attributes can be found in the "IMAP Mailbox Name
 Attributes" registry [IMAP-MAILBOX-NAME-ATTRS-REG].

 The hierarchy delimiter is a character used to delimit levels of
 hierarchy in a mailbox name. A client can use it to create child
 mailboxes and to search higher or lower levels of naming hierarchy.
 All children of a top-level hierarchy node MUST use the same
 separator character. A NIL hierarchy delimiter means that no
 hierarchy exists; the name is a "flat" name.

 The name represents an unambiguous left-to-right hierarchy and MUST
 be valid for use as a reference in LIST command. Unless \Noselect or
 \NonExistent is indicated, the name MUST also be valid as an argument
 for commands, such as SELECT, that accept mailbox names.

 The name might be followed by an OPTIONAL series of extended fields,
 a parenthesized list of tagged data (also referred to as an "extended
 data item"). The first element of an extended field is a string,
 which identifies the type of data. [RFC5258] specifies requirements
 on string registration (which are called "tags"; such tags are not to
 be confused with IMAP command tags); in particular, it states that
 "Tags MUST be registered with IANA". This document doesn’t change
 that. See Section 9.5 of [RFC5258] for the registration template.
 The server MAY return data in the extended fields that was not
 directly solicited by the client in the corresponding LIST command.
 For example, the client can enable extra extended fields by using
 another IMAP extension that makes use of the extended LIST responses.
 The client MUST ignore all extended fields it doesn’t recognize.

 Example:

 S: * LIST (\Noselect) "/" ˜/Mail/foo

 Example:

 S: * LIST (\Marked) ":" Tables (tablecloth (("edge" "lacy")
 ("color" "red")) Sample "text")
 S: * LIST () ":" Tables:new (tablecloth ("edge" "lacy")
 Sample ("text" "more text"))

7.3.2. NAMESPACE Response

 Contents: the prefix and hierarchy delimiter to the server’s
 Personal Namespace(s), Other Users’ Namespace(s), and
 Shared Namespace(s)

 The NAMESPACE response occurs as a result of a NAMESPACE command. It
 contains the prefix and hierarchy delimiter to the server’s Personal
 Namespace(s), Other Users’ Namespace(s), and Shared Namespace(s) that
 the server wishes to expose. The response will contain a NIL for any
 namespace class that is not available. The Namespace-Response-
 Extensions ABNF non-terminal is defined for extensibility and MAY be
 included in the response.

 Example:

 S: * NAMESPACE (("" "/")) (("˜" "/")) NIL

7.3.3. STATUS Response

 Contents:
 name
 status parenthesized list

 The STATUS response occurs as a result of a STATUS command. It
 returns the mailbox name that matches the STATUS specification and
 the requested mailbox status information.

 Example:

 S: * STATUS blurdybloop (MESSAGES 231 UIDNEXT 44292)

7.3.4. ESEARCH Response

 Contents: one or more search-return-data pairs

 The ESEARCH response occurs as a result of a SEARCH or UID SEARCH
 command.

 The ESEARCH response starts with an optional search correlator. If
 it is missing, then the response was not caused by a particular IMAP
 command, whereas if it is present, it contains the tag of the command
 that caused the response to be returned.

 The search correlator is followed by an optional UID indicator. If
 this indicator is present, all data in the ESEARCH response refers to
 UIDs; otherwise, all returned data refers to message numbers.

 The rest of the ESEARCH response contains one or more search data
 pairs. Each pair starts with a unique return item name, followed by
 a space and the corresponding data. Search data pairs may be
 returned in any order. Unless otherwise specified by an extension,
 any return item name SHOULD appear only once in an ESEARCH response.

 This document specifies the following return item names:

 MIN
 Returns the lowest message number/UID that satisfies the SEARCH
 criteria.

 If the SEARCH results in no matches, the server MUST NOT include
 the MIN return item in the ESEARCH response; however, it still
 MUST send the ESEARCH response.

 MAX
 Returns the highest message number/UID that satisfies the SEARCH
 criteria.

 If the SEARCH results in no matches, the server MUST NOT include
 the MAX return item in the ESEARCH response; however, it still
 MUST send the ESEARCH response.

 ALL
 Returns all message numbers/UIDs that satisfy the SEARCH criteria
 using the sequence-set syntax. Each set MUST be complete; in
 particular, a UID set is returned in an ESEARCH response only when
 each number in the range corresponds to an existing (matching)
 message. The client MUST NOT assume that messages/UIDs will be
 listed in any particular order.

 If the SEARCH results in no matches, the server MUST NOT include
 the ALL return item in the ESEARCH response; however, it still
 MUST send the ESEARCH response.

 COUNT
 Returns the number of messages that satisfy the SEARCH criteria.
 This return item MUST always be included in the ESEARCH response.

 Example:

 S: * ESEARCH UID COUNT 17 ALL 4:18,21,28

 Example:

 S: * ESEARCH (TAG "a567") UID COUNT 17 ALL 4:18,21,28

 Example:

 S: * ESEARCH COUNT 18 ALL 1:17,21

7.3.5. FLAGS Response

 Contents: flag parenthesized list

 The FLAGS response occurs as a result of a SELECT or EXAMINE command.
 The flag parenthesized list identifies the flags (at a minimum, the
 system-defined flags) that are applicable for this mailbox. Flags
 other than the system flags can also exist, depending on server
 implementation.

 The update from the FLAGS response MUST be remembered by the client.

 Example:

 S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)

7.4. Server Responses - Mailbox Size

 These responses are always untagged. This is how changes in the size
 of the mailbox are transmitted from the server to the client.
 Immediately following the "*" token is a number that represents a
 message count.

7.4.1. EXISTS Response

 Contents: none

 The EXISTS response reports the number of messages in the mailbox.
 This response occurs as a result of a SELECT or EXAMINE command and
 if the size of the mailbox changes (e.g., new messages).

 The update from the EXISTS response MUST be remembered by the client.

 Example:

 S: * 23 EXISTS

7.5. Server Responses - Message Status

 These responses are always untagged. This is how message data are
 transmitted from the server to the client, often as a result of a
 command with the same name. Immediately following the "*" token is a
 number that represents a message sequence number.

7.5.1. EXPUNGE Response

 Contents: none

 The EXPUNGE response reports that the specified message sequence
 number has been permanently removed from the mailbox. The message
 sequence number for each successive message in the mailbox is
 immediately decremented by 1, and this decrement is reflected in
 message sequence numbers in subsequent responses (including other
 untagged EXPUNGE responses).

 The EXPUNGE response also decrements the number of messages in the
 mailbox; it is not necessary to send an EXISTS response with the new
 value.

 As a result of the immediate decrement rule, message sequence numbers
 that appear in a set of successive EXPUNGE responses depend upon
 whether the messages are removed starting from lower numbers to
 higher numbers, or from higher numbers to lower numbers. For
 example, if the last 5 messages in a 9-message mailbox are expunged,
 a "lower to higher" server will send five untagged EXPUNGE responses
 for message sequence number 5, whereas a "higher to lower" server
 will send successive untagged EXPUNGE responses for message sequence
 numbers 9, 8, 7, 6, and 5.

 An EXPUNGE response MUST NOT be sent when no command is in progress,
 nor while responding to a FETCH, STORE, or SEARCH command. This rule
 is necessary to prevent a loss of synchronization of message sequence
 numbers between client and server. A command is not "in progress"
 until the complete command has been received; in particular, a
 command is not "in progress" during the negotiation of command
 continuation.

 Note: UID FETCH, UID STORE, and UID SEARCH are different commands
 from FETCH, STORE, and SEARCH. An EXPUNGE response MAY be sent
 during a UID command.

 The update from the EXPUNGE response MUST be remembered by the
 client.

 Example:

 S: * 44 EXPUNGE

7.5.2. FETCH Response

 Contents: message data

 The FETCH response returns data about a message to the client. The
 data are pairs of data item names, and their values are in
 parentheses. This response occurs as the result of a FETCH or STORE
 command, as well as by a unilateral server decision (e.g., flag
 updates).

 The current data items are:

 BINARY[<section-binary>]<<number>>

 An <nstring> or <literal8> expressing the content of the specified
 section after removing any encoding specified in the corresponding
 Content-Transfer-Encoding header field. If <number> is present,
 it refers to the offset within the DECODED section data.

 If the domain of the decoded data is "8bit" and the data does not
 contain the NUL octet, the server SHOULD return the data in a
 <string> instead of a <literal8>; this allows the client to
 determine if the "8bit" data contains the NUL octet without having
 to explicitly scan the data stream for NULs.

 Messaging clients and servers have been notoriously lax in their
 adherence to the Internet CRLF convention for terminating lines of
 textual data (text/* media types) in Internet protocols. When
 sending data in a BINARY[...] FETCH data item, servers MUST ensure
 that textual line-oriented sections are always transmitted using
 the IMAP CRLF line termination syntax, regardless of the
 underlying storage representation of the data on the server.

 If the server does not know how to decode the section’s Content-
 Transfer-Encoding, it MUST fail the request and issue a "NO"
 response that contains the "UNKNOWN-CTE" response code.

 BINARY.SIZE[<section-binary>]
 The size of the section after removing any encoding specified in
 the corresponding Content-Transfer-Encoding header field. The
 value returned MUST match the size of the <nstring> or <literal8>
 that will be returned by the corresponding FETCH BINARY request.

 If the server does not know how to decode the section’s Content-
 Transfer-Encoding, it MUST fail the request and issue a "NO"
 response that contains the "UNKNOWN-CTE" response code.

 BODY
 A form of BODYSTRUCTURE without extension data.

 BODY[<section>]<<origin octet>>
 A string expressing the body contents of the specified section.
 The string SHOULD be interpreted by the client according to the
 content transfer encoding, body type, and subtype.

 If the origin octet is specified, this string is a substring of
 the entire body contents, starting at that origin octet. This
 means that BODY[]<0> MAY be truncated, but BODY[] is NEVER
 truncated.

 Note: The origin octet facility MUST NOT be used by a server in
 a FETCH response unless the client specifically requested it by
 means of a FETCH of a BODY[<section>]<<partial>> data item.

 8-bit textual data is permitted if a [CHARSET] identifier is part
 of the body parameter parenthesized list for this section. Note
 that headers (part specifiers HEADER or MIME, or the header
 portion of a MESSAGE/RFC822 or MESSAGE/GLOBAL part) MAY be in UTF-
 8. Note also that the [RFC5322] delimiting blank line between the
 header and the body is not affected by header-line subsetting; the
 blank line is always included as part of the header data, except
 in the case of a message that has no body and no blank line.

 Non-textual data such as binary data MUST be transfer encoded into
 a textual form, such as base64, prior to being sent to the client.
 To derive the original binary data, the client MUST decode the
 transfer-encoded string.

 BODYSTRUCTURE
 A parenthesized list that describes the [MIME-IMB] body structure
 of a message. This is computed by the server by parsing the
 [MIME-IMB] header fields, defaulting various fields as necessary.

 For example, a simple text message of 48 lines and 2279 octets can
 have a body structure of:

 ("TEXT" "PLAIN" ("CHARSET" "US-ASCII") NIL NIL "7BIT" 2279 48)

 Multiple parts are indicated by parenthesis nesting. Instead of a
 body type as the first element of the parenthesized list, there is
 a sequence of one or more nested body structures. The second
 element of the parenthesized list is the multipart subtype (mixed,
 digest, parallel, alternative, etc.).

 For example, a two-part message consisting of a text and a
 base64-encoded text attachment can have a body structure of:

 (("TEXT" "PLAIN" ("CHARSET" "US-ASCII") NIL NIL "7BIT" 1152 23)
 ("TEXT" "PLAIN" ("CHARSET" "US-ASCII" "NAME" "cc.diff")
 "<960723163407.20117h@cac.washington.edu>" "Compiler diff"
 "BASE64" 4554 73) "MIXED")

 Extension data follows the multipart subtype. Extension data is
 never returned with the BODY fetch but can be returned with a
 BODYSTRUCTURE fetch. Extension data, if present, MUST be in the
 defined order. The extension data of a multipart body part are in
 the following order:

 body parameter parenthesized list
 A parenthesized list of attribute/value pairs (e.g., ("foo" "bar"
 "baz" "rag") where "bar" is the value of "foo", and "rag" is the
 value of "baz") as defined in [MIME-IMB]. Servers SHOULD decode
 parameter-value continuations and parameter-value character sets
 as described in [RFC2231], for example, if the message contains
 parameters "baz*0", "baz*1", and "baz*2", the server should decode
 them per [RFC2231], concatenate, and return the resulting value as
 a parameter "baz". Similarly, if the message contains parameters
 "foo*0*" and "foo*1*", the server should decode them per
 [RFC2231], convert to UTF-8, concatenate, and return the resulting
 value as a parameter "foo*".

 body disposition
 A parenthesized list, consisting of a disposition type string,
 followed by a parenthesized list of disposition attribute/value
 pairs as defined in [DISPOSITION]. Servers SHOULD decode
 parameter-value continuations as described in [RFC2231].

 body language
 A string or parenthesized list giving the body language value as
 defined in [LANGUAGE-TAGS].

 body location
 A string giving the body content URI as defined in [LOCATION].

 Any following extension data are not yet defined in this version
 of the protocol. Such extension data can consist of zero or more
 NILs, strings, numbers, or potentially nested parenthesized lists
 of such data. Client implementations that do a BODYSTRUCTURE
 fetch MUST be prepared to accept such extension data. Server
 implementations MUST NOT send such extension data until it has
 been defined by a revision of this protocol.

 The basic fields of a non-multipart body part are in the following
 order:

 body type
 A string giving the content media-type name as defined in
 [MIME-IMB].

 body subtype
 A string giving the content subtype name as defined in [MIME-IMB].

 body parameter parenthesized list
 A parenthesized list of attribute/value pairs (e.g., ("foo" "bar"
 "baz" "rag") where "bar" is the value of "foo", and "rag" is the

 value of "baz") as defined in [MIME-IMB].

 body id
 A string giving the Content-ID header field value as defined in
 Section 7 of [MIME-IMB].

 body description
 A string giving the Content-Description header field value as
 defined in Section 8 of [MIME-IMB].

 body encoding
 A string giving the content transfer encoding as defined in
 Section 6 of [MIME-IMB].

 body size
 A number giving the size of the body in octets. Note that this
 size is the size in its transfer encoding and not the resulting
 size after any decoding.

 A body type of type MESSAGE and subtype RFC822 contains,
 immediately after the basic fields, the envelope structure, body
 structure, and size in text lines of the encapsulated message.

 A body type of type TEXT contains, immediately after the basic
 fields, the size of the body in text lines. Note that this size
 is the size in its content transfer encoding and not the resulting
 size after any decoding.

 Extension data follows the basic fields and the type-specific
 fields listed above. Extension data is never returned with the
 BODY fetch but can be returned with a BODYSTRUCTURE fetch.
 Extension data, if present, MUST be in the defined order.

 The extension data of a non-multipart body part are in the
 following order:

 body MD5
 A string giving the body MD5 value as defined in [MD5].

 body disposition
 A parenthesized list with the same content and function as the
 body disposition for a multipart body part.

 body language
 A string or parenthesized list giving the body language value as
 defined in [LANGUAGE-TAGS].

 body location
 A string giving the body content URI as defined in [LOCATION].

 Any following extension data are not yet defined in this version
 of the protocol and would be as described above under multipart
 extension data.

 ENVELOPE
 A parenthesized list that describes the envelope structure of a
 message. This is computed by the server by parsing the [RFC5322]
 header into the component parts, defaulting various fields as
 necessary.

 The fields of the envelope structure are in the following order:
 date, subject, from, sender, reply-to, to, cc, bcc, in-reply-to,
 and message-id. The date, subject, in-reply-to, and message-id
 fields are strings. The from, sender, reply-to, to, cc, and bcc
 fields are parenthesized lists of address structures.

 An address structure is a parenthesized list that describes an
 electronic mail address. The fields of an address structure are
 in the following order: display name, [SMTP] at-domain-list
 (source route and obs-route ABNF production from [RFC5322]),
 mailbox name (local-part ABNF production from [RFC5322]), and

 hostname.

 [RFC5322] group syntax is indicated by a special form of address
 structure in which the hostname field is NIL. If the mailbox name
 field is also NIL, this is an end-of-group marker (semicolon in
 RFC 822 syntax). If the mailbox name field is non-NIL, this is
 the start of a group marker, and the mailbox name field holds the
 group name phrase.

 If the Date, Subject, In-Reply-To, and Message-ID header fields
 are absent in the [RFC5322] header, the corresponding member of
 the envelope is NIL; if these header fields are present but empty,
 the corresponding member of the envelope is the empty string.

 Note: some servers may return a NIL envelope member in the
 "present but empty" case. Clients SHOULD treat NIL and the
 empty string as identical.

 Note: [RFC5322] requires that all messages have a valid Date
 header field. Therefore, for a well-formed message, the date
 member in the envelope cannot be NIL or the empty string.
 However, it can be NIL for a malformed or draft message.

 Note: [RFC5322] requires that the In-Reply-To and Message-ID
 header fields, if present, have non-empty content. Therefore,
 for a well-formed message, the in-reply-to and message-id
 members in the envelope cannot be the empty string. However,
 they can still be the empty string for a malformed message.

 If the From, To, Cc, and Bcc header fields are absent in the
 [RFC5322] header, or are present but empty, the corresponding
 member of the envelope is NIL.

 If the Sender or Reply-To header fields are absent in the
 [RFC5322] header, or are present but empty, the server sets the
 corresponding member of the envelope to be the same value as the
 from member (the client is not expected to know how to do this).

 Note: [RFC5322] requires that all messages have a valid From
 header field. Therefore, for a well-formed message, the from,
 sender, and reply-to members in the envelope cannot be NIL.
 However, they can be NIL for a malformed or draft message.

 FLAGS
 A parenthesized list of flags that are set for this message.

 INTERNALDATE
 A string representing the internal date of the message.

 RFC822.SIZE
 A number expressing the size of a message, as described in
 Section 2.3.4.

 UID
 A number expressing the unique identifier of the message.

 If the server chooses to send unsolicited FETCH responses, they MUST
 include UID FETCH item. Note that this is a new requirement when
 compared to [RFC3501].

 Example:

 S: * 23 FETCH (FLAGS (\Seen) RFC822.SIZE 44827 UID 447)

7.6. Server Responses - Command Continuation Request

 The command continuation request response is indicated by a "+" token
 instead of a tag. This form of response indicates that the server is
 ready to accept the continuation of a command from the client. The
 remainder of this response is a line of text.

 This response is used in the AUTHENTICATE command to transmit server
 data to the client and request additional client data. This response
 is also used if an argument to any command is a synchronizing
 literal.

 The client is not permitted to send the octets of the synchronizing
 literal unless the server indicates that it is expected. This
 permits the server to process commands and reject errors on a line-
 by-line basis. The remainder of the command, including the CRLF that
 terminates a command, follows the octets of the literal. If there
 are any additional command arguments, the literal octets are followed
 by a space and those arguments.

 Example:

 C: A001 LOGIN {11}
 S: + Ready for additional command text
 C: FRED FOOBAR {7}
 S: + Ready for additional command text
 C: fat man
 S: A001 OK LOGIN completed
 C: A044 BLURDYBLOOP {102856}
 S: A044 BAD No such command as "BLURDYBLOOP"

8. Sample IMAP4rev2 Connection

 The following is a transcript of an IMAP4rev2 connection on a non-TLS
 port. A long line in this sample is broken for editorial clarity.

 S: * OK [CAPABILITY STARTTLS AUTH=SCRAM-SHA-256 LOGINDISABLED
 IMAP4rev2] IMAP4rev2 Service Ready
 C: a000 starttls
 S: a000 OK Proceed with TLS negotiation
 <TLS negotiation>
 C: A001 AUTHENTICATE SCRAM-SHA-256
 biwsbj11c2VyLHI9ck9wck5HZndFYmVSV2diTkVrcU8=
 S: + cj1yT3ByTkdmd0ViZVJXZ2JORWtxTyVodllEcFdVYTJSYVRDQWZ1eEZJbGopaE
 5sRiRrMCxzPVcyMlphSjBTTlk3c29Fc1VFamI2Z1E9PSxpPTQwOTY=
 C: Yz1iaXdzLHI9ck9wck5HZndFYmVSV2diTkVrcU8laHZZRHBXVWEyUmFUQ0FmdXhG
 SWxqKWhObEYkazAscD1kSHpiWmFwV0lrNGpVaE4rVXRlOXl0YWc5empmTUhnc3Ft
 bWl6N0FuZFZRPQ==
 S: + dj02cnJpVFJCaTIzV3BSUi93dHVwK21NaFVaVW4vZEI1bkxUSlJzamw5NUc0
 PQ==
 C:
 S: A001 OK SCRAM-SHA-256 authentication successful
 C: babc ENABLE IMAP4rev2
 S: * ENABLED IMAP4rev2
 S: babc OK Some capabilities enabled
 C: a002 select inbox
 S: * 18 EXISTS
 S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
 S: * OK [UIDVALIDITY 3857529045] UIDs valid
 S: * LIST () "/" INBOX ("OLDNAME" ("inbox"))
 S: a002 OK [READ-WRITE] SELECT completed
 C: a003 fetch 12 full
 S: * 12 FETCH (FLAGS (\Seen) INTERNALDATE
 "17-Jul-1996 02:44:25 -0700" RFC822.SIZE 4286 ENVELOPE (
 "Wed, 17 Jul 1996 02:23:25 -0700 (PDT)"
 "IMAP4rev2 WG mtg summary and minutes"
 (("Terry Gray" NIL "gray" "cac.washington.edu"))
 (("Terry Gray" NIL "gray" "cac.washington.edu"))
 (("Terry Gray" NIL "gray" "cac.washington.edu"))
 ((NIL NIL "imap" "cac.washington.edu"))
 ((NIL NIL "minutes" "CNRI.Reston.VA.US")
 ("John Klensin" NIL "KLENSIN" "MIT.EDU")) NIL NIL
 "<B27397-0100000@cac.washington.ed>")
 BODY ("TEXT" "PLAIN" ("CHARSET" "US-ASCII") NIL NIL "7BIT"
 3028 92))
 S: a003 OK FETCH completed
 C: a004 fetch 12 body[header]
 S: * 12 FETCH (BODY[HEADER] {342}

 S: Date: Wed, 17 Jul 1996 02:23:25 -0700 (PDT)
 S: From: Terry Gray <gray@cac.washington.edu>
 S: Subject: IMAP4rev2 WG mtg summary and minutes
 S: To: imap@cac.washington.edu
 S: cc: minutes@CNRI.Reston.VA.US, John Klensin <KLENSIN@MIT.EDU>
 S: Message-Id: <B27397-0100000@cac.washington.edu>
 S: MIME-Version: 1.0
 S: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII
 S:
 S:)
 S: a004 OK FETCH completed
 C: a005 store 12 +flags \deleted
 S: * 12 FETCH (FLAGS (\Seen \Deleted))
 S: a005 OK +FLAGS completed
 C: a006 logout
 S: * BYE IMAP4rev2 server terminating connection
 S: a006 OK LOGOUT completed

9. Formal Syntax

 The following syntax specification uses the Augmented Backus-Naur
 Form (ABNF) notation as specified in [ABNF].

 In the case of alternative or optional rules in which a later rule
 overlaps an earlier rule, the rule that is listed earlier MUST take
 priority. For example, "\Seen" when parsed as a flag is the \Seen
 flag name and not a flag-extension, even though "\Seen" can be parsed
 as a flag-extension. Some, but not all, instances of this rule are
 noted below.

 Note: [ABNF] rules MUST be followed strictly; in particular:

 1. Unless otherwise noted, all alphabetic characters are case
 insensitive. The use of uppercase or lowercase characters to
 define token strings is for editorial clarity only.
 Implementations MUST accept these strings in a case-insensitive
 fashion.

 2. In all cases, SP refers to exactly one space. It is NOT
 permitted to substitute TAB, insert additional spaces, or
 otherwise treat SP as being equivalent to linear whitespace
 (LWSP).

 3. The ASCII NUL character, %x00, MUST NOT be used anywhere, with
 the exception of the OCTET production.

 SP = <Defined in RFC 5234>
 CTL = <Defined in RFC 5234>
 CRLF = <Defined in RFC 5234>
 ALPHA = <Defined in RFC 5234>
 DIGIT = <Defined in RFC 5234>
 DQUOTE = <Defined in RFC 5234>
 OCTET = <Defined in RFC 5234>

 address = "(" addr-name SP addr-adl SP addr-mailbox SP
 addr-host ")"

 addr-adl = nstring
 ; Holds route from [RFC5322] obs-route if
 ; non-NIL

 addr-host = nstring
 ; NIL indicates [RFC5322] group syntax.
 ; Otherwise, holds [RFC5322] domain name

 addr-mailbox = nstring
 ; NIL indicates end of [RFC5322] group; if
 ; non-NIL and addr-host is NIL, holds
 ; [RFC5322] group name.
 ; Otherwise, holds [RFC5322] local-part
 ; after removing [RFC5322] quoting

 addr-name = nstring
 ; If non-NIL, holds phrase from [RFC5322]
 ; mailbox after removing [RFC5322] quoting

 append = "APPEND" SP mailbox [SP flag-list] [SP date-time]
 SP literal

 append-uid = uniqueid

 astring = 1*ASTRING-CHAR / string

 ASTRING-CHAR = ATOM-CHAR / resp-specials

 atom = 1*ATOM-CHAR

 ATOM-CHAR = <any CHAR except atom-specials>

 atom-specials = "(" / ")" / "{" / SP / CTL / list-wildcards /
 quoted-specials / resp-specials

 authenticate = "AUTHENTICATE" SP auth-type [SP initial-resp]
 *(CRLF base64)

 auth-type = atom
 ; Authentication mechanism name, as defined by
 ; [SASL], Section 7.1

 base64 = *(4base64-char) [base64-terminal]

 base64-char = ALPHA / DIGIT / "+" / "/"
 ; Case sensitive

 base64-terminal = (2base64-char "==") / (3base64-char "=")

 body = "(" (body-type-1part / body-type-mpart) ")"

 body-extension = nstring / number / number64 /
 "(" body-extension *(SP body-extension) ")"
 ; Future expansion. Client implementations
 ; MUST accept body-extension fields. Server
 ; implementations MUST NOT generate
 ; body-extension fields except as defined by
 ; future Standard or Standards Track
 ; revisions of this specification.

 body-ext-1part = body-fld-md5 [SP body-fld-dsp [SP body-fld-lang
 [SP body-fld-loc *(SP body-extension)]]]
 ; MUST NOT be returned on non-extensible
 ; "BODY" fetch

 body-ext-mpart = body-fld-param [SP body-fld-dsp [SP body-fld-lang
 [SP body-fld-loc *(SP body-extension)]]]
 ; MUST NOT be returned on non-extensible
 ; "BODY" fetch

 body-fields = body-fld-param SP body-fld-id SP body-fld-desc SP
 body-fld-enc SP body-fld-octets

 body-fld-desc = nstring

 body-fld-dsp = "(" string SP body-fld-param ")" / nil

 body-fld-enc = (DQUOTE ("7BIT" / "8BIT" / "BINARY" / "BASE64"/
 "QUOTED-PRINTABLE") DQUOTE) / string
 ; Content-Transfer-Encoding header field value.
 ; Defaults to "7BIT" (as per RFC 2045)
 ; if not present in the body part.

 body-fld-id = nstring

 body-fld-lang = nstring / "(" string *(SP string) ")"

 body-fld-loc = nstring

 body-fld-lines = number64

 body-fld-md5 = nstring

 body-fld-octets = number

 body-fld-param = "(" string SP string *(SP string SP string) ")" /
 nil

 body-type-1part = (body-type-basic / body-type-msg / body-type-text)
 [SP body-ext-1part]

 body-type-basic = media-basic SP body-fields
 ; MESSAGE subtype MUST NOT be "RFC822" or
 ; "GLOBAL"

 body-type-mpart = 1*body SP media-subtype
 [SP body-ext-mpart]
 ; MULTIPART body part

 body-type-msg = media-message SP body-fields SP envelope
 SP body SP body-fld-lines

 body-type-text = media-text SP body-fields SP body-fld-lines

 capability = ("AUTH=" auth-type) / atom
 ; New capabilities SHOULD be
 ; registered with IANA using the
 ; RFC Required policy, i.e., in
 ; a Standards Track, an Experimental,
 ; or an Informational RFC.

 capability-data = "CAPABILITY" *(SP capability) SP "IMAP4rev2"
 *(SP capability)
 ; See Section 6.1.1 for information about
 ; required security-related capabilities.
 ; Servers that offer RFC 1730 compatibility MUST
 ; list "IMAP4" as the first capability.
 ; Servers that offer RFC 3501 compatibility MUST
 ; list "IMAP4rev1" as one of the capabilities.

 CHAR = <defined in [ABNF]>

 CHAR8 = %x01-ff
 ; any OCTET except NUL, %x00

 charset = atom / quoted

 childinfo-extended-item = "CHILDINFO" SP "("
 list-select-base-opt-quoted
 *(SP list-select-base-opt-quoted) ")"
 ; Extended data item (mbox-list-extended-item)
 ; returned when the RECURSIVEMATCH
 ; selection option is specified.
 ; Note 1: the CHILDINFO extended data item tag can be
 ; returned with or without surrounding quotes, as per
 ; mbox-list-extended-item-tag production.
 ; Note 2: The selection options are always returned
 ; quoted, unlike their specification in
 ; the extended LIST command.

 child-mbox-flag = "\HasChildren" / "\HasNoChildren"
 ; attributes for the CHILDREN return option, at most
 ; one possible per LIST response

 command = tag SP (command-any / command-auth /
 command-nonauth / command-select) CRLF

 ; Modal based on state

 command-any = "CAPABILITY" / "LOGOUT" / "NOOP"
 ; Valid in all states

 command-auth = append / create / delete / enable / examine /
 list / namespace-command / rename /
 select / status / subscribe / unsubscribe /
 idle
 ; Valid only in Authenticated or Selected state

 command-nonauth = login / authenticate / "STARTTLS"
 ; Valid only when in Not Authenticated state

 command-select = "CLOSE" / "UNSELECT" / "EXPUNGE" / copy /
 move / fetch / store / search / uid
 ; Valid only when in Selected state

 continue-req = "+" SP (resp-text / base64) CRLF

 copy = "COPY" SP sequence-set SP mailbox

 create = "CREATE" SP mailbox
 ; Use of INBOX gives a NO error

 date = date-text / DQUOTE date-text DQUOTE

 date-day = 1*2DIGIT
 ; Day of month

 date-day-fixed = (SP DIGIT) / 2DIGIT
 ; Fixed-format version of date-day

 date-month = "Jan" / "Feb" / "Mar" / "Apr" / "May" / "Jun" /
 "Jul" / "Aug" / "Sep" / "Oct" / "Nov" / "Dec"

 date-text = date-day "-" date-month "-" date-year

 date-year = 4DIGIT

 date-time = DQUOTE date-day-fixed "-" date-month "-" date-year
 SP time SP zone DQUOTE

 delete = "DELETE" SP mailbox
 ; Use of INBOX gives a NO error

 digit-nz = %x31-39
 ; 1-9

 eitem-standard-tag = atom
 ; a tag for LIST extended data item defined in a Standard
 ; Track or Experimental RFC.

 eitem-vendor-tag = vendor-token "-" atom
 ; a vendor-specific tag for LIST extended data item

 enable = "ENABLE" 1*(SP capability)

 enable-data = "ENABLED" *(SP capability)

 envelope = "(" env-date SP env-subject SP env-from SP
 env-sender SP env-reply-to SP env-to SP env-cc SP
 env-bcc SP env-in-reply-to SP env-message-id ")"

 env-bcc = "(" 1*address ")" / nil

 env-cc = "(" 1*address ")" / nil

 env-date = nstring

 env-from = "(" 1*address ")" / nil

 env-in-reply-to = nstring

 env-message-id = nstring

 env-reply-to = "(" 1*address ")" / nil

 env-sender = "(" 1*address ")" / nil

 env-subject = nstring

 env-to = "(" 1*address ")" / nil

 esearch-response = "ESEARCH" [search-correlator] [SP "UID"]
 *(SP search-return-data)
 ; ESEARCH response replaces SEARCH response
 ; from IMAP4rev1.

 examine = "EXAMINE" SP mailbox

 fetch = "FETCH" SP sequence-set SP (
 "ALL" / "FULL" / "FAST" /
 fetch-att / "(" fetch-att *(SP fetch-att) ")")

 fetch-att = "ENVELOPE" / "FLAGS" / "INTERNALDATE" /
 "RFC822.SIZE" /
 "BODY" ["STRUCTURE"] / "UID" /
 "BODY" section [partial] /
 "BODY.PEEK" section [partial] /
 "BINARY" [".PEEK"] section-binary [partial] /
 "BINARY.SIZE" section-binary

 flag = "\Answered" / "\Flagged" / "\Deleted" /
 "\Seen" / "\Draft" / flag-keyword / flag-extension
 ; Does not include "\Recent"

 flag-extension = "\" atom
 ; Future expansion. Client implementations
 ; MUST accept flag-extension flags. Server
 ; implementations MUST NOT generate
 ; flag-extension flags except as defined by
 ; a future Standard or Standards Track
 ; revisions of this specification.
 ; "\Recent" was defined in RFC 3501
 ; and is now deprecated.

 flag-fetch = flag / obsolete-flag-recent

 flag-keyword = "$MDNSent" / "$Forwarded" / "$Junk" /
 "$NotJunk" / "$Phishing" / atom

 flag-list = "(" [flag *(SP flag)] ")"

 flag-perm = flag / "*"

 greeting = "*" SP (resp-cond-auth / resp-cond-bye) CRLF

 header-fld-name = astring

 header-list = "(" header-fld-name *(SP header-fld-name) ")"

 idle = "IDLE" CRLF "DONE"

 initial-resp = (base64 / "=")
 ; "initial response" defined in
 ; Section 4 of [SASL]

 list = "LIST" [SP list-select-opts] SP
 mailbox SP mbox-or-pat
 [SP list-return-opts]

 list-mailbox = 1*list-char / string

 list-char = ATOM-CHAR / list-wildcards / resp-specials

 list-return-opt = return-option
 ; Note that return-option is the ABNF
 ; non-terminal used by RFC 5258

 list-return-opts = "RETURN" SP
 "(" [list-return-opt *(SP list-return-opt)] ")"
 ; list return options, e.g., CHILDREN

 list-select-base-opt = "SUBSCRIBED" / option-extension
 ; options that can be used by themselves

 list-select-base-opt-quoted = DQUOTE list-select-base-opt DQUOTE

 list-select-independent-opt = "REMOTE" / option-extension
 ; options that do not syntactically interact with
 ; other options

 list-select-mod-opt = "RECURSIVEMATCH" / option-extension
 ; options that require a list-select-base-opt
 ; to also be present

 list-select-opt = list-select-base-opt / list-select-independent-opt
 / list-select-mod-opt

 list-select-opts = "(" [
 (*(list-select-opt SP) list-select-base-opt
 *(SP list-select-opt))
 / (list-select-independent-opt
 *(SP list-select-independent-opt))
] ")"
 ; Any number of options may be in any order.
 ; If a list-select-mod-opt appears, then a
 ; list-select-base-opt must also appear.
 ; This allows these:
 ; ()
 ; (REMOTE)
 ; (SUBSCRIBED)
 ; (SUBSCRIBED REMOTE)
 ; (SUBSCRIBED RECURSIVEMATCH)
 ; (SUBSCRIBED REMOTE RECURSIVEMATCH)
 ; But does NOT allow these:
 ; (RECURSIVEMATCH)
 ; (REMOTE RECURSIVEMATCH)

 list-wildcards = "%" / "*"

 literal = "{" number64 ["+"] "}" CRLF *CHAR8
 ; <number64> represents the number of CHAR8s.
 ; A non-synchronizing literal is distinguished
 ; from a synchronizing literal by the presence of
 ; "+" before the closing "}".
 ; Non-synchronizing literals are not allowed when
 ; sent from server to the client.

 literal8 = "˜{" number64 "}" CRLF *OCTET
 ; <number64> represents the number of OCTETs
 ; in the response string.

 login = "LOGIN" SP userid SP password

 mailbox = "INBOX" / astring
 ; INBOX is case insensitive. All case variants
 ; of INBOX (e.g., "iNbOx") MUST be interpreted as
 ; INBOX, not as an astring. An astring that
 ; consists of the case-insensitive sequence
 ; "I" "N" "B" "O" "X" is considered

 ; to be an INBOX and not an astring.
 ; Refer to Section 5.1 for further
 ; semantic details of mailbox names.

 mailbox-data = "FLAGS" SP flag-list / "LIST" SP mailbox-list /
 esearch-response /
 "STATUS" SP mailbox SP "(" [status-att-list] ")" /
 number SP "EXISTS" / namespace-response /
 obsolete-search-response /
 obsolete-recent-response
 ; obsolete-search-response and
 ; obsolete-recent-response can only be returned
 ; by servers that support both IMAPrev1
 ; and IMAPrev2.

 mailbox-list = "(" [mbx-list-flags] ")" SP
 (DQUOTE QUOTED-CHAR DQUOTE / nil) SP mailbox
 [SP mbox-list-extended]
 ; This is the list information pointed to by the ABNF
 ; item "mailbox-data", which is defined above

 mbox-list-extended = "(" [mbox-list-extended-item
 *(SP mbox-list-extended-item)] ")"

 mbox-list-extended-item = mbox-list-extended-item-tag SP
 tagged-ext-val

 mbox-list-extended-item-tag = astring
 ; The content MUST conform to either
 ; "eitem-vendor-tag" or "eitem-standard-tag"
 ; ABNF productions.

 mbox-or-pat = list-mailbox / patterns

 mbx-list-flags = *(mbx-list-oflag SP) mbx-list-sflag
 *(SP mbx-list-oflag) /
 mbx-list-oflag *(SP mbx-list-oflag)

 mbx-list-oflag = "\Noinferiors" / child-mbox-flag /
 "\Subscribed" / "\Remote" / flag-extension
 ; Other flags; multiple from this list are
 ; possible per LIST response, but each flag
 ; can only appear once per LIST response

 mbx-list-sflag = "\NonExistent" / "\Noselect" / "\Marked" /
 "\Unmarked"
 ; Selectability flags; only one per LIST response

 media-basic = ((DQUOTE ("APPLICATION" / "AUDIO" / "IMAGE" /
 "FONT" / "MESSAGE" / "MODEL" / "VIDEO") DQUOTE)
 / string)
 SP media-subtype
 ; FONT defined in [RFC8081].
 ; MODEL defined in [RFC2077].
 ; Other top-level media types
 ; are defined in [MIME-IMT].

 media-message = DQUOTE "MESSAGE" DQUOTE SP
 DQUOTE ("RFC822" / "GLOBAL") DQUOTE
 ; Defined in [MIME-IMT]

 media-subtype = string
 ; Defined in [MIME-IMT]

 media-text = DQUOTE "TEXT" DQUOTE SP media-subtype
 ; Defined in [MIME-IMT]

 message-data = nz-number SP ("EXPUNGE" / ("FETCH" SP msg-att))

 move = "MOVE" SP sequence-set SP mailbox

 msg-att = "(" (msg-att-dynamic / msg-att-static)
 *(SP (msg-att-dynamic / msg-att-static)) ")"

 msg-att-dynamic = "FLAGS" SP "(" [flag-fetch *(SP flag-fetch)] ")"
 ; MAY change for a message

 msg-att-static = "ENVELOPE" SP envelope /
 "INTERNALDATE" SP date-time /
 "RFC822.SIZE" SP number64 /
 "BODY" ["STRUCTURE"] SP body /
 "BODY" section ["<" number ">"] SP nstring /
 "BINARY" section-binary SP (nstring / literal8) /
 "BINARY.SIZE" section-binary SP number /
 "UID" SP uniqueid
 ; MUST NOT change for a message

 name-component = 1*UTF8-CHAR
 ; MUST NOT contain ".", "/", "%", or "*"

 namespace = nil / "(" 1*namespace-descr ")"

 namespace-command = "NAMESPACE"

 namespace-descr = "(" string SP
 (DQUOTE QUOTED-CHAR DQUOTE / nil)
 [namespace-response-extensions] ")"

 namespace-response-extensions = *namespace-response-extension

 namespace-response-extension = SP string SP
 "(" string *(SP string) ")"

 namespace-response = "NAMESPACE" SP namespace
 SP namespace SP namespace
 ; The first Namespace is the Personal Namespace(s).
 ; The second Namespace is the Other Users’
 ; Namespace(s).
 ; The third Namespace is the Shared Namespace(s).

 nil = "NIL"

 nstring = string / nil

 number = 1*DIGIT
 ; Unsigned 32-bit integer
 ; (0 <= n < 4,294,967,296)

 number64 = 1*DIGIT
 ; Unsigned 63-bit integer
 ; (0 <= n <= 9,223,372,036,854,775,807)

 nz-number = digit-nz *DIGIT
 ; Non-zero unsigned 32-bit integer
 ; (0 < n < 4,294,967,296)

 nz-number64 = digit-nz *DIGIT
 ; Unsigned 63-bit integer
 ; (0 < n <= 9,223,372,036,854,775,807)

 obsolete-flag-recent = "\Recent"

 obsolete-recent-response = number SP "RECENT"

 obsolete-search-response = "SEARCH" *(SP nz-number)

 oldname-extended-item = "OLDNAME" SP "(" mailbox ")"
 ; Extended data item (mbox-list-extended-item)
 ; returned in a LIST response when a mailbox is
 ; renamed or deleted. Also returned when
 ; the server canonicalized the provided mailbox
 ; name.

 ; Note 1: the OLDNAME tag can be returned
 ; with or without surrounding quotes, as per
 ; mbox-list-extended-item-tag production.

 option-extension = (option-standard-tag / option-vendor-tag)
 [SP option-value]

 option-standard-tag = atom
 ; an option defined in a Standards Track or
 ; Experimental RFC

 option-val-comp = astring /
 option-val-comp *(SP option-val-comp) /
 "(" option-val-comp ")"

 option-value = "(" option-val-comp ")"

 option-vendor-tag = vendor-token "-" atom
 ; a vendor-specific option, non-standard

 partial-range = number64 ["." nz-number64]
 ; Copied from RFC 5092 (IMAP URL)
 ; and updated to support 64-bit sizes.

 partial = "<" number64 "." nz-number64 ">"
 ; Partial FETCH request. 0-based offset of
 ; the first octet, followed by the number of
 ; octets in the fragment.

 password = astring

 patterns = "(" list-mailbox ")"
 ; [RFC5258] supports multiple patterns,
 ; but this document only requires one
 ; to be supported.
 ; If the server is also implementing
 ; [RFC5258], the "patterns" syntax from
 ; that document must be followed.

 quoted = DQUOTE *QUOTED-CHAR DQUOTE

 QUOTED-CHAR = <any TEXT-CHAR except quoted-specials> /
 "\" quoted-specials / UTF8-2 / UTF8-3 / UTF8-4

 quoted-specials = DQUOTE / "\"

 rename = "RENAME" SP mailbox SP mailbox
 ; Use of INBOX as a destination gives a NO error

 response = *(continue-req / response-data) response-done

 response-data = "*" SP (resp-cond-state / resp-cond-bye /
 mailbox-data / message-data / capability-data /
 enable-data) CRLF

 response-done = response-tagged / response-fatal

 response-fatal = "*" SP resp-cond-bye CRLF
 ; Server closes connection immediately

 response-tagged = tag SP resp-cond-state CRLF

 resp-code-apnd = "APPENDUID" SP nz-number SP append-uid

 resp-code-copy = "COPYUID" SP nz-number SP uid-set SP uid-set

 resp-cond-auth = ("OK" / "PREAUTH") SP resp-text
 ; Authentication condition

 resp-cond-bye = "BYE" SP resp-text

 resp-cond-state = ("OK" / "NO" / "BAD") SP resp-text
 ; Status condition

 resp-specials = "]"

 resp-text = ["[" resp-text-code "]" SP] [text]

 resp-text-code = "ALERT" /
 "BADCHARSET" [SP "(" charset *(SP charset) ")"] /
 capability-data / "PARSE" /
 "PERMANENTFLAGS" SP
 "(" [flag-perm *(SP flag-perm)] ")" /
 "READ-ONLY" / "READ-WRITE" / "TRYCREATE" /
 "UIDNEXT" SP nz-number /
 "UIDVALIDITY" SP nz-number /
 resp-code-apnd / resp-code-copy / "UIDNOTSTICKY" /
 "UNAVAILABLE" / "AUTHENTICATIONFAILED" /
 "AUTHORIZATIONFAILED" / "EXPIRED" /
 "PRIVACYREQUIRED" / "CONTACTADMIN" / "NOPERM" /
 "INUSE" / "EXPUNGEISSUED" / "CORRUPTION" /
 "SERVERBUG" / "CLIENTBUG" / "CANNOT" /
 "LIMIT" / "OVERQUOTA" / "ALREADYEXISTS" /
 "NONEXISTENT" / "NOTSAVED" / "HASCHILDREN" /
 "CLOSED" /
 "UNKNOWN-CTE" /
 atom [SP 1*<any TEXT-CHAR except "]">]

 return-option = "SUBSCRIBED" / "CHILDREN" / status-option /
 option-extension

 search = "SEARCH" [search-return-opts]
 SP search-program

 search-correlator = SP "(" "TAG" SP tag-string ")"

 search-key = "ALL" / "ANSWERED" / "BCC" SP astring /
 "BEFORE" SP date / "BODY" SP astring /
 "CC" SP astring / "DELETED" / "FLAGGED" /
 "FROM" SP astring / "KEYWORD" SP flag-keyword /
 "ON" SP date / "SEEN" /
 "SINCE" SP date / "SUBJECT" SP astring /
 "TEXT" SP astring / "TO" SP astring /
 "UNANSWERED" / "UNDELETED" / "UNFLAGGED" /
 "UNKEYWORD" SP flag-keyword / "UNSEEN" /
 ; Above this line were in [IMAP2]
 "DRAFT" / "HEADER" SP header-fld-name SP astring /
 "LARGER" SP number64 / "NOT" SP search-key /
 "OR" SP search-key SP search-key /
 "SENTBEFORE" SP date / "SENTON" SP date /
 "SENTSINCE" SP date / "SMALLER" SP number64 /
 "UID" SP sequence-set / "UNDRAFT" / sequence-set /
 "(" search-key *(SP search-key) ")"

 search-modifier-name = tagged-ext-label

 search-mod-params = tagged-ext-val
 ; This non-terminal shows recommended syntax
 ; for future extensions.

 search-program = ["CHARSET" SP charset SP]
 search-key *(SP search-key)
 ; CHARSET argument to SEARCH MUST be
 ; registered with IANA.

 search-ret-data-ext = search-modifier-name SP search-return-value
 ; Note that not every SEARCH return option
 ; is required to have the corresponding
 ; ESEARCH return data.

 search-return-data = "MIN" SP nz-number /
 "MAX" SP nz-number /

 "ALL" SP sequence-set /
 "COUNT" SP number /
 search-ret-data-ext
 ; All return data items conform to
 ; search-ret-data-ext syntax.
 ; Note that "$" marker is not allowed
 ; after the ALL return data item.

 search-return-opts = SP "RETURN" SP "(" [search-return-opt
 *(SP search-return-opt)] ")"

 search-return-opt = "MIN" / "MAX" / "ALL" / "COUNT" /
 "SAVE" /
 search-ret-opt-ext
 ; conforms to generic search-ret-opt-ext
 ; syntax

 search-ret-opt-ext = search-modifier-name [SP search-mod-params]

 search-return-value = tagged-ext-val
 ; Data for the returned search option.
 ; A single "nz-number"/"number"/"number64" value
 ; can be returned as an atom (i.e., without
 ; quoting). A sequence-set can be returned
 ; as an atom as well.

 section = "[" [section-spec] "]"

 section-binary = "[" [section-part] "]"

 section-msgtext = "HEADER" /
 "HEADER.FIELDS" [".NOT"] SP header-list /
 "TEXT"
 ; top-level or MESSAGE/RFC822 or
 ; MESSAGE/GLOBAL part

 section-part = nz-number *("." nz-number)
 ; body part reference.
 ; Allows for accessing nested body parts.

 section-spec = section-msgtext / (section-part ["." section-text])

 section-text = section-msgtext / "MIME"
 ; text other than actual body part (headers,
 ; etc.)

 select = "SELECT" SP mailbox

 seq-number = nz-number / "*"
 ; message sequence number (COPY, FETCH, STORE
 ; commands) or unique identifier (UID COPY,
 ; UID FETCH, UID STORE commands).
 ; * represents the largest number in use. In
 ; the case of message sequence numbers, it is
 ; the number of messages in a non-empty mailbox.
 ; In the case of unique identifiers, it is the
 ; unique identifier of the last message in the
 ; mailbox or, if the mailbox is empty, the
 ; mailbox’s current UIDNEXT value.
 ; The server should respond with a tagged BAD
 ; response to a command that uses a message
 ; sequence number greater than the number of
 ; messages in the selected mailbox. This
 ; includes "*" if the selected mailbox is empty.

 seq-range = seq-number ":" seq-number
 ; two seq-number values and all values between
 ; these two regardless of order.
 ; Example: 2:4 and 4:2 are equivalent and
 ; indicate values 2, 3, and 4.
 ; Example: a unique identifier sequence range of

 ; 3291:* includes the UID of the last message in
 ; the mailbox, even if that value is less than
 ; 3291.

 sequence-set = (seq-number / seq-range) ["," sequence-set]
 ; set of seq-number values, regardless of order.
 ; Servers MAY coalesce overlaps and/or execute
 ; the sequence in any order.
 ; Example: a message sequence number set of
 ; 2,4:7,9,12:* for a mailbox with 15 messages is
 ; equivalent to 2,4,5,6,7,9,12,13,14,15
 ; Example: a message sequence number set of
 ; *:4,5:7 for a mailbox with 10 messages is
 ; equivalent to 10,9,8,7,6,5,4,5,6,7 and MAY
 ; be reordered and overlap coalesced to be
 ; 4,5,6,7,8,9,10.

 sequence-set =/ seq-last-command
 ; Allow for "result of the last command"
 ; indicator.

 seq-last-command = "$"

 status = "STATUS" SP mailbox SP
 "(" status-att *(SP status-att) ")"

 status-att = "MESSAGES" / "UIDNEXT" / "UIDVALIDITY" /
 "UNSEEN" / "DELETED" / "SIZE"

 status-att-val = ("MESSAGES" SP number) /
 ("UIDNEXT" SP nz-number) /
 ("UIDVALIDITY" SP nz-number) /
 ("UNSEEN" SP number) /
 ("DELETED" SP number) /
 ("SIZE" SP number64)
 ; Extensions to the STATUS responses
 ; should extend this production.
 ; Extensions should use the generic
 ; syntax defined by tagged-ext.

 status-att-list = status-att-val *(SP status-att-val)

 status-option = "STATUS" SP "(" status-att *(SP status-att) ")"
 ; This ABNF production complies with
 ; <option-extension> syntax.

 store = "STORE" SP sequence-set SP store-att-flags

 store-att-flags = (["+" / "-"] "FLAGS" [".SILENT"]) SP
 (flag-list / (flag *(SP flag)))

 string = quoted / literal

 subscribe = "SUBSCRIBE" SP mailbox

 tag = 1*<any ASTRING-CHAR except "+">

 tag-string = astring
 ; <tag> represented as <astring>

 tagged-ext-label = tagged-label-fchar *tagged-label-char
 ; Is a valid RFC 3501 "atom".

 tagged-label-fchar = ALPHA / "-" / "_" / "."

 tagged-label-char = tagged-label-fchar / DIGIT / ":"

 tagged-ext-comp = astring /
 tagged-ext-comp *(SP tagged-ext-comp) /
 "(" tagged-ext-comp ")"
 ; Extensions that follow this general

 ; syntax should use nstring instead of
 ; astring when appropriate in the context
 ; of the extension.
 ; Note that a message set or a "number"
 ; can always be represented as an "atom".
 ; A URL should be represented as
 ; a "quoted" string.

 tagged-ext-simple = sequence-set / number / number64

 tagged-ext-val = tagged-ext-simple /
 "(" [tagged-ext-comp] ")"

 text = 1*(TEXT-CHAR / UTF8-2 / UTF8-3 / UTF8-4)
 ; Non-ASCII text can only be returned
 ; after ENABLE IMAP4rev2 command

 TEXT-CHAR = <any CHAR except CR and LF>

 time = 2DIGIT ":" 2DIGIT ":" 2DIGIT
 ; Hours minutes seconds

 uid = "UID" SP
 (copy / move / fetch / search / store /
 uid-expunge)
 ; Unique identifiers used instead of message
 ; sequence numbers

 uid-expunge = "EXPUNGE" SP sequence-set
 ; Unique identifiers used instead of message
 ; sequence numbers

 uid-set = (uniqueid / uid-range) *("," uid-set)

 uid-range = (uniqueid ":" uniqueid)
 ; two uniqueid values and all values
 ; between these two regardless of order.
 ; Example: 2:4 and 4:2 are equivalent.

 uniqueid = nz-number
 ; Strictly ascending

 unsubscribe = "UNSUBSCRIBE" SP mailbox

 userid = astring

 UTF8-CHAR = <Defined in Section 4 of RFC 3629>

 UTF8-2 = <Defined in Section 4 of RFC 3629>

 UTF8-3 = <Defined in Section 4 of RFC 3629>

 UTF8-4 = <Defined in Section 4 of RFC 3629>

 vendor-token = "vendor." name-component
 ; Definition copied from RFC 2244.
 ; MUST be registered with IANA

 zone = ("+" / "-") 4DIGIT
 ; Signed four-digit value of hhmm representing
 ; hours and minutes east of Greenwich (that is,
 ; the amount that the given time differs from
 ; Universal Time). Subtracting the timezone
 ; from the given time will give the UT form.
 ; The Universal Time zone is "+0000".

10. Author’s Note

 This document is a revision or rewrite of earlier documents and
 supercedes the protocol specification in those documents: [RFC3501],
 [RFC2060], [RFC1730], unpublished IMAP2bis.TXT document, [IMAP2], and

 [RFC1064].

11. Security Considerations

 IMAP4rev2 protocol transactions, including electronic mail data, are
 sent in the clear over the network, exposing them to possible
 eavesdropping and manipulation unless protection is negotiated. This
 can be accomplished by use of the Implicit TLS port, the STARTTLS
 command, negotiated confidentiality protection in the AUTHENTICATE
 command, or some other protection mechanism.

11.1. TLS-Related Security Considerations

 This section applies to use of both the STARTTLS command and the
 Implicit TLS port.

 IMAP client and server implementations MUST comply with relevant TLS
 recommendations from [RFC8314]. If recommendations/requirements in
 this document conflict with recommendations from [RFC8314], for
 example in regards to TLS ciphersuites, recommendations from this
 document take precedence.

 Clients and servers MUST implement TLS 1.2 [TLS-1.2] or newer. Use
 of TLS 1.3 [TLS-1.3] is RECOMMENDED. TLS 1.2 may be used only in
 cases where the other party has not yet implemented TLS 1.3.
 Additionally, when using TLS 1.2, IMAP implementations MUST implement
 the TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 cipher suite. This is
 important as it ensures that any two compliant implementations can be
 configured to interoperate. Other TLS cipher suites recommended in
 RFC 7525 [RFC7525] are RECOMMENDED:
 TLS_DHE_RSA_WITH_AES_128_GCM_SHA256,
 TLS_DHE_RSA_WITH_AES_256_GCM_SHA384, and
 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384. All other cipher suites are
 OPTIONAL. Note that this is a change from Section 2.1 of [IMAP-TLS].

 The list of mandatory-to-implement TLS 1.3 cipher suites is described
 in Section 9.1 of [TLS-1.3].

 During the TLS negotiation [TLS-1.3] [TLS-1.2], the client MUST check
 its understanding of the server hostname against the server’s
 identity as presented in the server Certificate message, in order to
 prevent on-path attackers attempting to masquerade as the server.
 This procedure is described in [RFC7817].

 Both the client and server MUST check the result of the STARTTLS
 command and subsequent TLS [TLS-1.3] [TLS-1.2] negotiation to see
 whether acceptable authentication and/or privacy was achieved.

11.2. STARTTLS Command versus Use of Implicit TLS Port

 For maximum backward compatibility, the client MUST implement both
 TLS negotiation on an Implicit TLS port and TLS negotiation using the
 STARTTLS command on a cleartext port.

 The server MUST implement TLS negotiation on an Implicit TLS port.
 The server SHOULD also implement IMAP on a cleartext port. If the
 server listens on a cleartext port, it MUST allow the STARTTLS
 command on it.

 Some site/firewall maintainers insist on TLS site-wide and prefer not
 to rely on a configuration option in each higher-level protocol. For
 this reason, IMAP4rev2 clients SHOULD try both ports 993 and 143 (and
 both IPv4 and IPv6) concurrently by default, unless overridden by
 either user configuration or DNS SRV records [RFC6186]. A good
 algorithm for implementing such concurrent connect is described in
 [RFC8305].

11.3. Client Handling of Unsolicited Responses Not Suitable for the
 Current Connection State

 Cleartext mail transmission (whether caused by firewall configuration

 errors that result in TLS stripping or weak security policies in
 email clients that choose not to negotiate TLS in the first place)
 can enable injection of responses that can confuse or even cause
 crashes in email clients. The following measures are recommended to
 minimize damage from them.

 * See Section 7.1.4 for special security considerations related to
 the PREAUTH response.

 * Many server responses and response codes are only meaningful in
 authenticated or even selected state. However, nothing prevents a
 server (or an on-path attacker) from sending such invalid
 responses in cleartext before STARTTLS/AUTHENTICATE commands are
 issued. Before authentication, clients SHOULD ignore any
 responses other than CAPABILITY and server status responses
 (Section 7.1), as well as any response codes other than
 CAPABILITY. (In particular, some email clients are known to
 incorrectly process LIST responses received before authentication,
 or FETCH responses when no mailbox is selected.) Clients SHOULD
 ignore the ALERT response code until after TLS (whether using
 STARTTLS or TLS negotiation on an Implicit TLS port) or a SASL
 security layer with confidentiality protection has been
 successfully negotiated. Unless explicitly allowed by an IMAP
 extension, when not in selected state, clients MUST ignore
 responses / response codes related to message and mailbox status
 such as FLAGS, EXIST, EXPUNGE, and FETCH.

11.4. COPYUID and APPENDUID Response Codes

 The COPYUID and APPENDUID response codes return information about the
 mailbox, which may be considered sensitive if the mailbox has
 permissions set that permit the client to COPY or APPEND to the
 mailbox, but not SELECT or EXAMINE it.

 Consequently, these response codes SHOULD NOT be issued if the client
 does not have access to SELECT or EXAMINE the mailbox.

11.5. LIST Command and Other Users’ Namespace

 In response to a LIST command containing an argument of the Other
 Users’ Namespace prefix, a server MUST NOT list users that have not
 granted list access to their personal mailboxes to the currently
 authenticated user. Providing such a list could compromise security
 by potentially disclosing confidential information of who is located
 on the server or providing a starting point for a list of user
 accounts to attack.

11.6. Use of MD5

 The BODYSTRUCTURE FETCH data item can contain the MD5 digest of the
 message body in the "body MD5" field (body-fld-md5 ABNF production).
 While MD5 is no longer considered a secure cryptographic hash
 [RFC6151], this field is used solely to expose the value of the
 Content-MD5 header field (if present in the original message), which
 is just a message integrity check and is not used for cryptographic
 purposes. Also note that other mechanisms that provide message
 integrity checks were defined since RFC 1864 [MD5] was published and
 are now more commonly used than Content-MD5. Two such mechanisms are
 the DKIM-Signature header field [RFC6376] and S/MIME signing
 [RFC8550] [RFC8551].

11.7. Other Security Considerations

 A server error message for an AUTHENTICATE command that fails due to
 invalid credentials SHOULD NOT detail why the credentials are
 invalid.

 Use of the LOGIN command sends passwords in the clear. This can be
 avoided by using the AUTHENTICATE command with a [SASL] mechanism
 that does not use plaintext passwords, by first negotiating
 encryption via STARTTLS or some other protection mechanism.

 A server implementation MUST implement a configuration that, at the
 time of authentication, requires:

 1. The STARTTLS command has been negotiated or TLS negotiated on an
 Implicit TLS port
 OR
 2. Some other mechanism that protects the session from password
 snooping has been provided
 OR
 3. The following measures are in place:
 a) The LOGINDISABLED capability is advertised, and [SASL]
 mechanisms (such as PLAIN) using plaintext passwords are NOT
 advertised in the CAPABILITY list.
 AND
 b) The LOGIN command returns an error even if the password is
 correct
 AND
 c) The AUTHENTICATE command returns an error with all [SASL]
 mechanisms that use plaintext passwords, even if the password
 is correct.

 A server error message for a failing LOGIN command SHOULD NOT specify
 that the user name, as opposed to the password, is invalid.

 A server SHOULD have mechanisms in place to limit or delay failed
 AUTHENTICATE/LOGIN attempts.

 A server SHOULD report any authentication failure and analyze such
 authentication failure attempts with regard to a password brute-force
 attack as well as a password spraying attack [NCSC]. Accounts with
 passwords that match well-known passwords from spraying attacks MUST
 be blocked, and users associated with such accounts must be requested
 to change their passwords. Only a password with significant strength
 SHOULD be accepted.

 Additional security considerations are discussed in the sections that
 define the AUTHENTICATE and LOGIN commands (see Sections 6.2.2 and
 6.2.3, respectively).

12. IANA Considerations

 IANA has updated the "Service Names and Transport Protocol Port
 Numbers" registry as follows:

 1. Registration for TCP port 143 and the corresponding "imap"
 service name have been updated to point to this document and
 [RFC3501].

 2. Registration for TCP port 993 and the corresponding "imaps"
 service name have been updated to point to this document,
 [RFC8314], and [RFC3501].

 3. UDP ports 143 and 993 have both been marked as "Reserved" in the
 registry.

 Additional IANA actions are specified in the subsections that follow.

12.1. Updates to IMAP Capabilities Registry

 IMAP4 capabilities are registered by publishing a Standards Track or
 IESG-approved Informational or Experimental RFC. The registry is
 currently located at: <https://www.iana.org/assignments/
 imap4-capabilities>

 As this specification revises the AUTH= prefix, STARTTLS, and
 LOGINDISABLED extensions, IANA has updated registry entries for these
 3 extensions to point to this document and [RFC3501].

12.2. GSSAPI/SASL Service Name

 GSSAPI/Kerberos/SASL service names are registered by publishing a
 Standards Track or IESG-approved Experimental RFC. The registry is
 currently located at: <https://www.iana.org/assignments/gssapi-
 service-names>

 IANA has updated the "imap" service name previously registered in
 [RFC3501] to point to both this document and [RFC3501].

12.3. LIST Selection Options, LIST Return Options, and LIST Extended
 Data Items

 [RFC5258] specifies IANA registration procedures for LIST selection
 options, LIST return options, and LIST extended data items. This
 document doesn’t change these registration procedures. In
 particular, LIST selection options (Section 6.3.9.1) and LIST return
 options (Section 6.3.9.2) are registered using the procedure
 specified in Section 9 of [RFC5258] (and using the registration
 template from Section 9.3 of [RFC5258]). LIST extended data items
 are registered using the registration template from Section 9.6 of
 [RFC5258]).

 IANA has added a reference to RFC 9051 for the "OLDNAME" LIST-
 EXTENDED extended data item entry. This is in addition to the
 existing reference to [RFC5465].

12.4. IMAP Mailbox Name Attributes and IMAP Response Codes

 IANA has updated the "IMAP Mailbox Name Attributes" registry to point
 to this document in addition to [RFC3501].

 IANA has updated the "IMAP Response Codes" registry to point to this
 document in addition to [RFC3501].

13. References

13.1. Normative References

 [ABNF] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [BCP178] Saint-Andre, P., Crocker, D., and M. Nottingham,
 "Deprecating the "X-" Prefix and Similar Constructs in
 Application Protocols", BCP 178, RFC 6648, June 2012.

 <https://www.rfc-editor.org/info/bcp178>

 [CHARSET] Freed, N. and J. Postel, "IANA Charset Registration
 Procedures", BCP 19, RFC 2978, DOI 10.17487/RFC2978,
 October 2000, <https://www.rfc-editor.org/info/rfc2978>.

 [DISPOSITION]
 Troost, R., Dorner, S., and K. Moore, Ed., "Communicating
 Presentation Information in Internet Messages: The
 Content-Disposition Header Field", RFC 2183,
 DOI 10.17487/RFC2183, August 1997,
 <https://www.rfc-editor.org/info/rfc2183>.

 [I18N-HDRS]
 Yang, A., Steele, S., and N. Freed, "Internationalized
 Email Headers", RFC 6532, DOI 10.17487/RFC6532, February
 2012, <https://www.rfc-editor.org/info/rfc6532>.

 [IMAP-IMPLEMENTATION]
 Leiba, B., "IMAP4 Implementation Recommendations",
 RFC 2683, DOI 10.17487/RFC2683, September 1999,
 <https://www.rfc-editor.org/info/rfc2683>.

 [IMAP-MULTIACCESS]
 Gahrns, M., "IMAP4 Multi-Accessed Mailbox Practice",

 RFC 2180, DOI 10.17487/RFC2180, July 1997,
 <https://www.rfc-editor.org/info/rfc2180>.

 [LANGUAGE-TAGS]
 Alvestrand, H., "Content Language Headers", RFC 3282,
 DOI 10.17487/RFC3282, May 2002,
 <https://www.rfc-editor.org/info/rfc3282>.

 [LOCATION] Palme, J., Hopmann, A., and N. Shelness, "MIME
 Encapsulation of Aggregate Documents, such as HTML
 (MHTML)", RFC 2557, DOI 10.17487/RFC2557, March 1999,
 <https://www.rfc-editor.org/info/rfc2557>.

 [MD5] Myers, J. and M. Rose, "The Content-MD5 Header Field",
 RFC 1864, DOI 10.17487/RFC1864, October 1995,
 <https://www.rfc-editor.org/info/rfc1864>.

 [MIME-HDRS]
 Moore, K., "MIME (Multipurpose Internet Mail Extensions)
 Part Three: Message Header Extensions for Non-ASCII Text",
 RFC 2047, DOI 10.17487/RFC2047, November 1996,
 <https://www.rfc-editor.org/info/rfc2047>.

 [MIME-IMB] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996,
 <https://www.rfc-editor.org/info/rfc2045>.

 [MIME-IMT] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 DOI 10.17487/RFC2046, November 1996,
 <https://www.rfc-editor.org/info/rfc2046>.

 [MULTIAPPEND]
 Crispin, M., "Internet Message Access Protocol (IMAP) -
 MULTIAPPEND Extension", RFC 3502, DOI 10.17487/RFC3502,
 March 2003, <https://www.rfc-editor.org/info/rfc3502>.

 [NET-UNICODE]
 Klensin, J. and M. Padlipsky, "Unicode Format for Network
 Interchange", RFC 5198, DOI 10.17487/RFC5198, March 2008,
 <https://www.rfc-editor.org/info/rfc5198>.

 [PLAIN] Zeilenga, K., Ed., "The PLAIN Simple Authentication and
 Security Layer (SASL) Mechanism", RFC 4616,
 DOI 10.17487/RFC4616, August 2006,
 <https://www.rfc-editor.org/info/rfc4616>.

 [RFC2077] Nelson, S., Parks, C., and , "The Model Primary Content
 Type for Multipurpose Internet Mail Extensions", RFC 2077,
 DOI 10.17487/RFC2077, January 1997,
 <https://www.rfc-editor.org/info/rfc2077>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2231] Freed, N. and K. Moore, "MIME Parameter Value and Encoded
 Word Extensions: Character Sets, Languages, and
 Continuations", RFC 2231, DOI 10.17487/RFC2231, November
 1997, <https://www.rfc-editor.org/info/rfc2231>.

 [RFC3503] Melnikov, A., "Message Disposition Notification (MDN)
 profile for Internet Message Access Protocol (IMAP)",
 RFC 3503, DOI 10.17487/RFC3503, March 2003,
 <https://www.rfc-editor.org/info/rfc3503>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC4752] Melnikov, A., Ed., "The Kerberos V5 ("GSSAPI") Simple
 Authentication and Security Layer (SASL) Mechanism",
 RFC 4752, DOI 10.17487/RFC4752, November 2006,
 <https://www.rfc-editor.org/info/rfc4752>.

 [RFC5258] Leiba, B. and A. Melnikov, "Internet Message Access
 Protocol version 4 - LIST Command Extensions", RFC 5258,
 DOI 10.17487/RFC5258, June 2008,
 <https://www.rfc-editor.org/info/rfc5258>.

 [RFC5322] Resnick, P., Ed., "Internet Message Format", RFC 5322,
 DOI 10.17487/RFC5322, October 2008,
 <https://www.rfc-editor.org/info/rfc5322>.

 [RFC5788] Melnikov, A. and D. Cridland, "IMAP4 Keyword Registry",
 RFC 5788, DOI 10.17487/RFC5788, March 2010,
 <https://www.rfc-editor.org/info/rfc5788>.

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <https://www.rfc-editor.org/info/rfc7525>.

 [RFC7817] Melnikov, A., "Updated Transport Layer Security (TLS)
 Server Identity Check Procedure for Email-Related
 Protocols", RFC 7817, DOI 10.17487/RFC7817, March 2016,
 <https://www.rfc-editor.org/info/rfc7817>.

 [RFC8081] Lilley, C., "The "font" Top-Level Media Type", RFC 8081,
 DOI 10.17487/RFC8081, February 2017,
 <https://www.rfc-editor.org/info/rfc8081>.

 [RFC8098] Hansen, T., Ed. and A. Melnikov, Ed., "Message Disposition
 Notification", STD 85, RFC 8098, DOI 10.17487/RFC8098,
 February 2017, <https://www.rfc-editor.org/info/rfc8098>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8314] Moore, K. and C. Newman, "Cleartext Considered Obsolete:
 Use of Transport Layer Security (TLS) for Email Submission
 and Access", RFC 8314, DOI 10.17487/RFC8314, January 2018,
 <https://www.rfc-editor.org/info/rfc8314>.

 [SASL] Melnikov, A., Ed. and K. Zeilenga, Ed., "Simple
 Authentication and Security Layer (SASL)", RFC 4422,
 DOI 10.17487/RFC4422, June 2006,
 <https://www.rfc-editor.org/info/rfc4422>.

 [SCRAM-SHA-256]
 Hansen, T., "SCRAM-SHA-256 and SCRAM-SHA-256-PLUS Simple
 Authentication and Security Layer (SASL) Mechanisms",
 RFC 7677, DOI 10.17487/RFC7677, November 2015,
 <https://www.rfc-editor.org/info/rfc7677>.

 [TLS-1.2] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [TLS-1.3] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [UTF-7] Goldsmith, D. and M. Davis, "UTF-7 A Mail-Safe
 Transformation Format of Unicode", RFC 2152,
 DOI 10.17487/RFC2152, May 1997,
 <https://www.rfc-editor.org/info/rfc2152>.

 [UTF-8] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/info/rfc3629>.

13.2. Informative References

13.2.1. Related Protocols

 [ANONYMOUS]
 Zeilenga, K., "Anonymous Simple Authentication and
 Security Layer (SASL) Mechanism", RFC 4505,
 DOI 10.17487/RFC4505, June 2006,
 <https://www.rfc-editor.org/info/rfc4505>.

 [CERT-555316]
 Carnegie Mellon University, "STARTTLS plaintext command
 injection vulnerability", Software Engineering Institute,
 CERT Coordination Center, Vulnerability Note VU#555316,
 September 2011, <https://www.kb.cert.org/vuls/id/555316>.

 [CHARSET-REG]
 IANA, "Character Set Registrations",
 <https://www.iana.org/assignments/charset-reg/>.

 [IMAP-DISC]
 Melnikov, A., Ed., "Synchronization Operations for
 Disconnected IMAP4 Clients", RFC 4549,
 DOI 10.17487/RFC4549, June 2006,
 <https://www.rfc-editor.org/info/rfc4549>.

 [IMAP-I18N]
 Newman, C., Gulbrandsen, A., and A. Melnikov, "Internet
 Message Access Protocol Internationalization", RFC 5255,
 DOI 10.17487/RFC5255, June 2008,
 <https://www.rfc-editor.org/info/rfc5255>.

 [IMAP-KEYWORDS-REG]
 IANA, "IMAP and JMAP Keywords",
 <https://www.iana.org/assignments/imap-jmap-keywords/>.

 [IMAP-MAILBOX-NAME-ATTRS-REG]
 IANA, "IMAP Mailbox Name Attributes",
 <https://www.iana.org/assignments/imap-mailbox-name-
 attributes/>.

 [IMAP-MODEL]
 Crispin, M., "Distributed Electronic Mail Models in
 IMAP4", RFC 1733, DOI 10.17487/RFC1733, December 1994,
 <https://www.rfc-editor.org/info/rfc1733>.

 [IMAP-URL] Melnikov, A., Ed. and C. Newman, "IMAP URL Scheme",
 RFC 5092, DOI 10.17487/RFC5092, November 2007,
 <https://www.rfc-editor.org/info/rfc5092>.

 [IMAP-UTF-8]
 Resnick, P., Ed., Newman, C., Ed., and S. Shen, Ed., "IMAP
 Support for UTF-8", RFC 6855, DOI 10.17487/RFC6855, March
 2013, <https://www.rfc-editor.org/info/rfc6855>.

 [NCSC] NCSC, "Spray you, spray me: defending against password
 spraying attacks", May 2018, <https://www.ncsc.gov.uk/
 blog-post/spray-you-spray-me-defending-against-password-
 spraying-attacks>.

 [RFC2087] Myers, J., "IMAP4 QUOTA extension", RFC 2087,
 DOI 10.17487/RFC2087, January 1997,
 <https://www.rfc-editor.org/info/rfc2087>.

 [RFC2177] Leiba, B., "IMAP4 IDLE command", RFC 2177,
 DOI 10.17487/RFC2177, June 1997,

 <https://www.rfc-editor.org/info/rfc2177>.

 [RFC2193] Gahrns, M., "IMAP4 Mailbox Referrals", RFC 2193,
 DOI 10.17487/RFC2193, September 1997,
 <https://www.rfc-editor.org/info/rfc2193>.

 [RFC2342] Gahrns, M. and C. Newman, "IMAP4 Namespace", RFC 2342,
 DOI 10.17487/RFC2342, May 1998,
 <https://www.rfc-editor.org/info/rfc2342>.

 [RFC3348] Gahrns, M. and R. Cheng, "The Internet Message Action
 Protocol (IMAP4) Child Mailbox Extension", RFC 3348,
 DOI 10.17487/RFC3348, July 2002,
 <https://www.rfc-editor.org/info/rfc3348>.

 [RFC3516] Nerenberg, L., "IMAP4 Binary Content Extension", RFC 3516,
 DOI 10.17487/RFC3516, April 2003,
 <https://www.rfc-editor.org/info/rfc3516>.

 [RFC3691] Melnikov, A., "Internet Message Access Protocol (IMAP)
 UNSELECT command", RFC 3691, DOI 10.17487/RFC3691,
 February 2004, <https://www.rfc-editor.org/info/rfc3691>.

 [RFC4314] Melnikov, A., "IMAP4 Access Control List (ACL) Extension",
 RFC 4314, DOI 10.17487/RFC4314, December 2005,
 <https://www.rfc-editor.org/info/rfc4314>.

 [RFC4315] Crispin, M., "Internet Message Access Protocol (IMAP) -
 UIDPLUS extension", RFC 4315, DOI 10.17487/RFC4315,
 December 2005, <https://www.rfc-editor.org/info/rfc4315>.

 [RFC4466] Melnikov, A. and C. Daboo, "Collected Extensions to IMAP4
 ABNF", RFC 4466, DOI 10.17487/RFC4466, April 2006,
 <https://www.rfc-editor.org/info/rfc4466>.

 [RFC4731] Melnikov, A. and D. Cridland, "IMAP4 Extension to SEARCH
 Command for Controlling What Kind of Information Is
 Returned", RFC 4731, DOI 10.17487/RFC4731, November 2006,
 <https://www.rfc-editor.org/info/rfc4731>.

 [RFC4959] Siemborski, R. and A. Gulbrandsen, "IMAP Extension for
 Simple Authentication and Security Layer (SASL) Initial
 Client Response", RFC 4959, DOI 10.17487/RFC4959,
 September 2007, <https://www.rfc-editor.org/info/rfc4959>.

 [RFC5161] Gulbrandsen, A., Ed. and A. Melnikov, Ed., "The IMAP
 ENABLE Extension", RFC 5161, DOI 10.17487/RFC5161, March
 2008, <https://www.rfc-editor.org/info/rfc5161>.

 [RFC5182] Melnikov, A., "IMAP Extension for Referencing the Last
 SEARCH Result", RFC 5182, DOI 10.17487/RFC5182, March
 2008, <https://www.rfc-editor.org/info/rfc5182>.

 [RFC5256] Crispin, M. and K. Murchison, "Internet Message Access
 Protocol - SORT and THREAD Extensions", RFC 5256,
 DOI 10.17487/RFC5256, June 2008,
 <https://www.rfc-editor.org/info/rfc5256>.

 [RFC5465] Gulbrandsen, A., King, C., and A. Melnikov, "The IMAP
 NOTIFY Extension", RFC 5465, DOI 10.17487/RFC5465,
 February 2009, <https://www.rfc-editor.org/info/rfc5465>.

 [RFC5530] Gulbrandsen, A., "IMAP Response Codes", RFC 5530,
 DOI 10.17487/RFC5530, May 2009,
 <https://www.rfc-editor.org/info/rfc5530>.

 [RFC5819] Melnikov, A. and T. Sirainen, "IMAP4 Extension for
 Returning STATUS Information in Extended LIST", RFC 5819,
 DOI 10.17487/RFC5819, March 2010,
 <https://www.rfc-editor.org/info/rfc5819>.

 [RFC6151] Turner, S. and L. Chen, "Updated Security Considerations
 for the MD5 Message-Digest and the HMAC-MD5 Algorithms",
 RFC 6151, DOI 10.17487/RFC6151, March 2011,
 <https://www.rfc-editor.org/info/rfc6151>.

 [RFC6154] Leiba, B. and J. Nicolson, "IMAP LIST Extension for
 Special-Use Mailboxes", RFC 6154, DOI 10.17487/RFC6154,
 March 2011, <https://www.rfc-editor.org/info/rfc6154>.

 [RFC6186] Daboo, C., "Use of SRV Records for Locating Email
 Submission/Access Services", RFC 6186,
 DOI 10.17487/RFC6186, March 2011,
 <https://www.rfc-editor.org/info/rfc6186>.

 [RFC6376] Crocker, D., Ed., Hansen, T., Ed., and M. Kucherawy, Ed.,
 "DomainKeys Identified Mail (DKIM) Signatures", STD 76,
 RFC 6376, DOI 10.17487/RFC6376, September 2011,
 <https://www.rfc-editor.org/info/rfc6376>.

 [RFC6409] Gellens, R. and J. Klensin, "Message Submission for Mail",
 STD 72, RFC 6409, DOI 10.17487/RFC6409, November 2011,
 <https://www.rfc-editor.org/info/rfc6409>.

 [RFC6851] Gulbrandsen, A. and N. Freed, Ed., "Internet Message
 Access Protocol (IMAP) - MOVE Extension", RFC 6851,
 DOI 10.17487/RFC6851, January 2013,
 <https://www.rfc-editor.org/info/rfc6851>.

 [RFC7162] Melnikov, A. and D. Cridland, "IMAP Extensions: Quick Flag
 Changes Resynchronization (CONDSTORE) and Quick Mailbox
 Resynchronization (QRESYNC)", RFC 7162,
 DOI 10.17487/RFC7162, May 2014,
 <https://www.rfc-editor.org/info/rfc7162>.

 [RFC7888] Melnikov, A., Ed., "IMAP4 Non-synchronizing Literals",
 RFC 7888, DOI 10.17487/RFC7888, May 2016,
 <https://www.rfc-editor.org/info/rfc7888>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8305] Schinazi, D. and T. Pauly, "Happy Eyeballs Version 2:
 Better Connectivity Using Concurrency", RFC 8305,
 DOI 10.17487/RFC8305, December 2017,
 <https://www.rfc-editor.org/info/rfc8305>.

 [RFC8438] Bosch, S., "IMAP Extension for STATUS=SIZE", RFC 8438,
 DOI 10.17487/RFC8438, August 2018,
 <https://www.rfc-editor.org/info/rfc8438>.

 [RFC8474] Gondwana, B., Ed., "IMAP Extension for Object
 Identifiers", RFC 8474, DOI 10.17487/RFC8474, September
 2018, <https://www.rfc-editor.org/info/rfc8474>.

 [RFC8550] Schaad, J., Ramsdell, B., and S. Turner, "Secure/
 Multipurpose Internet Mail Extensions (S/MIME) Version 4.0
 Certificate Handling", RFC 8550, DOI 10.17487/RFC8550,
 April 2019, <https://www.rfc-editor.org/info/rfc8550>.

 [RFC8551] Schaad, J., Ramsdell, B., and S. Turner, "Secure/
 Multipurpose Internet Mail Extensions (S/MIME) Version 4.0
 Message Specification", RFC 8551, DOI 10.17487/RFC8551,
 April 2019, <https://www.rfc-editor.org/info/rfc8551>.

 [SMTP] Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,
 DOI 10.17487/RFC5321, October 2008,
 <https://www.rfc-editor.org/info/rfc5321>.

13.2.2. Historical Aspects of IMAP and Related Protocols

 [IMAP-COMPAT]
 Crispin, M., "IMAP4 Compatibility with IMAP2bis",
 RFC 2061, DOI 10.17487/RFC2061, December 1996,
 <https://www.rfc-editor.org/info/rfc2061>.

 [IMAP-HISTORICAL]
 Crispin, M., "IMAP4 Compatibility with IMAP2 and
 IMAP2bis", RFC 1732, DOI 10.17487/RFC1732, December 1994,
 <https://www.rfc-editor.org/info/rfc1732>.

 [IMAP-OBSOLETE]
 Crispin, M., "Internet Message Access Protocol - Obsolete
 Syntax", RFC 2062, DOI 10.17487/RFC2062, December 1996,
 <https://www.rfc-editor.org/info/rfc2062>.

 [IMAP-TLS] Newman, C., "Using TLS with IMAP, POP3 and ACAP",
 RFC 2595, DOI 10.17487/RFC2595, June 1999,
 <https://www.rfc-editor.org/info/rfc2595>.

 [IMAP2] Crispin, M., "Interactive Mail Access Protocol: Version
 2", RFC 1176, DOI 10.17487/RFC1176, August 1990,
 <https://www.rfc-editor.org/info/rfc1176>.

 [IMAP2BIS] Crispin, M., "INTERACTIVE MAIL ACCESS PROTOCOL - VERSION
 2bis", Work in Progress, Internet-Draft, draft-ietf-imap-
 imap2bis-02, 29 October 1993,
 <https://datatracker.ietf.org/doc/html/draft-ietf-imap-
 imap2bis-02>.

 [RFC1064] Crispin, M., "Interactive Mail Access Protocol: Version
 2", RFC 1064, DOI 10.17487/RFC1064, July 1988,
 <https://www.rfc-editor.org/info/rfc1064>.

 [RFC1730] Crispin, M., "Internet Message Access Protocol - Version
 4", RFC 1730, DOI 10.17487/RFC1730, December 1994,
 <https://www.rfc-editor.org/info/rfc1730>.

 [RFC2060] Crispin, M., "Internet Message Access Protocol - Version
 4rev1", RFC 2060, DOI 10.17487/RFC2060, December 1996,
 <https://www.rfc-editor.org/info/rfc2060>.

 [RFC3501] Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL - VERSION
 4rev1", RFC 3501, DOI 10.17487/RFC3501, March 2003,
 <https://www.rfc-editor.org/info/rfc3501>.

 [RFC822] Crocker, D., "STANDARD FOR THE FORMAT OF ARPA INTERNET
 TEXT MESSAGES", STD 11, RFC 822, DOI 10.17487/RFC0822,
 August 1982, <https://www.rfc-editor.org/info/rfc822>.

Appendix A. Backward Compatibility with IMAP4rev1

 An implementation that wants to remain compatible with IMAP4rev1 can
 advertise both IMAP4rev1 and IMAP4rev2 in its CAPABILITY response /
 response code. (Such server implementation is likely to also want to
 advertise other IMAP4rev1 extensions that were folded into IMAP4rev2;
 see Appendix E.) While some IMAP4rev1 responses were removed in
 IMAP4rev2, their presence will not break IMAP4rev2-only clients.

 If both IMAP4rev1 and IMAP4rev2 are advertised, an IMAP client that
 wants to use IMAP4rev2 MUST issue an "ENABLE IMAP4rev2" command.

 When compared to IMAP4rev1, some request data items, corresponding
 response data items, and responses were removed in IMAP4rev2. See
 Appendix E for more details. With the exception of obsolete SEARCH
 and RECENT responses, servers advertising both IMAP4rev1 and
 IMAP4rev2 would never return such removed response data items/
 responses unless explicitly requested by an IMAPrev1 client.

 Servers advertising both IMAP4rev1 and IMAP4rev2 MUST NOT generate
 UTF-8-quoted strings unless the client has issued "ENABLE IMAP4rev2".

 Consider implementation of mechanisms described or referenced in
 [IMAP-UTF-8] to achieve this goal.

 Servers advertising both IMAP4rev1 and IMAP4rev2, and clients
 intending to be compatible with IMAP4rev1 servers, MUST be compatible
 with the Mailbox International Naming Convention described in
 Appendix A.1.

 Also see Appendix D for special considerations for servers that
 support 63-bit body part / message sizes and want to advertise
 support for both IMAP4rev1 and IMAP4rev2.

A.1. Mailbox International Naming Convention for Compatibility with
 IMAP4rev1

 Support for the Mailbox International Naming Convention described in
 this section is not required for IMAP4rev2-only clients and servers.
 It is only used for backward compatibility with IMAP4rev1
 implementations.

 By convention, international mailbox names in IMAP4rev1 are specified
 using a modified version of the UTF-7 encoding described in [UTF-7].
 Modified UTF-7 may also be usable in servers that implement an
 earlier version of this protocol.

 In modified UTF-7, printable US-ASCII characters, except for "&",
 represent themselves; that is, characters with octet values 0x20-0x25
 and 0x27-0x7e. The character "&" (0x26) is represented by the
 2-octet sequence "&-".

 All other characters (octet values 0x00-0x1f and 0x7f-0xff) are
 represented in modified base64, with a further modification from
 [UTF-7] that "," is used instead of "/". Modified base64 MUST NOT be
 used to represent any printing of a US-ASCII character that can
 represent itself. Only characters inside the modified base64
 alphabet are permitted in modified base64 text.

 "&" is used to shift to modified base64 and "-" to shift back to US-
 ASCII. There is no implicit shift from base64 to US-ASCII, and null
 shifts ("-&" while in base64; note that "&-" while in US-ASCII means
 "&") are not permitted. However, all names start in US-ASCII and
 MUST end in US-ASCII; that is, a name that ends with a non-ASCII
 ISO-10646 character MUST end with a "-".

 The purpose of these modifications is to correct the following
 problems with UTF-7:

 1. UTF-7 uses the "+" character for shifting; this conflicts with
 the common use of "+" in mailbox names, in particular USENET
 newsgroup names.

 2. UTF-7’s encoding is base64, which uses the "/" character; this
 conflicts with the use of "/" as a popular hierarchy delimiter.

 3. UTF-7 prohibits the unencoded usage of "\"; this conflicts with
 the use of "\" as a popular hierarchy delimiter.

 4. UTF-7 prohibits the unencoded usage of "˜"; this conflicts with
 the use of "˜" in some servers as a home directory indicator.

 5. UTF-7 permits multiple alternate forms to represent the same
 string; in particular, printable US-ASCII characters can be
 represented in encoded form.

 Although modified UTF-7 is a convention, it establishes certain
 requirements on the server handling of any mailbox name with an
 embedded "&" character. In particular, server implementations MUST
 preserve the exact form of the modified base64 portion of a modified
 UTF-7 name and treat that text as case sensitive, even if names are
 otherwise case insensitive or case folded.

 Server implementations SHOULD verify that any mailbox name with an
 embedded "&" character, used as an argument to CREATE, is: in the
 correctly modified UTF-7 syntax; has no superfluous shifts; and has
 no encoding in modified base64 of any printing US-ASCII character
 that can represent itself. However, client implementations MUST NOT
 depend upon the server doing this and SHOULD NOT attempt to create a
 mailbox name with an embedded "&" character unless it complies with
 the modified UTF-7 syntax.

 Server implementations that export a mail store that does not follow
 the modified UTF-7 convention MUST convert any mailbox name that
 contains either non-ASCII characters or the "&" character to modified
 UTF-7.

 For example, here is a mailbox name that mixes English, Chinese,
 and Japanese text: ˜peter/mail/&U,BTFw-/&ZeVnLIqe-

 For example, the string "&Jjo!" is not a valid mailbox name
 because it does not contain a shift to US-ASCII before the "!".
 The correct form is "&Jjo-!". The string "&U,BTFw-&ZeVnLIqe-" is
 not permitted because it contains a superfluous shift. The
 correct form is "&U,BTF2XlZyyKng-".

Appendix B. Backward Compatibility with BINARY Extension

 IMAP4rev2 incorporates a subset of functionality provided by the
 BINARY extension [RFC3516]; in particular, it includes additional
 FETCH items (BINARY, BINARY.PEEK, and BINARY.SIZE) but not extensions
 to the APPEND command. IMAP4rev2 implementations that support full
 [RFC3516] functionality need to also advertise the BINARY capability
 in the CAPABILITY response / response code.

Appendix C. Backward Compatibility with LIST-EXTENDED Extension

 IMAP4rev2 incorporates most of the functionality provided by the
 LIST-EXTENDED extension [RFC5258]. In particular, the syntax for
 multiple mailbox patterns is not supported in IMAP4rev2, unless LIST-
 EXTENDED capability is also advertised in the CAPABILITY response /
 response code.

Appendix D. 63-Bit Body Part and Message Sizes

 IMAP4rev2 increases allowed body part and message sizes that servers
 can support from 32 to 63 bits. Server implementations don’t have to
 support 63-bit-long body parts/message sizes; however, client
 implementations have to expect them.

 As IMAP4rev1 didn’t support 63-bit-long body part / message sizes,
 there is an interoperability issue exposed by 63-bit-capable servers/
 mailboxes that are accessible by both IMAP4rev1 and IMAP4rev2 email
 clients. As IMAP4rev1 would be unable to retrieve the full content
 of messages bigger than 4 Gb, such servers either need to replace
 messages bigger that 4 Gb with messages under 4 Gb or hide them from
 IMAP4rev1 clients. This document doesn’t prescribe any
 implementation strategy to address this issue.

Appendix E. Changes from RFC 3501 / IMAP4rev1

 Below is the summary of changes since RFC 3501:

 1. Support for 64-bit message and body part sizes.

 2. Folded in IMAP NAMESPACE [RFC2342], UNSELECT [RFC3691], UIDPLUS
 [RFC4315], ESEARCH [RFC4731], SEARCHRES [RFC5182], ENABLE
 [RFC5161], IDLE [RFC2177], SASL-IR [RFC4959], LIST-EXTENDED
 [RFC5258], LIST-STATUS [RFC5819], MOVE [RFC6851], and LITERAL-
 extensions [RFC7888]. Also folded in IMAP ABNF extensions
 [RFC4466], response codes [RFC5530], the FETCH side of the
 BINARY extension [RFC3516], and the list of new mailbox
 attributes from SPECIAL-USE [RFC6154].

 3. Added STATUS SIZE [RFC8438] and STATUS DELETED.

 4. SEARCH command now requires to return the ESEARCH response
 (SEARCH response is now deprecated).

 5. Clarified which SEARCH keys have to use substring match and
 which don’t.

 6. Clarified that the server should decode parameter value
 continuations as described in [RFC2231]. This requirement was
 hidden in [RFC2231] itself.

 7. Clarified that the COPYUID response code is returned for both
 MOVE and UID MOVE.

 8. Tightened requirements about COPY/MOVE commands not creating a
 target mailbox. Also required them to return the TRYCREATE
 response code, if the target mailbox doesn’t exist and can be
 created.

 9. Added the CLOSED response code from [RFC7162]. SELECT/EXAMINE
 when a mailbox is already selected now requires a CLOSED
 response code to be returned.

 10. SELECT/EXAMINE are now required to return an untagged LIST
 response.

 11. UNSEEN response code on SELECT/EXAMINE is now deprecated.

 12. RECENT response on SELECT/EXAMINE, \Recent flag, RECENT STATUS,
 and SEARCH NEW items are now deprecated.

 13. Clarified that the server doesn’t need to send a new
 PERMANENTFLAGS response code when a new keyword was successfully
 added and the server advertised * earlier for the same mailbox.

 14. For future extensibility, extended ABNF for tagged-ext-simple to
 allow for bare number64.

 15. Added SHOULD level requirement on IMAP servers to support
 $MDNSent, $Forwarded, $Junk, $NonJunk, and $Phishing keywords.

 16. Mailbox names and message headers now allow for UTF-8. Support
 for modified UTF-7 in mailbox names is not required, unless
 compatibility with IMAP4rev1 is desired.

 17. Removed the CHECK command. Clients should use NOOP instead.

 18. RFC822, RFC822.HEADER, and RFC822.TEXT FETCH data items were
 deprecated. Clients should use the corresponding BODY[]
 variants instead.

 19. LSUB command was deprecated. Clients should use LIST
 (SUBSCRIBED) instead.

 20. IDLE command can now return updates not related to the currently
 selected mailbox state.

 21. All unsolicited FETCH updates are required to include UID.

 22. Clarified that client implementations MUST ignore response codes
 that they do not recognize. (Changed from a SHOULD to a MUST.)

 23. resp-text ABNF non-terminal was updated to allow for empty text.

 24. After ENABLE, IMAP4rev2 human-readable response text can include
 non-ASCII encoded in UTF-8.

 25. Updated to use modern TLS-related recommendations as per
 [RFC7525], [RFC7817], and [RFC8314].

 26. Added warnings about use of ALERT response codes and PREAUTH
 response.

 27. Replaced DIGEST-MD5 SASL mechanism with SCRAM-SHA-256. DIGEST-
 MD5 was deprecated.

 28. Clarified that any command received from the client resets
 server autologout timer.

 29. Revised IANA registration procedure for IMAP extensions and
 removed "X" convention in accordance with [BCP178].

 30. Loosened requirements on servers when closing connections to be
 more aligned with existing practices.

Appendix F. Other Recommended IMAP Extensions

 Support for the following extensions is recommended for all IMAP
 clients and servers. While they significantly reduce bandwidth and/
 or number of round trips used by IMAP in certain situations, the
 EXTRA WG decided that requiring them as a part of IMAP4rev2 would
 push the bar to implement too high for new implementations. Also
 note that the absence of any IMAP extension from this list doesn’t
 make it somehow deficient or not recommended for use with IMAP4rev2.

 1. Quick Mailbox Resynchronization (QRESYNC) and CONDSTORE
 extensions [RFC7162]. They make discovering changes to IMAP
 mailboxes more efficient, at the expense of storing a bit more
 state.

 2. OBJECTID extension [RFC8474] helps with preserving the IMAP
 client cache when messages are moved/copied or mailboxes are
 renamed.

Acknowledgements

 Earlier draft versions of this document were edited by Mark Crispin.
 Sadly, he is no longer available to help with this work. Editors of
 this revision are hoping that Mark would have approved.

 Chris Newman has contributed text on I18N and use of UTF-8 in
 messages and mailbox names.

 Thank you to Tony Hansen for helping with the index generation.
 Thank you to Murray Kucherawy, Timo Sirainen, Bron Gondwana, Stephan
 Bosch, Robert Sparks, Arnt Gulbrandsen, Benjamin Kaduk, Daniel
 Migaul, Roman Danyliw, and Ã\211ric Vyncke for extensive feedback.

 This document incorporates text from [RFC2342] (by Mike Gahrns and
 Chris Newman), [RFC3516] (by Lyndon Nerenberg), [RFC4315] (by Mark
 Crispin), [RFC4466] (by Cyrus Daboo), [RFC4731] (by Dave Cridland),
 [RFC4959] (by Rob Siemborski and Arnt Gulbrandsen), [RFC5161] (by
 Arnt Gulbrandsen), [RFC5465] (by Arnt Gulbrandsen and Curtis King),
 [RFC5530] (by Arnt Gulbrandsen), [RFC5819] (by Timo Sirainen),
 [RFC6154] (by Jamie Nicolson), [RFC6851] (by Arnt Gulbrandsen and Ned
 Freed), and [RFC8438] (by Stephan Bosch), so work done by authors/
 editors of these documents is appreciated. Note that editors of this
 document were redacted from the above list.

 The CHILDREN return option was originally proposed by Mike Gahrns and
 Raymond Cheng in [RFC3348]. Most of the information in
 Section 6.3.9.5 is taken directly from their original specification
 [RFC3348].

 Thank you to Damian Poddebniak, Fabian Ising, Hanno Boeck, and
 Sebastian Schinzel for pointing out that the ENABLE command should be
 a member of "command-auth" and not "command-any" ABNF production, as
 well as pointing out security issues associated with ALERT, PREAUTH,
 and other responses received before authentication.

Index

 $ + - \ A B C D E F H I K L M N O P R S T U

 $

 $Forwarded (predefined flag)
 Section 2.3.2
 $Junk (predefined flag)
 Section 2.3.2
 $MDNSent (predefined flag)
 Section 2.3.2
 $NotJunk (predefined flag)
 Section 2.3.2
 $Phishing (predefined flag)
 Section 2.3.2, Paragraph 6.10.1

 +

 +FLAGS <flag list>
 Section 6.4.6
 +FLAGS.SILENT <flag list>
 Section 6.4.6

 -

 -FLAGS <flag list>
 Section 6.4.6
 -FLAGS.SILENT <flag list>
 Section 6.4.6

 \

 \All (mailbox name attribute)
 Section 7.3.1
 \Answered (system flag)
 Section 2.3.2
 \Archive (mailbox name attribute)
 Section 7.3.1
 \Deleted (system flag)
 Section 2.3.2
 \Draft (system flag)
 Section 2.3.2
 \Drafts (mailbox name attribute)
 Section 7.3.1
 \Flagged (mailbox name attribute)
 Section 7.3.1
 \Flagged (system flag)
 Section 2.3.2
 \HasChildren (mailbox name attribute)
 Section 7.3.1
 \HasNoChildren (mailbox name attribute)
 Section 7.3.1
 \Junk (mailbox name attribute)
 Section 7.3.1
 \Marked (mailbox name attribute)
 Section 7.3.1
 \Noinferiors (mailbox name attribute)
 Section 7.3.1
 \NonExistent (mailbox name attribute)
 Section 7.3.1, Paragraph 4.2.1
 \Noselect (mailbox name attribute)
 Section 7.3.1
 \Recent (system flag)
 Section 2.3.2
 \Remote (mailbox name attribute)
 Section 7.3.1
 \Seen (system flag)
 Section 2.3.2
 \Sent (mailbox name attribute)
 Section 7.3.1
 \Subscribed (mailbox name attribute)

 Section 7.3.1
 \Trash (mailbox name attribute)
 Section 7.3.1
 \Unmarked (mailbox name attribute)
 Section 7.3.1

 A

 ALERT (response code)
 Section 7.1
 ALL (fetch item)
 Section 6.4.5
 ALL (search key)
 Section 6.4.4
 ALL (search result option)
 Section 6.4.4, Paragraph 6.6.1
 ALL (search return item name)
 Section 7.3.4, Paragraph 7.6.1
 ALREADYEXISTS (response code)
 Section 7.1, Paragraph 4.4.1
 ANSWERED (search key)
 Section 6.4.4
 APPEND (command)
 Section 6.3.12
 APPENDUID (response code)
 Section 7.1, Paragraph 4.6.1
 AUTHENTICATE (command)
 Section 6.2.2
 AUTHENTICATIONFAILED (response code)
 Section 7.1, Paragraph 4.8.1
 AUTHORIZATIONFAILED (response code)
 Section 7.1, Paragraph 4.10.1

 B

 BAD (response)
 Section 7.1.3
 BADCHARSET (response code)
 Section 7.1
 BCC <string> (search key)
 Section 6.4.4
 BEFORE <date> (search key)
 Section 6.4.4
 BINARY.PEEK[<section-binary>]<<partial>> (fetch item)
 Section 6.4.5
 BINARY.SIZE[<section-binary>] (fetch item)
 Section 6.4.5, Paragraph 9.6.1
 BINARY.SIZE[<section-binary>] (fetch result)
 Section 7.5.2, Paragraph 4.4.1
 BINARY[<section-binary>]<<number>> (fetch result)
 Section 7.5.2, Paragraph 4.2.1
 BINARY[<section-binary>]<<partial>> (fetch item)
 Section 6.4.5, Paragraph 9.2.1
 BODY (fetch item)
 Section 6.4.5
 BODY (fetch result)
 Section 7.5.2
 BODY <string> (search key)
 Section 6.4.4
 BODY.PEEK[<section>]<<partial>> (fetch item)
 Section 6.4.5
 BODYSTRUCTURE (fetch item)
 Section 6.4.5
 BODYSTRUCTURE (fetch result)
 Section 7.5.2, Paragraph 4.10.1
 BODY[<section>]<<origin octet>> (fetch result)
 Section 7.5.2, Paragraph 4.8.1
 BODY[<section>]<<partial>> (fetch item)
 Section 6.4.5, Paragraph 9.10.1
 BYE (response)
 Section 7.1.5

 Body Structure (message attribute)
 Section 2.3.6

 C

 CANNOT (response code)
 Section 7.1, Paragraph 4.14.1
 CAPABILITY (command)
 Section 6.1.1
 CAPABILITY (response code)
 Section 7.1
 CAPABILITY (response)
 Section 7.2.2
 CC <string> (search key)
 Section 6.4.4
 CLIENTBUG (response code)
 Section 7.1, Paragraph 4.18.1
 CLOSE (command)
 Section 6.4.1
 CLOSED (response code)
 Section 7.1, Paragraph 4.20.1
 CONTACTADMIN (response code)
 Section 7.1, Paragraph 4.22.1
 COPY (command)
 Section 6.4.7
 COPYUID (response code)
 Section 7.1, Paragraph 4.24.1
 CORRUPTION (response code)
 Section 7.1, Paragraph 4.26.1
 COUNT (search result option)
 Section 6.4.4
 COUNT (search return item name)
 Section 7.3.4
 CREATE (command)
 Section 6.3.4

 D

 DELETE (command)
 Section 6.3.5
 DELETED (search key)
 Section 6.4.4
 DELETED (status item)
 Section 6.3.11
 DRAFT (search key)
 Section 6.4.4

 E

 ENABLE (command)
 Section 6.3.1
 ENVELOPE (fetch item)
 Section 6.4.5
 ENVELOPE (fetch result)
 Section 7.5.2, Paragraph 4.42.1
 ESEARCH (response)
 Section 7.3.4
 EXAMINE (command)
 Section 6.3.3
 EXPIRED (response code)
 Section 7.1, Paragraph 4.28.1
 EXPUNGE (command)
 Section 6.4.3
 EXPUNGE (response)
 Section 7.5.1
 EXPUNGEISSUED (response code)
 Section 7.1, Paragraph 4.30.1
 Envelope Structure (message attribute)
 Section 2.3.5

 F

 FAST (fetch item)
 Section 6.4.5
 FETCH (command)
 Section 6.4.5
 FETCH (response)
 Section 7.5.2
 FLAGGED (search key)
 Section 6.4.4
 FLAGS (fetch item)
 Section 6.4.5
 FLAGS (fetch result)
 Section 7.5.2
 FLAGS (response)
 Section 7.3.5
 FLAGS <flag list> (store command data item)
 Section 6.4.6
 FLAGS.SILENT <flag list> (store command data item)
 Section 6.4.6
 FROM <string> (search key)
 Section 6.4.4
 FULL (fetch item)
 Section 6.4.5
 Flags (message attribute)
 Section 2.3.2

 H

 HASCHILDREN (response code)
 Section 7.1, Paragraph 4.32.1
 HEADER (part specifier)
 Section 6.4.5.1, Paragraph 5
 HEADER <field-name> <string> (search key)
 Section 6.4.4
 HEADER.FIELDS (part specifier)
 Section 6.4.5.1, Paragraph 5
 HEADER.FIELDS.NOT (part specifier)
 Section 6.4.5.1, Paragraph 5

 I

 IDLE (command)
 Section 6.3.13
 INTERNALDATE (fetch item)
 Section 6.4.5
 INTERNALDATE (fetch result)
 Section 7.5.2
 INUSE (response code)
 Section 7.1, Paragraph 4.34.1
 Internal Date (message attribute)
 Section 2.3.3

 K

 KEYWORD <flag> (search key)
 Section 6.4.4
 Keyword (type of flag)
 Section 2.3.2, Paragraph 4

 L

 LARGER <n> (search key)
 Section 6.4.4
 LIMIT (response code)
 Section 7.1, Paragraph 4.36.1
 LIST (command)
 Section 6.3.9
 LIST (response)
 Section 7.3.1
 LOGOUT (command)
 Section 6.1.3

 M

 MAX (search result option)
 Section 6.4.4, Paragraph 6.4.1
 MAX (search return item name)
 Section 7.3.4, Paragraph 7.4.1
 MAY (specification requirement term)
 Section 1.2
 MESSAGES (status item)
 Section 6.3.11
 MIME (part specifier)
 Section 6.4.5.1, Paragraph 7
 MIN (search result option)
 Section 6.4.4, Paragraph 6.2.1
 MIN (search return item name)
 Section 7.3.4, Paragraph 7.2.1
 MOVE (command)
 Section 6.4.8
 MUST (specification requirement term)
 Section 1.2
 MUST NOT (specification requirement term)
 Section 1.2
 Message Sequence Number (message attribute)
 Section 2.3.1.2

 N

 NAMESPACE (command)
 Section 6.3.10
 NAMESPACE (response)
 Section 7.3.2
 NO (response)
 Section 7.1.2
 NONEXISTENT (response code)
 Section 7.1, Paragraph 4.38.1
 NOOP (command)
 Section 6.1.2
 NOPERM (response code)
 Section 7.1, Paragraph 4.40.1
 NOT <search-key> (search key)
 Section 6.4.4
 NOT RECOMMENDED (specification requirement term)
 Section 1.2

 O

 OK (response)
 Section 7.1.1
 ON <date> (search key)
 Section 6.4.4
 OPTIONAL (specification requirement term)
 Section 1.2; Section 1.2
 OR <search-key1> <search-key2> (search key)
 Section 6.4.4
 OVERQUOTA (response code)
 Section 7.1, Paragraph 4.42.1

 P

 PARSE (response code)
 Section 7.1
 PERMANENTFLAGS (response code)
 Section 7.1, Paragraph 4.46.1
 PREAUTH (response)
 Section 7.1.4
 PRIVACYREQUIRED (response code)
 Section 7.1, Paragraph 4.48.1
 Permanent Flag (class of flag)
 Section 2.3.2, Paragraph 9
 Predefined keywords

 Section 2.3.2, Paragraph 5

 R

 READ-ONLY (response code)
 Section 7.1
 READ-WRITE (response code)
 Section 7.1
 RECOMMENDED (specification requirement term)
 Section 1.2
 RENAME (command)
 Section 6.3.6
 REQUIRED (specification requirement term)
 Section 1.2
 RFC822.SIZE (fetch item)
 Section 6.4.5
 RFC822.SIZE (fetch result)
 Section 7.5.2
 RFC822.SIZE (message attribute)
 Section 2.3.4

 S

 SAVE (search result option)
 Section 6.4.4, Paragraph 6.10.1
 SEARCH (command)
 Section 6.4.4
 SEEN (search key)
 Section 6.4.4
 SELECT (command)
 Section 6.3.2
 SENTBEFORE <date> (search key)
 Section 6.4.4
 SENTON <date> (search key)
 Section 6.4.4
 SENTSINCE <date> (search key)
 Section 6.4.4
 SERVERBUG (response code)
 Section 7.1, Paragraph 4.54.1
 SHOULD (specification requirement term)
 Section 1.2
 SHOULD NOT (specification requirement term)
 Section 1.2
 SINCE <date> (search key)
 Section 6.4.4
 SIZE (status item)
 Section 6.3.11
 SMALLER <n> (search key)
 Section 6.4.4
 STARTTLS (command)
 Section 6.2.1
 STATUS (command)
 Section 6.3.11
 STATUS (response)
 Section 7.3.3
 STORE (command)
 Section 6.4.6
 SUBJECT <string> (search key)
 Section 6.4.4
 SUBSCRIBE (command)
 Section 6.3.7
 Session Flag (class of flag)
 Section 2.3.2, Paragraph 9
 System Flag (type of flag)
 Section 2.3.2, Paragraph 2

 T

 TEXT (part specifier)
 Section 6.4.5.1, Paragraph 5
 TEXT <string> (search key)

 Section 6.4.4
 TO <string> (search key)
 Section 6.4.4
 TRYCREATE (response code)
 Section 7.1

 U

 UID (command)
 Section 6.4.9
 UID (fetch item)
 Section 6.4.5
 UID (fetch result)
 Section 7.5.2
 UID <sequence set> (search key)
 Section 6.4.4
 UIDNEXT (response code)
 Section 7.1
 UIDNEXT (status item)
 Section 6.3.11
 UIDNOTSTICKY (response code)
 Section 7.1, Paragraph 4.60.1
 UIDVALIDITY (response code)
 Section 7.1
 UIDVALIDITY (status item)
 Section 6.3.11
 UNANSWERED (search key)
 Section 6.4.4
 UNAVAILABLE (response code)
 Section 7.1, Paragraph 4.64.1
 UNDELETED (search key)
 Section 6.4.4
 UNDRAFT (search key)
 Section 6.4.4
 UNFLAGGED (search key)
 Section 6.4.4
 UNKEYWORD <flag> (search key)
 Section 6.4.4
 UNKNOWN-CTE (response code)
 Section 7.1
 UNSEEN (search key)
 Section 6.4.4
 UNSEEN (status item)
 Section 6.3.11
 UNSELECT (command)
 Section 6.4.2
 UNSUBSCRIBE (command)
 Section 6.3.8
 Unique Identifier (UID) (message attribute)
 Section 2.3.1.1

Authors’ Addresses

 Alexey Melnikov (editor)
 Isode Ltd
 14 Castle Mews
 Hampton, Middlesex
 TW12 2NP
 United Kingdom

 Email: Alexey.Melnikov@isode.com

 Barry Leiba (editor)
 Futurewei Technologies

 Email: barryleiba@computer.org
 URI: http://internetmessagingtechnology.org/

