
ï»¿

Internet Engineering Task Force (IETF) T. Eckert, Ed.
Request for Comments: 9262 Futurewei
Category: Standards Track M. Menth
ISSN: 2070-1721 University of Tuebingen
 G. Cauchie
 KOEVOO
 October 2022

 Tree Engineering for Bit Index Explicit Replication (BIER-TE)

Abstract

 This memo describes per-packet stateless strict and loose path
 steered replication and forwarding for "Bit Index Explicit
 Replication" (BIER) packets (RFC 8279); it is called "Tree
 Engineering for Bit Index Explicit Replication" (BIER-TE) and is
 intended to be used as the path steering mechanism for Traffic
 Engineering with BIER.

 BIER-TE introduces a new semantic for "bit positions" (BPs). These
 BPs indicate adjacencies of the network topology, as opposed to (non-
 TE) BIER in which BPs indicate "Bit-Forwarding Egress Routers"
 (BFERs). A BIER-TE "packets BitString" therefore indicates the edges
 of the (loop-free) tree across which the packets are forwarded by
 BIER-TE. BIER-TE can leverage BIER forwarding engines with little
 changes. Co-existence of BIER and BIER-TE forwarding in the same
 domain is possible -- for example, by using separate BIER
 "subdomains" (SDs). Except for the optional routed adjacencies,
 BIER-TE does not require a BIER routing underlay and can therefore
 operate without depending on a routing protocol such as the "Interior
 Gateway Protocol" (IGP).

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9262.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Revised BSD License text as described in Section 4.e of the
 Trust Legal Provisions and are provided without warranty as described
 in the Revised BSD License.

Table of Contents

 1. Overview
 2. Introduction
 2.1. Requirements Language

 2.2. Basic Examples
 2.3. BIER-TE Topology and Adjacencies
 2.4. Relationship to BIER
 2.5. Accelerated Hardware Forwarding Comparison
 3. Components
 3.1. The Multicast Flow Overlay
 3.2. The BIER-TE Control Plane
 3.2.1. The BIER-TE Controller
 3.2.1.1. BIER-TE Topology Discovery and Creation
 3.2.1.2. Engineered Trees via BitStrings
 3.2.1.3. Changes in the Network Topology
 3.2.1.4. Link/Node Failures and Recovery
 3.3. The BIER-TE Forwarding Plane
 3.4. The Routing Underlay
 3.5. Traffic Engineering Considerations
 4. BIER-TE Forwarding
 4.1. The BIER-TE Bit Index Forwarding Table (BIFT)
 4.2. Adjacency Types
 4.2.1. Forward Connected
 4.2.2. Forward Routed
 4.2.3. ECMP
 4.2.4. Local Decap(sulation)
 4.3. Encapsulation / Co-existence with BIER
 4.4. BIER-TE Forwarding Pseudocode
 4.5. BFR Requirements for BIER-TE Forwarding
 5. BIER-TE Controller Operational Considerations
 5.1. Bit Position Assignments
 5.1.1. P2P Links
 5.1.2. BFERs
 5.1.3. Leaf BFERs
 5.1.4. LANs
 5.1.5. Hub and Spoke
 5.1.6. Rings
 5.1.7. Equal-Cost Multipath (ECMP)
 5.1.8. Forward Routed Adjacencies
 5.1.8.1. Reducing Bit Positions
 5.1.8.2. Supporting Nodes without BIER-TE
 5.1.9. Reuse of Bit Positions (without DNC)
 5.1.10. Summary of BP Optimizations
 5.2. Avoiding Duplicates and Loops
 5.2.1. Loops
 5.2.2. Duplicates
 5.3. Managing SIs, Subdomains, and BFR-ids
 5.3.1. Why SIs and Subdomains?
 5.3.2. Assigning Bits for the BIER-TE Topology
 5.3.3. Assigning BFR-ids with BIER-TE
 5.3.4. Mapping from BFRs to BitStrings with BIER-TE
 5.3.5. Assigning BFR-ids for BIER-TE
 5.3.6. Example Bit Allocations
 5.3.6.1. With BIER
 5.3.6.2. With BIER-TE
 5.3.7. Summary
 6. Security Considerations
 7. IANA Considerations
 8. References
 8.1. Normative References
 8.2. Informative References
 Appendix A. BIER-TE and Segment Routing (SR)
 Acknowledgements
 Authors’ Addresses

1. Overview

 "Tree Engineering for Bit Index Explicit Replication" (BIER-TE) is
 based on the (non-TE) BIER architecture, terminology, and packet
 formats as described in [RFC8279] and [RFC8296]. This document
 describes BIER-TE, with the expectation that the reader is familiar
 with these two documents.

 BIER-TE introduces a new semantic for "bit positions" (BPs). These
 BPs indicate adjacencies of the network topology, as opposed to (non-

 TE) BIER in which BPs indicate "Bit-Forwarding Egress Routers"
 (BFERs). A BIER-TE "packets BitString" therefore indicates the edges
 of the (loop-free) tree across which the packets are forwarded by
 BIER-TE. With BIER-TE, the "Bit Index Forwarding Table" (BIFT) of
 each "Bit-Forwarding Router" (BFR) is only populated with BPs that
 are adjacent to the BFR in the BIER-TE topology. Other BPs are empty
 in the BIFT. The BFR replicates and forwards BIER packets to
 adjacent BPs that are set in the packets. BPs are normally also
 cleared upon forwarding to avoid duplicates and loops.

 BIER-TE can leverage BIER forwarding engines with little or no
 changes. It can also co-exist with BIER forwarding in the same
 domain -- for example, by using separate BIER subdomains. Except for
 the optional routed adjacencies, BIER-TE does not require a BIER
 routing underlay and can therefore operate without depending on a
 routing protocol such as the "Interior Gateway Protocol" (IGP).

 This document is structured as follows:

 * Section 2 introduces BIER-TE with two forwarding examples,
 followed by an introduction to the new concepts of the BIER-TE
 (overlay) topology, and finally a summary of the relationship
 between BIER and BIER-TE and a discussion of accelerated hardware
 forwarding.

 * Section 3 describes the components of the BIER-TE architecture:
 the multicast flow overlay, the BIER-TE layer with the BIER-TE
 control plane (including the BIER-TE controller), the BIER-TE
 forwarding plane, and the routing underlay.

 * Section 4 specifies the behavior of the BIER-TE forwarding plane
 with the different types of adjacencies and possible variations of
 BIER-TE forwarding pseudocode, and finally the mandatory and
 optional requirements.

 * Section 5 describes operational considerations for the BIER-TE
 controller, primarily how the BIER-TE controller can optimize the
 use of BPs by using specific types of BIER-TE adjacencies for
 different types of topological situations. It also describes how
 to assign bits to avoid loops and duplicates (which, in BIER-TE,
 does not come "for free"). Finally, it discusses how "Set
 Identifiers" (SIs), "subdomains" (SDs), and BFR-ids can be managed
 by a BIER-TE controller; examples and a summary are provided.

 * Appendix A concludes this document; details regarding the
 relationship between BIER-TE and "Segment Routing" (SR) are
 discussed.

 Note that related work [CONSTRAINED-CAST] uses Bloom filters
 [Bloom70] to represent leaves or edges of the intended delivery tree.
 Bloom filters in general can support larger trees/topologies with
 fewer addressing bits than explicit BitStrings, but they introduce
 the heuristic risk of false positives and cannot clear bits in the
 BitStrings during forwarding to avoid loops. For these reasons,
 BIER-TE, like BIER, uses explicit BitStrings. Explicit BitStrings as
 used by BIER-TE can also be seen as a special type of Bloom filter,
 and this is how other related work [ICC] describes it.

2. Introduction

2.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2.2. Basic Examples

 BIER-TE forwarding is best introduced with simple examples. These

 examples use formal terms defined later in this document (Figure 4 in
 Section 4.1), including forward_connected(), forward_routed(), and
 local_decap().

 Consider the simple network in the BIER-TE overview example shown in
 Figure 1, with six BFRs. p1...p15 are the bit positions used. All
 BFRs can act as a "Bit-Forwarding Ingress Router" (BFIR); BFR1, BFR3,
 BFR4, and BFR6 can also be BFERs. "Forward_connected()" is the name
 used for adjacencies that represent subnet adjacencies of the
 network. "Local_decap()" is the name used for the adjacency that
 decapsulates BIER-TE packets and passes their payload to higher-layer
 processing.

 BIER-TE Topology:

 Diagram:

 p5 p6
 --- BFR3 ---
 p3/ p13 \p7 p15
 BFR1 ---- BFR2 BFR5 ----- BFR6
 p1 p2 p4\ p14 /p10 p11 p12
 --- BFR4 ---
 p8 p9

 (simplified) BIER-TE Bit Index Forwarding Tables (BIFTs):

 BFR1: p1 -> local_decap()
 p2 -> forward_connected() to BFR2

 BFR2: p1 -> forward_connected() to BFR1
 p5 -> forward_connected() to BFR3
 p8 -> forward_connected() to BFR4

 BFR3: p3 -> forward_connected() to BFR2
 p7 -> forward_connected() to BFR5
 p13 -> local_decap()

 BFR4: p4 -> forward_connected() to BFR2
 p10 -> forward_connected() to BFR5
 p14 -> local_decap()

 BFR5: p6 -> forward_connected() to BFR3
 p9 -> forward_connected() to BFR4
 p12 -> forward_connected() to BFR6

 BFR6: p11 -> forward_connected() to BFR5
 p15 -> local_decap()

 Figure 1: BIER-TE Basic Example

 Assume that a packet from BFR1 should be sent via BFR4 to BFR6. This
 requires a BitString (p2,p8,p10,p12,p15). When this packet is
 examined by BIER-TE on BFR1, the only bit position from the BitString
 that is also set in the BIFT is p2. This will cause BFR1 to send the
 only copy of the packet to BFR2. Similarly, BFR2 will forward to
 BFR4 because of p8, BFR4 to BFR5 because of p10, and BFR5 to BFR6
 because of p12. p15 finally makes BFR6 receive and decapsulate the
 packet.

 To send a copy to BFR6 via BFR4 and also a copy to BFR3, the
 BitString needs to be (p2,p5,p8,p10,p12,p13,p15). When this packet
 is examined by BFR2, p5 causes one copy to be sent to BFR3 and p8 one
 copy to BFR4. When BFR3 receives the packet, p13 will cause it to
 receive and decapsulate the packet.

 If instead the BitString was (p2,p6,p8,p10,p12,p13,p15), the packet
 would be copied by BFR5 towards BFR3 because of p6 instead of being
 copied by BFR2 to BFR3 because of p5 in the prior case. This
 demonstrates the ability of the BIER-TE topology, as shown in
 Figure 1, to make the traffic pass across any possible path and be

 replicated where desired.

 BIER-TE has various options for minimizing BP assignments, many of
 which are based on out-of-band knowledge about the required multicast
 traffic paths and bandwidth consumption in the network, e.g., from
 predeployment planning.

 Figure 2 shows a modified example, in which Rtr2 and Rtr5 are assumed
 not to support BIER-TE, so traffic has to be unicast encapsulated
 across them. To explicitly distinguish routed/tunneled forwarding of
 BIER-TE packets from Layer 2 forwarding (forward_connected()), these
 adjacencies are called "forward_routed()" adjacencies. Otherwise,
 there is no difference in their processing over the aforementioned
 forward_connected() adjacencies.

 In addition, bits are saved in the following example by assuming that
 BFR1 only needs to be a BFIR -- not a BFER or a transit BFR.

 BIER-TE Topology:

 Diagram:

 p1 p3 p7
 > BFR3 <.... p5
 >
 BFR1 (Rtr2) (Rtr5) BFR6
 > p9
 > BFR4 <.... p6
 p2 p4 p8

 (simplified) BIER-TE Bit Index Forwarding Tables (BIFTs):

 BFR1: p1 -> forward_routed() to BFR3
 p2 -> forward_routed() to BFR4

 BFR3: p3 -> local_decap()
 p5 -> forward_routed() to BFR6

 BFR4: p4 -> local_decap()
 p6 -> forward_routed() to BFR6

 BFR6: p7 -> forward_routed() to BFR3
 p8 -> forward_routed() to BFR4
 p9 -> local_decap()

 Figure 2: BIER-TE Basic Overlay Example

 To send a BIER-TE packet from BFR1 via BFR3 to be received by BFR6,
 the BitString is (p1,p5,p9). A packet from BFR1 via BFR4 to be
 received by BFR6 uses the BitString (p2,p6,p9). A packet from BFR1
 to be received by BFR3,BFR4 and from BFR3 to be received by BFR6 uses
 (p1,p2,p3,p4,p5,p9). A packet from BFR1 to be received by BFR3,BFR4
 and from BFR4 to be received by BFR6 uses (p1,p2,p3,p4,p6,p9). A
 packet from BFR1 to be received by BFR4, then from BFR4 to be
 received by BFR6, and finally from BFR6 to be received by BFR3, uses
 (p2,p3,p4,p6,p7,p9). A packet from BFR1 to be received by BFR3, then
 from BFR3 to be received by BFR6, and finally from BFR6 to be
 received by BFR4, uses (p1,p3,p4,p5,p8,p9).

2.3. BIER-TE Topology and Adjacencies

 The key new component in BIER-TE compared to (non-TE) BIER is the
 BIER-TE topology as introduced through the two examples in
 Section 2.2. It is used to control where replication can or should
 happen and how to minimize the required number of BPs for
 adjacencies.

 The BIER-TE topology consists of the BIFTs of all the BFRs and can
 also be expressed as a directed graph where the edges are the
 adjacencies between the BFRs labeled with the BP used for the
 adjacency. Adjacencies are naturally unidirectional. A BP can be

 reused across multiple adjacencies as long as this does not lead to
 undesired duplicates or loops, as explained in Section 5.2.

 If the BIER-TE topology represents (a subset of) the underlying
 (Layer 2) topology of the network as shown in the first example, this
 may be called an "underlay" BIER-TE topology. A topology consisting
 only of "forward_routed()" adjacencies as shown in the second example
 may be called an "overlay" BIER-TE topology. A BIER-TE topology with
 both forward_connected() and forward_routed() adjacencies may be
 called a "hybrid" BIER-TE topology.

2.4. Relationship to BIER

 BIER-TE is designed so that its forwarding plane is a simple
 extension to the (non-TE) BIER forwarding plane, hence allowing it to
 be added to BIER deployments where it can be beneficial.

 BIER-TE is also intended as an option to expand the BIER architecture
 into deployments where (non-TE) BIER may not be the best fit, such as
 statically provisioned networks that need path steering but do not
 want distributed routing protocols.

 1. BIER-TE inherits the following aspects from BIER unchanged:

 1.a The fundamental purpose of per-packet signaled replication
 and delivery via a BitString.

 1.b The overall architecture, which consists of three layers:
 the flow overlay, the BIER(-TE) layer, and the routing
 underlay.

 1.c The supported encapsulations [RFC8296].

 1.d The semantics of all BIER header elements [RFC8296] used by
 the BIER-TE forwarding plane, other than the semantic of the
 BP in the BitString.

 1.e The BIER forwarding plane, except for how bits have to be
 cleared during replication.

 2. BIER-TE has the following key changes with respect to BIER:

 2.a In BIER, bits in the BitString of a BIER packet header
 indicate a BFER, and bits in the BIFT indicate the BIER
 control plane’s calculated next hop towards that BFER. In
 BIER-TE, a bit in the BitString of a BIER packet header
 indicates an adjacency in the BIER-TE topology, and only the
 BFR that is the upstream of that adjacency has its BP
 populated with the adjacency in its BIFT.

 2.b In BIER, the implied reference options for the core part of
 the BIER layer control plane are the BIER extensions for
 distributed routing protocols. These include IS-IS and OSPF
 extensions for BIER, as specified in [RFC8401] and
 [RFC8444], respectively.

 2.c The reference option for the core part of the BIER-TE
 control plane is the BIER-TE controller. Nevertheless, both
 the BIER and BIER-TE BIFTs’ forwarding plane state could
 equally be populated by any mechanism.

 2.d Assuming the reference options for the control plane, BIER-
 TE replaces in-network autonomous path calculations with
 explicit paths calculated by the BIER-TE controller.

 3. The following elements/functions described in the BIER
 architecture are not required by the BIER-TE architecture:

 3.a "Bit Index Routing Tables" (BIRTs) are not required on BFRs
 for BIER-TE when using a BIER-TE controller, because the
 controller can directly populate the BIFTs. In BIER, BIRTs

 are populated by the distributed routing protocol support
 for BIER, allowing BFRs to populate their BIFTs locally from
 their BIRTs. Other BIER-TE control plane or management
 plane options may introduce requirements for BIRTs for BIER-
 TE BFRs.

 3.b The BIER-TE layer forwarding plane does not require BFRs to
 have a unique BP; see Section 5.1.3. Therefore, BFRs may
 not have a unique BFR-id; see Section 5.3.3.

 3.c Identification of BFRs by the BIER-TE control plane is
 outside the scope of this specification. Whereas the BIER
 control plane uses BFR-ids in its BFR-to-BFR signaling, a
 BIER-TE controller may choose any form of identification
 deemed appropriate.

 3.d BIER-TE forwarding does not require the BFIR-id field of the
 BIER packet header.

 4. Co-existence of BIER and BIER-TE in the same network requires the
 following:

 4.a The BIER/BIER-TE packet header needs to allow the addressing
 of both BIER and BIER-TE BIFTs. Depending on the
 encapsulation option, the same SD may or may not be reusable
 across BIER and BIER-TE. See Section 4.3. In either case,
 a packet is always forwarded only end to end via BIER or via
 BIER-TE ("ships in the night" forwarding).

 4.b BIER-TE deployments will have to assign BFR-ids to BFRs and
 insert them into the BFIR-id field of BIER packet headers,
 as does BIER, whenever the deployment uses (unchanged)
 components developed for BIER that use BFR-ids, such as
 multicast flow overlays or BIER layer control plane
 elements. See also Section 5.3.3.

2.5. Accelerated Hardware Forwarding Comparison

 BIER-TE forwarding rules, especially BitString parsing, are designed
 to be as close as possible to those of BIER, with the expectation
 that this eases the programming of BIER-TE forwarding code and/or
 BIER-TE forwarding hardware on platforms supporting BIER. The
 pseudocode in Section 4.4 shows how existing (non-TE) BIER/BIFT
 forwarding can be modified to support the required BIER-TE forwarding
 functionality (Section 4.5), by using the BIER BIFT’s "Forwarding Bit
 Mask" (F-BM): only the clearing of bits to avoid sending duplicate
 packets to a BFR’s neighbor is skipped in BIER-TE forwarding, because
 it is not necessary and could not be done when using a BIER F-BM.

 Whether to use BIER or BIER-TE forwarding is simply a choice of the
 mode of the BIFT indicated by the packet (BIER or BIER-TE BIFT).
 This is determined by the BFR configuration for the encapsulation;
 see Section 4.3.

3. Components

 BIER-TE can be thought of as being composed of the same three layers
 as BIER: the "multicast flow overlay", the "BIER layer", and the
 "routing underlay". Figure 3 also shows how the BIER layer is
 composed of the "BIER-TE forwarding plane" and the "BIER-TE control
 plane" as represented by the "BIER-TE controller".

 <------BGP/PIM----->
 |<-IGMP/PIM-> multicast flow <-PIM/IGMP->|
 overlay

 BIER-TE [BIER-TE Controller] <=> [BIER-TE Topology]
 control ^ ^ ^
 plane / | \ BIER-TE control protocol
 | | | (e.g., YANG/NETCONF/RESTCONF
 | | | PCEP/...)

 v v v
 Src -> Rtr1 -> BFIR-----BFR-----BFER -> Rtr2 -> Rcvr

 |<----------------->|
 BIER-TE forwarding plane

 |<- BIER-TE domain->|

 |<--------------------->|
 Routing underlay

 Figure 3: BIER-TE Architecture

3.1. The Multicast Flow Overlay

 The multicast flow overlay has the same role as that described for
 BIER in [RFC8279], Section 4.3. See also Section 3.2.1.2.

 When a BIER-TE controller is used, it might also be preferable that
 multicast flow overlay signaling be performed through a central point
 of control. For BGP-based overlay flow services such as "Multicast
 VPN Using Bit Index Explicit Replication (BIER)" [RFC8556], this can
 be achieved by making the BIER-TE controller operate as a BGP Route
 Reflector [RFC4456] and combining it with signaling through BGP or a
 different protocol for the BIER-TE controller’s calculated
 BitStrings. See Sections 3.2.1.2 and 5.3.4.

3.2. The BIER-TE Control Plane

 In the (non-TE) BIER architecture [RFC8279], the BIER layer is
 summarized in Section 4.2 of [RFC8279]. This summary includes both
 the functions of the BIER-layer control plane and forwarding plane,
 without using those terms. Example standardized options for the BIER
 control plane include IS-IS and OSPF extensions for BIER, as
 specified in [RFC8401] and [RFC8444], respectively.

 For BIER-TE, the control plane includes, at a minimum, the following
 functionality.

 1. BIER-TE topology control: During initial provisioning of the
 network and/or during modifications of its topology and/or
 services, the protocols and/or procedures to establish BIER-TE
 BIFTs:

 1.a Determine the desired BIER-TE topology for BIER-TE
 subdomains: the adjacencies that are assigned to BPs.
 Topology discovery is discussed in Section 3.2.1.1, and the
 various aspects of the BIER-TE controller’s determinations
 regarding the topology are discussed throughout Section 5.

 1.b Determine the per-BFR BIFT from the BIER-TE topology. This
 is achieved by simply extracting the adjacencies of the BFR
 from the BIER-TE topology and populating the BFR’s BIFT with
 them.

 1.c Optionally assign BFR-ids to BFIRs for later insertion into
 BIER headers on BFIRs as BFIR-ids. Alternatively, BFIR-ids
 in BIER packet headers may be managed solely by the flow
 overlay layer and/or be unused. This is discussed in
 Section 5.3.3.

 1.d Install/update the BIFTs into the BFRs and, optionally, BFR-
 ids into BFIRs. This is discussed in Section 3.2.1.1.

 2. BIER-TE tree control: During network operations, protocols and/or
 procedures to support creation/change/removal of overlay flows on
 BFIRs:

 2.a Process the BIER-TE requirements for the multicast overlay
 flow: BFIRs and BFERs of the flow as well as policies for
 the path selection of the flow. This is discussed in

 Section 3.5.

 2.b Determine the BitStrings and, optionally, entropy.
 BitStrings are discussed in Sections 3.2.1.2, 3.5, and
 5.3.4. Entropy is discussed in Section 4.2.3.

 2.c Install state on the BFIR to impose the desired BIER packet
 header(s) for packets of the overlay flow. Different
 aspects of this point, as well as the next point, are
 discussed throughout Section 3.2.1 and in Section 4.3. The
 main component responsible for these two points is the
 multicast flow overlay (Section 3.1), which is
 architecturally inherited from BIER.

 2.d Install the necessary state on the BFERs to decapsulate the
 BIER packet header and properly dispatch its payload.

3.2.1. The BIER-TE Controller

 This architecture describes the BIER-TE control plane, as shown in
 Figure 3, as consisting of:

 * A BIER-TE controller.

 * BFR data models and protocols to communicate between the
 controller and BFRs in support of BIER-TE topology control (see
 the list under "BIER-TE topology control"), such as YANG/NETCONF/
 RESTCONF [RFC7950] [RFC6241] [RFC8040].

 * BFR data models and protocols to communicate between the
 controller and BFIRs in support of BIER-TE tree control (see
 Section 3.2, point 2.), such as BIER-TE extensions for [RFC5440].

 The single, centralized BIER-TE controller is used in this document
 as the reference option for the BIER-TE control plane, but other
 options are equally feasible. The BIER-TE control plane could
 equally be implemented without automated configuration/protocols, by
 an operator via a CLI on the BFRs. In that case, operator-configured
 local policy on the BFIR would have to determine how to set the
 appropriate BIER header fields. The BIER-TE control plane could also
 be decentralized and/or distributed, but this document does not
 consider any additional protocols and/or procedures that would then
 be necessary to coordinate its (distributed/decentralized) entities
 to achieve the above-described functionality.

3.2.1.1. BIER-TE Topology Discovery and Creation

 The first item listed for BIER-TE topology control (Section 3.2,
 point 1.a.) includes network topology discovery and BIER-TE topology
 creation. The latter describes the process by which a controller
 determines which routers are to be configured as BFRs and the
 adjacencies between them.

 In statically managed networks, e.g., industrial environments, both
 discovery and creation can be a manual/offline process.

 In other networks, topology discovery may rely on such protocols as
 those that include extending an IGP based on a link-state protocol
 into the BIER-TE controller itself, e.g., BGP-LS [RFC7752] or YANG
 topology [RFC8345], as well as methods specific to BIER-TE -- for
 example, via [BIER-TE-YANG]. These options are non-exhaustive.

 Dynamic creation of the BIER-TE topology can be as easy as mapping
 the network topology 1:1 to the BIER-TE topology by assigning a BP
 for every network subnet adjacency. In larger networks, it likely
 involves more complex policy and optimization decisions, including
 how to minimize the number of BPs required and how to assign BPs
 across different BitStrings to minimize the number of duplicate
 packets across links when delivering an overlay flow to BFERs using
 different SIs:BitStrings. These topics are discussed in Section 5.

 When the BIER-TE topology has been determined, the BIER-TE controller
 pushes the BPs/adjacencies to the BIFT of the BFRs. On each BFR,
 only those SIs:BPs that are adjacencies to other BFRs in the BIER-TE
 topology are populated.

 Communications between the BIER-TE controller and BFRs for both BIER-
 TE topology control and BIER-TE tree control are ideally via
 standardized protocols and data models such as NETCONF/RESTCONF/YANG/
 PCEP. A vendor-specific CLI on the BFRs is also an option (as in
 many other "Software-Defined Network" (SDN) solutions lacking
 definitions of standardized data models).

3.2.1.2. Engineered Trees via BitStrings

 In BIER, the same set of BFERs in a single subdomain is always
 encoded as the same BitString. In BIER-TE, the BitString used to
 reach the same set of BFERs in the same subdomain can be different
 for different overlay flows because the BitString encodes the paths
 towards the BFERs, so the BitStrings from different BFIRs to the same
 set of BFERs will often be different. Likewise, the BitString from
 the same BFIR to the same set of BFERs can be different for different
 overlay flows if different policies should be applied to those
 overlay flows, such as shortest path trees, Steiner trees (minimum
 cost trees), diverse path trees for redundancy, and so on.

 See also [BIER-MCAST-OVERLAY] for an application leveraging BIER-TE
 engineered trees.

3.2.1.3. Changes in the Network Topology

 If the network topology changes (not failure based) so that
 adjacencies that are assigned to bit positions are no longer needed,
 the BIER-TE controller can reuse those bit positions for new
 adjacencies. First, these bit positions need to be removed from any
 BFIR flow state and BFR BIFT state. Then, they can be repopulated,
 first into the BIFT and then into the BFIR.

3.2.1.4. Link/Node Failures and Recovery

 When links or nodes fail or recover in the topology, BIER-TE could
 quickly respond with "Fast Reroute" (FRR) procedures such as those
 described in [BIER-TE-PROTECTION], the details of which are out of
 scope for this document. It can also more slowly react by
 recalculating the BitStrings of affected multicast flows. This
 reaction is slower than the FRR procedure because the BIER-TE
 controller needs to receive link/node up/down indications,
 recalculate the desired BitStrings, and push them down into the
 BFIRs. With FRR, this is all performed locally on a BFR receiving
 the adjacency up/down notification.

3.3. The BIER-TE Forwarding Plane

 The BIER-TE forwarding plane consists of the following components:

 1. On a BFIR, imposition of the BIER header for packets from overlay
 flows. This is driven by state established by the BIER-TE
 control plane, the multicast flow overlay as explained in
 Section 3.1, or a combination of both.

 2. On BFRs (including BFIRs and BFERs), forwarding/replication of
 BIER packets according to their SD, SI, "BitStringLength" (BSL),
 BitString, and, optionally, entropy fields as explained in
 Section 4. Processing of other BIER header fields, such as the
 "Differentiated Services Code Point" (DSCP) field, is outside the
 scope of this document.

 3. On BFERs, removal of the BIER header and dispatching of the
 payload according to state created by the BIER-TE control plane
 and/or overlay layer.

 When the BIER-TE forwarding plane receives a packet, it simply looks

 up the bit positions that are set in the BitString of the packet in
 the BIFT that was populated by the BIER-TE controller. For every BP
 that is set in the BitString and has one or more adjacencies in the
 BIFT, a copy is made according to the types of adjacencies for that
 BP in the BIFT. Before sending any copies, the BFR clears all BPs in
 the BitString of the packet for which the BFR has one or more
 adjacencies in the BIFT. Clearing these bits prevents packets from
 looping when a BitString erroneously includes a forwarding loop.
 When a forward_connected() adjacency has the "DoNotClear" (DNC) flag
 set, this BP is reset for the packet copied to that adjacency. See
 Section 4.2.1.

3.4. The Routing Underlay

 For forward_connected() adjacencies, BIER-TE sends BIER packets to
 directly connected BIER-TE neighbors as L2 (unicast) BIER packets
 without requiring a routing underlay. For forward_routed()
 adjacencies, BIER-TE forwarding encapsulates a copy of the BIER
 packet so that it can be delivered by the forwarding plane of the
 routing underlay to the routable destination address indicated in the
 adjacency. See Section 4.2.2 for details on forward_routed()
 adjacencies.

 BIER relies on the routing underlay to calculate paths towards BFERs
 and derive next-hop BFR adjacencies for those paths. These two steps
 commonly rely on BIER-specific extensions to the routing protocols of
 the routing underlay but may also be established by a controller. In
 BIER-TE, the next hops for a packet are determined by the BitString
 through the BIER-TE controller-established adjacencies on the BFR for
 the BPs of the BitString. There is thus no need for BFR-specific
 routing underlay extensions to forward BIER packets with BIER-TE
 semantics.

 Encapsulation parameters can be provisioned by the BIER-TE controller
 into the forward_connected() or forward_routed() adjacencies directly
 without relying on a routing underlay.

 If the BFR intends to support FRR for BIER-TE, then the BIER-TE
 forwarding plane needs to receive fast adjacency up/down
 notifications: link up/down or neighbor up/down, e.g., from
 "Bidirectional Forwarding Detection" (BFD). Providing these
 notifications is considered to be part of the routing underlay in
 this document.

3.5. Traffic Engineering Considerations

 Traffic Engineering [TE-OVERVIEW] provides performance optimization
 of operational IP networks while utilizing network resources
 economically and reliably. The key elements needed to effect Traffic
 Engineering are policy, path steering, and resource management.
 These elements require support at the control/controller level and
 within the forwarding plane.

 Policy decisions are made within the BIER-TE control plane, i.e.,
 within BIER-TE controllers. Controllers use policy when composing
 BitStrings and BFR BIFT state. The mapping of user/IP traffic to
 specific BitStrings / BIER-TE flows is made based on policy. The
 specific details of BIER-TE policies and how a controller uses them
 are out of scope for this document.

 Path steering is supported via the definition of a BitString.
 BitStrings used in BIER-TE are composed based on policy and resource
 management considerations. For example, when composing BIER-TE
 BitStrings, a controller must take into account the resources
 available at each BFR and for each BP when it is providing
 congestion-loss-free services such as Rate-Controlled Service
 Disciplines [RCSD94]. Resource availability could be provided, for
 example, via routing protocol information but may also be obtained
 via a BIER-TE control protocol such as NETCONF or any other protocol
 commonly used by a controller to understand the resources of the
 network on which it operates. The resource usage of the BIER-TE

 traffic admitted by the BIER-TE controller can be solely tracked on
 the BIER-TE controller based on local accounting as long as no
 forward_routed() adjacencies are used (see Section 4.2.2 for the
 definition of forward_routed() adjacencies). When forward_routed()
 adjacencies are used, the paths selected by the underlying routing
 protocol need to be tracked as well.

 Resource management has implications for the forwarding plane beyond
 the BIER-TE-defined steering of packets; this includes allocation of
 buffers to guarantee the worst-case requirements for admitted RCSD
 traffic and potentially policing and/or rate-shaping mechanisms,
 typically done via various forms of queuing. This level of resource
 control, while optional, is important in networks that wish to
 support congestion management policies to control or regulate the
 offered traffic to deliver different levels of service and alleviate
 congestion problems, or those networks that wish to control latencies
 experienced by specific traffic flows.

4. BIER-TE Forwarding

4.1. The BIER-TE Bit Index Forwarding Table (BIFT)

 The BIER-TE BIFT is equivalent to the (non-TE) BIER BIFT. It exists
 on every BFR running BIER-TE. For every BIER "subdomain" (SD) in use
 for BIER-TE, the BIFT is constructed per the example shown in
 Figure 4. The BIFT in the figure assumes a BSL of 8 "bit positions"
 (BPs) in the packets BitString. As in [RFC8279], this BSL is purely
 used as an example and is not a BSL supported by BIER/BIER-TE
 (minimum BSL is 64).

 A BIER-TE BIFT is compared to a BIER BIFT as shown in [RFC8279] as
 follows.

 In both BIER and BIER-TE, BIFT rows/entries are indexed in their
 respective BIER pseudocode ([RFC8279], Section 6.5) and BIER-TE
 pseudocode (Section 4.4) by the BIFT-index derived from the packet’s
 SI, BSL, and the one bit position of the packets BitString (BP)
 addressing the BIFT row: BIFT-index = SI * BSL + BP - 1. BPs within
 a BitString are numbered from 1 to BSL -- hence, the - 1 offset when
 converting to a BIFT-index. This document also uses the notion
 "SI:BP" to indicate BIFT rows. [RFC8279] uses the equivalent notion
 "SI:BitString", where the BitString is filled with only the BPs for
 the BIFT row.

 In BIER, each BIFT-index addresses one BFER by its BFR-id = BIFT-
 index + 1 and is populated on each BFR with the next-hop "BFR
 Neighbor" (BFR-NBR) towards that BFER.

 In BIER-TE, each BIFT-index and, therefore, SI:BP indicates one or,
 in the case of reuse of SI:BP, more than one adjacency between BFRs
 in the topology. The SI:BP is populated with the adjacency on the
 upstream BFR of the adjacency. The BIFT entries are empty on all
 other BFRs.

 In BIER, each BIFT row also requires a "Forwarding Bit Mask" (F-BM)
 entry for BIER forwarding rules. In BIER-TE forwarding, an F-BM is
 not required but can be used when implementing BIER-TE on forwarding
 hardware, derived from BIER forwarding, that must use an F-BM. This
 is discussed in the first variation of BIER-TE forwarding pseudocode
 shown in Section 4.4.

 | BIFT-index | | Adjacencies: |
 | (SI:BP) |(F-BM)| <empty> or one or more per entry |
 ===
 | BIFT indices for Packets with SI=0 |

 | 0 (0:1) | ... | forward_connected(interface,neighbor{,DNC}) |

 | 1 (0:2) | ... | forward_connected(interface,neighbor{,DNC}) |
 | | ... | forward_connected(interface,neighbor{,DNC}) |

 | ... | ... | ... |

 | 4 (0:5) | ... | local_decap({VRF}) |

 | 5 (0:6) | ... | forward_routed({VRF,}l3-neighbor) |

 | 6 (0:7) | ... | <empty> |

 | 7 (0:8) | ... | ECMP((adjacency1,...adjacencyN){,seed}) |

 | BIFT indices for BitString/Packet with SI=1 |

 | 9 (1:1) | | ... |
 | ... | ... | ... |

 Figure 4: BIER-TE Bit Index Forwarding Table (BIFT) with
 Different Adjacencies

 The BIFT is configured for the BIER-TE data plane of a BFR by the
 BIER-TE controller through an appropriate protocol and data model.
 The BIFT is then used to forward packets, according to the procedures
 for the BIER-TE forwarding plane as specified in Section 3.3.

 Note that a BIFT-index (SI:BP) may be populated in the BIFT of more
 than one BFR to save BPs. See Section 5.1.6 for an example of how a
 BIER-TE controller could assign BPs to (logical) adjacencies shared
 across multiple BFRs, Section 5.1.3 for an example of assigning the
 same BP to different adjacencies, and Section 5.1.9 for general
 guidelines regarding the reuse of BPs across different adjacencies.

 {VRF} indicates the Virtual Routing and Forwarding context into which
 the BIER payload is to be delivered. This is optional and depends on
 the multicast flow overlay.

4.2. Adjacency Types

4.2.1. Forward Connected

 A "forward_connected()" adjacency is an adjacency towards a directly
 connected BFR-NBR using an interface address of that BFR on the
 connecting interface. A forward_connected() adjacency does not route
 packets; only L2 forwards them to the neighbor.

 Packets sent to an adjacency with "DoNotClear" (DNC) set in the BIFT
 MUST NOT have the bit position for that adjacency cleared when the
 BFR creates a copy for it. The bit position will still be cleared
 for copies of a packet made towards other adjacencies. This can be
 used, for example, in ring topologies as explained in Section 5.1.6.

 For protection against loops caused by misconfiguration (see
 Section 5.2.1), DNC is only permissible for forward_connected()
 adjacencies. No need or benefit of DNC for other types of
 adjacencies was identified, and associated risks were not analyzed.

4.2.2. Forward Routed

 A "forward_routed()" adjacency is an adjacency towards a BFR that
 uses a (tunneling) encapsulation that will cause a packet to be
 forwarded by the routing underlay towards the adjacent BFR indicated
 via the l3-neighbor parameter of the forward_routed() adjacency.
 This can leverage any feasible encapsulation, such as MPLS or
 tunneling over IP/IPv6, as long as the BIER-TE packet can be
 identified as a payload. This identification can rely on either the
 BIER/BIER-TE co-existence mechanisms described in Section 4.3 or
 explicit support for a BIER-TE payload type in the tunneling
 encapsulation.

 Forward_routed() adjacencies are necessary to pass BIER-TE traffic
 across routers that are not BIER-TE capable or to minimize the number

 of required BPs by tunneling over (BIER-TE-capable) routers on which
 neither replication nor path steering is desired, or simply to
 leverage the routing underlay’s path redundancy and FRR towards the
 next BFR. They may also be useful to a multi-subnet adjacent BFR for
 leveraging the routing underlay ECMP independently of BIER-TE ECMP
 (Section 4.2.3).

4.2.3. ECMP

 (Non-TE) BIER ECMP is tied to the BIER BIFT processing semantic and
 is therefore not directly usable with BIER-TE.

 A BIER-TE "Equal-Cost Multipath" (ECMP()) adjacency as shown in
 Figure 4 for BIFT-index 7 has a list of two or more non-ECMP()
 adjacencies as parameters and an optional seed parameter. When a
 BIER-TE packet is copied onto such an ECMP() adjacency, an
 implementation-specific so-called hash function will select one out
 of the list’s adjacencies to which the packet is forwarded. If the
 packet’s encapsulation contains an entropy field, the entropy field
 SHOULD be respected; two packets with the same value of the entropy
 field SHOULD be sent on the same adjacency. The seed parameter
 permits the design of hash functions that are easy to implement at
 high speed without running into polarization issues across multiple
 consecutive ECMP hops. See Section 5.1.7 for details.

4.2.4. Local Decap(sulation)

 A "local_decap()" adjacency passes a copy of the payload of the BIER-
 TE packet to the protocol ("NextProto") within the BFR (IP/IPv6,
 Ethernet,...) responsible for that payload according to the packet
 header fields. A local_decap() adjacency turns the BFR into a BFER
 for matching packets. Local_decap() adjacencies require the BFER to
 support routing or switching for NextProto to determine how to
 further process the packets.

4.3. Encapsulation / Co-existence with BIER

 Specifications for BIER-TE encapsulation are outside the scope of
 this document. This section gives explanations and guidelines.

 The handling of "Maximum Transmission Unit" (MTU) limitations is
 outside the scope of this document and is not discussed in [RFC8279]
 either. Instead, this process is part of the BIER-TE packet
 encapsulation and/or flow overlay; for example, see [RFC8296],
 Section 3. It applies equally to BIER-TE and BIER.

 Because a BFR needs to interpret the BitString of a BIER-TE packet
 differently from a (non-TE) BIER packet, it is necessary to
 distinguish BIER packets from BIER-TE packets. In BIER encapsulation
 [RFC8296], the BIFT-id field of the packet indicates the BIFT of the
 packet. BIER and BIER-TE can therefore be run simultaneously, when
 the BIFT-id address space is shared across BIER BIFTs and BIER-TE
 BIFTs. Partitioning the BIFT-id address space is subject to BIER-TE/
 BIER control plane procedures.

 When [RFC8296] is used for BIER with MPLS, BIFT-id address ranges can
 be dynamically allocated from MPLS label space only for the set of
 actually used SD:BSL BIFTs. This also permits the allocation of non-
 overlapping label ranges for BIFT-ids that are to be used with BIER-
 TE BIFTs.

 With MPLS, it is also possible to reuse the same SD space for both
 BIER-TE and BIER, so that the same SD has both a BIER BIFT with a
 corresponding range of BIFT-ids and disjoint BIER-TE BIFTs with a
 non-overlapping range of BIFT-ids.

 Assume that a fixed mapping from BSL, SD, and SI to a BIFT-id is
 used, which does not explicitly partition the BIFT-id space between
 BIER and BIER-TE -- for example, as proposed for non-MPLS forwarding
 with BIER encapsulation [RFC8296] in [NON-MPLS-BIER-ENCODING],
 Section 5. In this case, it is necessary to allocate disjoint SDs to

 BIER and BIER-TE BIFTs so that both can be addressed by the BIFT-ids.
 The encoding proposed in Section 6 of [NON-MPLS-BIER-ENCODING] does
 not statically encode the BSL or SD into the BIFT-id, but the
 encoding permits a mapping and hence could provide the same freedom
 as when MPLS is being used (the same SD, or different SDs for BIER/
 BIER-TE).

 Forward_routed() requires an encapsulation that permits directing
 unicast encapsulated BIER-TE packets to a specific interface address
 on a target BFR. With MPLS encapsulation, this can simply be done
 via a label stack with that address’s label as the top label,
 followed by the label assigned to the (BSL,SD,SI) BitString. With
 non-MPLS encapsulation, some form of IP encapsulation would be
 required (for example, IP/GRE).

 The encapsulation used for forward_routed() adjacencies can equally
 support existing advanced adjacency information such as "loose source
 routes" via, for example, MPLS label stacks or appropriate header
 extensions (e.g., for IPv6).

4.4. BIER-TE Forwarding Pseudocode

 The pseudocode for BIER-TE forwarding, as shown in Figure 5, is based
 on the (non-TE) BIER forwarding pseudocode provided in [RFC8279],
 Section 6.5, with one modification.

 void ForwardBitMaskPacket_withTE (Packet)
 {
 SI=GetPacketSI(Packet);
 Offset=SI*BitStringLength;
 for (Index = GetFirstBitPosition(Packet->BitString); Index ;
 Index = GetNextBitPosition(Packet->BitString, Index)) {
 F-BM = BIFT[Index+Offset]->F-BM;
 if (!F-BM) continue; [3]
 BFR-NBR = BIFT[Index+Offset]->BFR-NBR;
 PacketCopy = Copy(Packet);
 PacketCopy->BitString &= F-BM; [2]
 PacketSend(PacketCopy, BFR-NBR);
 // The following must not be done for BIER-TE:
 // Packet->BitString &= ˜F-BM; [1]
 }
 }

 Figure 5: BIER-TE Forwarding Pseudocode for Required Functions,
 Based on BIER Pseudocode

 In step [2], the F-BM is used to clear one or more bits in
 PacketCopy. This step exists in both BIER and BIER-TE, but the F-BMs
 need to be populated differently for BIER-TE than for BIER for the
 desired clearing.

 In BIER, multiple bits of a BitString can have the same BFR-NBR.
 When a received packets BitString has more than one of those bits
 set, BIER’s replication logic has to prevent more than one PacketCopy
 from being sent to that BFR-NBR ([1]). Likewise, the PacketCopy sent
 to a BFR-NBR must clear all bits in its BitString that are not routed
 across a BFR-NBR. This prevents BIER’s replication logic from
 creating duplicates on any possible further BFRs ([2]).

 To solve both [1] and [2] for BIER, the F-BM of each bit index needs
 to have all bits set that this BFR wants to route across a BFR-
 NBR. [2] clears all other bits in PacketCopy->BitString, and [1]
 clears those bits from Packet->BitString after the first PacketCopy.

 In BIER-TE, a BFR-NBR in this pseudocode is an adjacency --
 forward_connected(), forward_routed(), or local_decap(). There is no
 need for [2] to suppress duplicates in the same way that BIER does,
 because in general, different BPs would never have the same
 adjacency. If a BIER-TE controller actually finds some optimization
 in which this would be desirable, then the controller is also
 responsible for ensuring that only one of those bits is set in any

 Packet->BitString, unless the controller explicitly wants duplicates
 to be created.

 The following points describe how the F-BM for each BP is configured
 in the BIFT and how this impacts the BitString of the packet being
 processed with that BIFT:

 1. The F-BMs of all BIFT BPs without an adjacency have all their
 bits clear. This will cause [3] to skip further processing of
 such a BP.

 2. All BIFT BPs with an adjacency (with the DNC flag clear) have an
 F-BM that has only those BPs set for which this BFR does not have
 an adjacency. This causes [2] to clear all bits from
 PacketCopy->BitString for which this BFR does have an adjacency.

 3. [1] is not performed for BIER-TE. All bit clearing required by
 BIER-TE is performed by [2].

 This forwarding pseudocode can support the required BIER-TE
 forwarding functions (see Section 4.5) -- forward_connected(),
 forward_routed(), and local_decap() -- but cannot support the
 recommended functions (DNC flag and multiple adjacencies per bit) or
 the optional function (i.e., ECMP() adjacencies). The DNC flag
 cannot be supported when using only [1] to mask bits.

 The modified and expanded forwarding pseudocode in Figure 6 specifies
 how to support all BIER-TE forwarding functions (required,
 recommended, and optional):

 1. This pseudocode eliminates per-bit F-BMs, therefore reducing the
 size of BIFT state by SI*BSL^2 and eliminating the need for per-
 packet-copy BitString masking operations, except for adjacencies
 with the DNC flag set:

 1.a AdjacentBits[SI] are bit positions with a non-empty list of
 adjacencies in this BFR BIFT. This can be computed whenever
 the BIER-TE controller updates (adds/removes) adjacencies in
 the BIFT.

 1.b The BFR needs to create packet copies for these adjacent
 bits when they are set in the packets BitString. This set
 of bits is calculated in PktAdjacentBits.

 1.c All bit positions for which the BFR creates copies have to
 be cleared in packet copies to avoid loops. This is done by
 masking the BitString of the packet with ˜AdjacentBits[SI].
 When an adjacency has DNC set, this bit position is set
 again only for the packet copy towards that bit position.

 2. BIFT entries may contain more than one adjacency in support of
 specific configurations, such as a hub and multiple spokes
 (Section 5.1.5). The code therefore includes a loop over these
 adjacencies.

 3. The ECMP() adjacency is also shown in the figure. Its parameters
 are a seed and "ListOfAdjacencies", from which one is picked.

 4. The forward_connected(), forward_routed(), and local_decap()
 adjacencies are shown with their parameters.

 void ForwardBitMaskPacket_withTE (Packet)
 {
 SI = GetPacketSI(Packet);
 Offset = SI * BitStringLength;
 // Determine adjacent bits in the packets BitString
 PktAdjacentBits = Packet->BitString & AdjacentBits[SI];

 // Clear adjacent bits in the packet header to avoid loops
 Packet->BitString &= ˜AdjacentBits[SI];

 // Loop over PktAdjacentBits to create packet copies
 for (Index = GetFirstBitPosition(PktAdjacentBits); Index ;
 Index = GetNextBitPosition(PktAdjacentBits, Index)) {
 for adjacency in BIFT[Index+Offset]->Adjacencies {
 if(adjacency.type == ECMP(ListOfAdjacencies,seed)) {
 I = ECMP_hash(sizeof(ListOfAdjacencies),
 Packet->Entropy,seed);
 adjacency = ListOfAdjacencies[I];
 }
 PacketCopy = Copy(Packet);
 switch(adjacency.type) {
 case forward_connected(interface,neighbor,DNC):
 if(DNC)
 PacketCopy->BitString |= 1<<(Index-1);
 SendToL2Unicast(PacketCopy,interface,neighbor);

 case forward_routed({VRF,}l3-neighbor):
 SendToL3(PacketCopy,{VRF,}l3-neighbor);

 case local_decap({VRF},neighbor):
 DecapBierHeader(PacketCopy);
 PassTo(PacketCopy,{VRF,}Packet->NextProto);
 }
 }
 }
 }

 Figure 6: Complete BIER-TE Forwarding Pseudocode for Required,
 Recommended, and Optional Functions

4.5. BFR Requirements for BIER-TE Forwarding

 BFRs that support BIER-TE and BIER MUST support a configuration that
 enables BIER-TE instead of (non-TE) BIER forwarding rules for all
 BIFTs of one or more BIER subdomains. Every BP in a BIER-TE BIFT
 MUST support having zero or one adjacency. BIER-TE forwarding MUST
 support the adjacency types forward_connected() with the DNC flag not
 set, forward_routed(), and local_decap(). As explained in
 Section 4.4, these required BIER-TE forwarding functions can be
 implemented via the same forwarding pseudocode as that used for BIER
 forwarding, except for one modification (skipping one masking with an
 F-BM).

 BIER-TE forwarding SHOULD support forward_connected() adjacencies
 with the DNC flag set, as this is very useful for saving bits in
 rings (see Section 5.1.6).

 BIER-TE forwarding SHOULD support more than one adjacency on a bit.
 This allows bits to be saved in hub-and-spoke scenarios (see
 Section 5.1.5).

 BIER-TE forwarding MAY support ECMP() adjacencies to save bits in
 ECMP scenarios; see Section 5.1.7 for an example. This is an
 optional requirement, because for ECMP deployments using BIER-TE one
 can also leverage the routing underlay ECMP via forward_routed()
 adjacencies and/or might prefer to have more explicit control of the
 path chosen via explicit BPs/adjacencies for each ECMP path
 alternative.

5. BIER-TE Controller Operational Considerations

5.1. Bit Position Assignments

 This section describes how the BIER-TE controller can use the
 different BIER-TE adjacency types to define the bit positions of a
 BIER-TE domain.

 Because the size of the BitString limits the size of the BIER-TE
 domain, many of the options described here exist to support larger
 topologies with fewer bit positions.

5.1.1. P2P Links

 On a "point-to-point" (P2P) link that connects two BFRs, the same bit
 position can be used on both BFRs for the adjacency to the
 neighboring BFR. A P2P link therefore requires only one bit
 position.

5.1.2. BFERs

 Every non-leaf BFER is given a unique bit position with a
 local_decap() adjacency.

5.1.3. Leaf BFERs

 A leaf BFER is one where incoming BIER-TE packets never need to be
 forwarded to another BFR but are only sent to the BFER to exit the
 BIER-TE domain. For example, in networks where "Provider Edge" (PE)
 routers are spokes connected to Provider (P) routers, those PEs are
 leaf BFERs, unless there is a U-turn between two PEs.

 Consider how redundant disjoint traffic can reach BFER1/BFER2 as
 shown in Figure 7: when BFER1/BFER2 are non-leaf BFERs as shown on
 the right-hand side, one traffic copy would be forwarded to BFER1
 from BFR1, but the other one could only reach BFER1 via BFER2, which
 makes BFER2 a non-leaf BFER. Likewise, BFER1 is a non-leaf BFER when
 forwarding traffic to BFER2. Note that the BFERs on the left-hand
 side of the figure are only guaranteed to be leaf BFERs by correctly
 applying a routing configuration that prohibits transit traffic from
 passing through the BFERs, which is commonly applied in these
 topologies.

 BFR1(P) BFR2(P) BFR1(P) BFR2(P)
 | \ / | | |
 | X | | |
 | / \ | | |
 BFER1(PE) BFER2(PE) BFER1(PE)----BFER2(PE)

 ^ U-turn link

 Leaf BFER / Non-leaf BFER /
 PE router PE router

 Figure 7: Leaf vs. Non-Leaf BFER Example

 In most situations, leaf BFERs that are to be addressed via the same
 BitString can share a single bit position for their local_decap()
 adjacency in that BitString and therefore save bit positions. On a
 non-leaf BFER, a received BIER-TE packet may only need to transit the
 BFER, or it may also need to be decapsulated. Whether or not to
 decapsulate the packet therefore needs to be indicated by a unique
 bit position populated only on the BIFT of this BFER with a
 local_decap() adjacency. On a leaf BFER, packets never need to pass
 through; any packet received is therefore usually intended to be
 decapsulated. This can be expressed by a single, shared bit position
 that is populated with a local_decap() adjacency on all leaf BFERs
 addressed by the BitString.

 The possible exceptions to this leaf BFER bit position optimization
 scenario can be cases where the bit position on the prior BIER-TE BFR
 (which created the packet copy for the leaf BFER in question) is
 populated with multiple adjacencies as an optimization -- for
 example, as described in Sections 5.1.4 and 5.1.5. With either of
 these two optimizations, the sender of the packet could only control
 explicitly whether the packet was to be decapsulated on the leaf BFER
 in question, if the leaf BFER has a unique bit position for its
 local_decap() adjacency.

 However, if the bit position is shared across a leaf BFER and packets
 are therefore decapsulated -- potentially unnecessarily -- this may
 still be appropriate if the decapsulated payload of the BIER-TE
 packet indicates whether or not the packets need to be further

 processed/received. This is typically true, for example, if the
 payload is IP multicast, because IP multicast on a BFER would know
 the membership state of the IP multicast payload and be able to
 discard it if the packets were delivered unnecessarily by the BIER-TE
 layer. If the payload has no such membership indication and the BFIR
 wants to have explicit control regarding which BFERs are to receive
 and decapsulate a packet, then these two optimizations cannot be used
 together with shared bit position optimization for a leaf BFER.

5.1.4. LANs

 In a LAN, the adjacency to each neighboring BFR is given a unique bit
 position. The adjacency of this bit position is a
 forward_connected() adjacency towards the BFR, and this bit position
 is populated into the BIFT of all the other BFRs on that LAN.

 BFR1
 |p1
 LAN1-+-+---+-----+
 p3| p4| p2|
 BFR3 BFR4 BFR7

 Figure 8: LAN Example

 If bandwidth on the LAN is not an issue and most BIER-TE traffic
 should be copied to all neighbors on a LAN, then bit positions can be
 saved by assigning just a single bit position to the LAN and
 populating the bit position of the BIFTs of each BFR on the LAN with
 a list of forward_connected() adjacencies to all other neighbors on
 the LAN.

 This optimization does not work in the case of BFRs redundantly
 connected to more than one LAN with this optimization. These BFRs
 would receive duplicates and forward those duplicates into the other
 LANs. Such BFRs require separate bit positions for each LAN they
 connect to.

5.1.5. Hub and Spoke

 In a setup with a hub and multiple spokes connected via separate P2P
 links to the hub, all P2P adjacencies from the hub to the spokes’
 links can share the same bit position. The bit position on the hub’s
 BIFT is set up with a list of forward_connected() adjacencies, one
 for each spoke.

 This option is similar to the bit position optimization in LANs:
 redundantly connected spokes need their own bit positions, unless
 they are themselves leaf BFERs.

 This type of optimized BP could be used, for example, when all
 traffic is "broadcast" traffic (very dense receiver sets), such as
 live TV or many-to-many telemetry, including situational awareness.
 This BP optimization can then be used to explicitly steer different
 traffic flows across different ECMP paths in data-center or
 broadband-aggregation networks with minimal use of BPs.

5.1.6. Rings

 In L3 rings, instead of assigning a single bit position for every P2P
 link in the ring, it is possible to save bit positions by setting the
 "DoNotClear" (DNC) flag on forward_connected() adjacencies.

 For the ring shown in Figure 9, a single bit position will suffice to
 forward traffic entering the ring at BFRa or BFRb all the way up to
 BFR1, as follows.

 On BFRa, BFRb, BFR30,... BFR3, the bit position is populated with a
 forward_connected() adjacency pointing to the clockwise neighbor on
 the ring and with DNC set. On BFR2, the adjacency also points to the
 clockwise neighbor BFR1, but without DNC set.

 Handling DNC this way ensures that copies forwarded from any BFRs in
 the ring to a BFR outside the ring will not have the ring bit
 position set, therefore minimizing the risk of creating loops.

 v v
 | |
 L1 | L2 | L3
 /-------- BFRa ---- BFRb --------------------\
 | |
 \- BFR1 - BFR2 - BFR3 - ... - BFR29 - BFR30 -/
 | | L4 | |
 p33| p15|
 BFRd BFRc

 Figure 9: Ring Example

 Note that this example only permits packets intended to make it all
 the way around the ring to enter it at BFRa and BFRb. Note also that
 packets will always travel clockwise. If packets should be allowed
 to enter the ring at any of the ring’s BFRs, then one would have to
 use two ring bit positions, one for each direction: clockwise and
 counterclockwise.

 Both would be set up to stop rotating on the same link, e.g., L1.
 When the ring’s BFIR creates the clockwise copy, it will clear the
 counterclockwise bit position because the DNC bit only applies to the
 bit for which the replication is done (likewise for the clockwise bit
 position for the counterclockwise copy). As a result, the ring’s
 BFIR will send a copy in both directions, serving BFRs on either side
 of the ring up to L1.

5.1.7. Equal-Cost Multipath (ECMP)

 An ECMP() adjacency allows the use of just one BP to deliver packets
 to one of N adjacencies instead of one BP for each adjacency. In the
 common example case shown in Figure 10, a link bundle of three links
 L1,L2,L3 connects BFR1 and BFR2, and only one BP is used instead of
 three BPs to deliver packets from BFR1 to BFR2.

 --L1-----
 BFR1 --L2----- BFR2
 --L3-----

 BIFT entry in BFR1:
 --
 | Index | Adjacencies |
 ==
 | 0:6 | ECMP({forward_connected(L1, BFR2), |
 | | forward_connected(L2, BFR2), |
 | | forward_connected(L3, BFR2)}, seed) |
 --

 BIFT entry in BFR2:
 --
 | Index | Adjacencies |
 ==
 | 0:6 | ECMP({forward_connected(L1, BFR1), |
 | | forward_connected(L2, BFR1), |
 | | forward_connected(L3, BFR1)}, seed) |
 --

 Figure 10: ECMP Example

 This document does not standardize any ECMP algorithm because it is
 sufficient for implementations to document their freely chosen ECMP
 algorithm. Figure 11 shows an example ECMP algorithm and would
 double as its documentation: a BIER-TE controller could determine
 which adjacency is chosen based on the seed and adjacencies
 parameters and on packet entropy.

 forward(packet, ECMP(adj(0), adj(1),... adj(N-1), seed)):

 i = (packet(bier-header-entropy) XOR seed) % N
 forward packet to adj(i)

 Figure 11: ECMP Algorithm Example

 In the example shown in Figure 12, all traffic from BFR1 towards
 BFR10 is intended to be ECMP load-split equally across the topology.
 This example is not meant as a likely setup; rather, it illustrates
 that ECMP can be used to share BPs not only across link bundles but
 also across alternative paths across different transit BFRs, and it
 explains the use of the seed parameter.

 BFR1 (BFIR)
 /L11 \L12
 / \
 BFR2 BFR3
 /L21 \L22 /L31 \L32
 / \ / \
 BFR4 BFR5 BFR6 BFR7
 \ / \ /
 \ / \ /
 BFR8 BFR9
 \ /
 \ /
 BFR10 (BFER)

 BIFT entry in BFR1:
 --
 | 0:6 | ECMP({forward_connected(L11, BFR2), |
 | | forward_connected(L12, BFR3)}, seed1) |
 --

 BIFT entry in BFR2:
 --
 | 0:7 | ECMP({forward_connected(L21, BFR4), |
 | | forward_connected(L22, BFR5)}, seed1) |
 --

 BIFT entry in BFR3:
 --
 | 0:7 | ECMP({forward_connected(L31, BFR6), |
 | | forward_connected(L32, BFR7)}, seed1) |
 --

 BIFT entry in BFR4, BFR5:
 --
 | 0:8 | forward_connected(Lxx, BFR8) |xx differs on BFR4/BFR5|
 --

 BIFT entry in BFR6, BFR7:
 --
 | 0:8 | forward_connected(Lxx, BFR9) |xx differs on BFR6/BFR7|
 --

 BIFT entry in BFR8, BFR9:
 --
 | 0:9 | forward_connected(Lxx, BFR10) |xx differs on BFR8/BFR9|
 --

 Figure 12: Polarization Example

 Note that for the following discussion of ECMP, only the BIFT ECMP()
 adjacencies on BFR1, BFR2, and BFR3 are relevant. The reuse of BPs
 across BFRs in this example is further explained in Section 5.1.9
 below.

 With the ECMP setup shown in the topology above, traffic would not be
 equally load-split. Instead, links L22 and L31 would see no traffic
 at all: BFR2 will only see traffic from BFR1, for which the ECMP hash
 in BFR1 selected the first adjacency in the list of two adjacencies
 given as parameters to the ECMP: link L11-to-BFR2. BFR2 again

 performs ECMP with two adjacencies on that subset of traffic using
 the same seed1 and will therefore again select the first of its two
 adjacencies: L21-to-BFR4. Therefore, L22 and BFR5 see no traffic
 (likewise for L31 and BFR6).

 This issue in BFR2/BFR3 is called "polarization". It results from
 the reuse of the same hash function across multiple consecutive hops
 in topologies like these. To resolve this issue, the ECMP()
 adjacency on BFR1 can be set up with a different seed2 than the
 ECMP() adjacencies on BFR2/BFR3. BFR2/BFR3 can use the same hash
 because packets will not sequentially pass across both of them.
 Therefore, they can also use the same BP (i.e., 0:7).

 Note that ECMP solutions outside of BIER often hide the seed by auto-
 selecting it from local entropy such as unique local or next-hop
 identifiers. Allowing the BIER-TE controller to explicitly set the
 seed gives the BIER-TE controller the ability to control the
 selection of the same path or different paths across multiple
 consecutive ECMP hops.

5.1.8. Forward Routed Adjacencies

5.1.8.1. Reducing Bit Positions

 Forward_routed() adjacencies can reduce the number of bit positions
 required when the path steering requirement is not hop-by-hop
 explicit path selection but rather is loose-hop selection.
 Forward_routed() adjacencies can also permit BIER-TE operation across
 intermediate-hop routers that do not support BIER-TE.

 Assume that the requirement in Figure 13 is to explicitly steer
 traffic flows that have arrived at BFR1 or BFR4 via a path in the
 routing underlay "Network Area 1" to one of the following next three
 segments: (1) BFR2 via link L1, (2) BFR2 via link L2, or (3) via BFR3
 and then not caring whether the packet is forwarded via L3 or L4.

 ...BFR1--... ...--L1-- BFR2...
 Routers. ...--L2--/
 ...BFR4--... ...--L3-- BFR3...
 --L4--/ |
 |
 LO
 Network Area 1

 Figure 13: Forward Routed Adjacencies Example

 To enable this, both BFR1 and BFR4 are set up with a forward_routed()
 adjacency bit position towards an address of BFR2 on link L1, another
 forward_routed() bit position towards an address of BFR2 on link L2,
 and a third forward_routed() bit position towards a node address LO
 of BFR3.

5.1.8.2. Supporting Nodes without BIER-TE

 Forward_routed() adjacencies also enable incremental deployment of
 BIER-TE. Only the nodes through which BIER-TE traffic needs to be
 steered -- with or without replication -- need to support BIER-TE.
 Where they are not directly connected to each other, forward_routed()
 adjacencies are used to pass over nodes that are not BIER-TE enabled.

5.1.9. Reuse of Bit Positions (without DNC)

 BPs can be reused across multiple BFRs to minimize the number of BPs
 needed. This happens when adjacencies on multiple BFRs use the DNC
 flag as described above, but it can also be done for non-DNC
 adjacencies. This section only discusses this non-DNC case.

 Because a given BP is cleared when passing a BFR with an adjacency
 for that BP, reusing BPs across multiple BFRs does not introduce any
 problems with duplicates or loops that do not also exist when every

 adjacency has a unique BP. Instead, the challenge when reusing BPs
 is whether the desired Tree Engineering goals can still be achieved.

 A BP cannot be reused across two BFRs that would need to be passed
 sequentially for some path: the first BFR will clear the BP, so those
 paths cannot be built. A BP can be set across BFRs that would only
 occur across (A) different paths or (B) different branches of the
 same tree.

 An example of (A) was given in Figure 12, where BP 0:7, BP 0:8, and
 BP 0:9 are each reused across multiple BFRs because a single packet/
 path would never be able to reach more than one BFR sharing the same
 BP.

 Assume that the example was changed: BFR1 has no ECMP() adjacency for
 BP 0:6 but instead has BP 0:5 with forward_connected() to BFR2 and BP
 0:6 with forward_connected() to BFR3. Packets with both BP 0:5 and
 BP 0:6 would now be able to reach both BFR2 and BFR3, and the still-
 existing reuse of BP 0:7 between BFR2 and BFR3 is a case of (B) where
 reusing a BP is perfect because it does not limit the set of useful
 path choices, as in the following example.

 If instead of reusing BP 0:7 BFR3 used a separate BP 0:10 for its
 ECMP() adjacency, no useful additional path steering options would be
 enabled. If duplicates at BFR10 were undesirable, this would be done
 by not setting BP 0:5 and BP 0:6 for the same packet. If the
 duplicates were desirable (e.g., resilient transmission), the
 additional BP 0:10 would also not render additional value.

 Reuse may also save BPs in larger topologies. Consider the topology
 shown in Figure 14.

 area1
 BFR1a BFR1b
 / \

 . Core .

 | / \ / \ |
 BFR2a BFR2b BFR3a BFR3b BFR6a BFR6b
 /-------\ /---------\ /--------\
 | area2 | | area3 | ... | area6 |
 | ring | | ring | | ring |
 \-------/ \---------/ \--------/
 more BFRs more BFRs more BFRs

 Figure 14: Reuse of BPs

 A BFIR/sender (e.g., video headend) is attached to area 1, and the
 five areas 2...6 contain receivers/BFERs. Assume that each area has
 a distribution ring, each with two BPs to indicate the direction (as
 explained before). These two BPs could be reused across the five
 areas. Packets would be replicated through other BPs from the core
 to the desired subset of areas, and once a packet copy reaches the
 ring of the area, the two ring BPs come into play. This reuse is a
 case of (B), but it limits the topology choices: packets can only
 flow around the same direction in the rings of all areas. This may
 or may not be acceptable based on the desired path steering options:
 if resilient transmission is the path engineering goal, then it is
 likely a good optimization; however, if the bandwidth of each ring
 were to be optimized separately, it would not be a good limitation.

5.1.10. Summary of BP Optimizations

 In this section, we reviewed a range of techniques by which a BIER-TE
 controller can create a BIER-TE topology in a way that minimizes the
 number of necessary BPs.

 Without any optimization, a BIER-TE controller would attempt to map
 the network subnet topology 1:1 into the BIER-TE topology, every
 adjacent neighbor in the subnet would require a forward_connected()

 BP, and every BFER would require a local_decap() BP.

 The optimizations described in this document are then as follows:

 1. P2P links require only one BP (Section 5.1.1).

 2. All leaf BFERs can share a single local_decap() BP
 (Section 5.1.3).

 3. A LAN with N BFRs needs at most N BPs (one for each BFR). It
 only needs one BP for all those BFRs that are not redundantly
 connected to multiple LANs (Section 5.1.4).

 4. A hub with P2P connections to multiple non-leaf BFER spokes can
 share one BP with all of the spokes if traffic can be flooded to
 all of those spokes, e.g., because of no bandwidth concerns or
 dense receiver sets (Section 5.1.5).

 5. Rings of BFRs can be built with just two BPs (one for each
 direction), except for BFRs with multiple ring connections --
 similar to LANs (Section 5.1.6).

 6. ECMP() adjacencies to N neighbors can replace N BPs with one BP.
 Multihop ECMP can avoid polarization through different seeds of
 the ECMP algorithm (Section 5.1.7).

 7. Forward_routed() adjacencies permit "tunneling" across routers
 that are either BIER-TE capable or not BIER-TE capable where no
 traffic steering or replications are required (Section 5.1.8).

 8. A BP can generally be reused across a set of nodes where it can
 be guaranteed that no path will ever need to traverse more than
 one node of the set. Depending on the scenario, this may limit
 the feasible path steering options (Section 5.1.9).

 Note that this list of optimizations is not exhaustive. Further
 optimizations of BPs are possible, especially when both the set of
 required path steering choices and the possible subsets of BFERs that
 should be able to receive traffic are limited. The hub-and-spoke
 optimization is a simple example of such traffic-pattern-dependent
 optimizations.

5.2. Avoiding Duplicates and Loops

5.2.1. Loops

 Whenever BIER-TE creates a copy of a packet, the BitString of that
 copy will have all bit positions cleared that are associated with
 adjacencies on the BFR. This prevents packets from looping. The
 only exceptions are adjacencies with DNC set.

 With DNC set, looping can happen. Consider in Figure 15 that link L4
 from BFR3 is (inadvertently) plugged into the L1 interface of BFRa
 (instead of BFR2). This creates a loop where the ring’s clockwise
 bit position is never cleared for copies of the packets traveling
 clockwise around the ring.

 v v
 | |
 L1 | L2 | L3
 /-------- BFRa ---- BFRb ---------------------\
 | . |
 | Wrong link wiring |
 | . |
 \- BFR1 - BFR2 BFR3 - ... - BFR29 - BFR30 -/
 | | L4 | |
 p33| p15|
 BFRd BFRc

 Figure 15: Miswired Ring Example

 To inhibit looping in the face of such physical misconfiguration,
 only forward_connected() adjacencies are permitted to have DNC set,
 and the link layer port unique unicast destination address of the
 adjacency (e.g., "Media Access Control" (MAC) address) protects
 against closing the loop. Link layers without port unique link layer
 addresses should not be used with the DNC flag set.

5.2.2. Duplicates

 Duplicates happen when the graph expressed by a BitString is not a
 tree but is redundantly connecting BFRs with each other. In
 Figure 16, a BitString of p2,p3,p4,p5 would result in duplicate
 packets arriving on BFER4. The BIER-TE controller must therefore
 ensure that only BitStrings that are trees are created.

 BFIR1
 / \
 / p2 \ p3
 BFR2 BFR3
 \ p4 / p5
 \ /
 BFER4

 Figure 16: Duplicates Example

 When links are incorrectly physically reconnected before the BIER-TE
 controller updates BitStrings in BFIRs, duplicates can happen. Like
 loops, these can be inhibited by link layer addressing in
 forward_connected() adjacencies.

 If interface or loopback addresses used in forward_routed()
 adjacencies are moved from one BFR to another, duplicates are equally
 likely to happen. Such readdressing operations must be coordinated
 with the BIER-TE controller.

5.3. Managing SIs, Subdomains, and BFR-ids

 When the number of bits required to represent the necessary hops in
 the topology and BFERs exceeds the supported "BitStringLength" (BSL),
 multiple SIs and/or subdomains must be used. This section discusses
 how this is done.

 BIER-TE forwarding does not require the concept of BFR-ids, but
 routing underlay, flow overlay, and BIER headers may. This section
 also discusses how BFR-ids can be assigned to BFIRs/BFERs for BIER-
 TE.

5.3.1. Why SIs and Subdomains?

 For (non-TE) BIER and BIER-TE forwarding, the most important result
 of using multiple SIs and/or subdomains is the same: multicast flow
 overlay packets that need to be sent to BFERs in different SIs or
 subdomains require multiple BIER packets, each one with a BitString
 for a different (SI,subdomain) combination. Each such BitString uses
 one BSL-sized SI block in the BIFT of the subdomain. We call this a
 BIFT:SI (block).

 SIs and subdomains have different purposes in the BIER architecture
 and also the BIER-TE architecture. This impacts how operators manage
 them and especially how flow overlays will likely use them.

 By default, every possible BFIR/BFER in a BIER network would likely
 be given a BFR-id in subdomain 0 (unless there are > 64k BFIRs/
 BFERs).

 If there are different flow services (or service instances) requiring
 replication to different subsets of BFERs, then it will likely not be
 possible to achieve the best replication efficiency for all of these
 service instances via subdomain 0. Ideal replication efficiency for
 N BFERs exists in a subdomain if they are split over no more than
 ceiling(N/BitStringLength) SIs.

 If service instances justify additional BIER:SI state in the network,
 additional subdomains will be used: BFIRs/BFERs are assigned BFR-ids
 in those subdomains, and each service instance is configured to use
 the most appropriate subdomain. This results in improved replication
 efficiency for different services.

 Even if creation of subdomains and assignment of BFR-ids to BFIRs/
 BFERs in those subdomains is automated, it is not expected that
 individual service instances can deal with BFERs in different
 subdomains. A service instance may only support configuration of a
 single subdomain it should rely on.

 To be able to easily reuse (and modify as little as possible)
 existing BIER procedures (including flow overlay and routing
 underlay), when BIER-TE forwarding is added, we therefore reuse SIs
 and subdomains logically in the same way as they are used in BIER:
 all necessary BFIRs/BFERs for a service use a single BIER-TE BIFT and
 are split across as many SIs as necessary (see Section 5.3.2).
 Different services may use different subdomains that primarily exist
 to provide more efficient replication (and, for BIER-TE, desirable
 path steering) for different subsets of BFIRs/BFERs.

5.3.2. Assigning Bits for the BIER-TE Topology

 In BIER, BitStrings only need to carry bits for BFERs; this leads to
 the model where BFR-ids map 1:1 to each bit in a BitString.

 In BIER-TE, BitStrings need to carry bits to indicate not only the
 receiving BFER but also the intermediate hops/links across which the
 packet must be sent. The maximum number of BFERs that can be
 supported in a single BitString or BIFT:SI depends on the number of
 bits necessary to represent the desired topology between them.

 "Desired" topology means that it depends on the physical topology and
 the operator’s desire to

 1. permit explicit path steering across every single hop (which
 requires more bits), or

 2. reduce the number of required bits by exploiting optimizations
 such as unicast (forward_routed()), ECMP(), or flood (DNC) over
 "uninteresting" sub-parts of the topology, e.g., parts where, for
 path steering reasons, different trees do not need to take
 different paths.

 The total number of bits to describe the topology vs. the number of
 BFERs in a BIFT:SI can range widely based on the size of the topology
 and the amount of alternative paths in it. In a BIER-TE topology
 crafted by a BIER-TE expert, the higher the percentage of non-BFER
 bits, the higher the likelihood that those topology bits are not just
 BIER-TE overhead without additional benefit but instead will allow
 the expression of desirable path steering alternatives.

5.3.3. Assigning BFR-ids with BIER-TE

 BIER-TE forwarding does not use BFR-ids, nor does it require that the
 BFIR-id field of the BIER header be set to a particular value.
 However, other parts of a BIER-TE deployment may need a BFR-id --
 specifically, multicast flow overlay signaling and multicast flow
 overlay packet disposition; in that case, BFRs need to also have BFR-
 ids for BIER-TE SDs.

 For example, for BIER overlay signaling, BFIRs need to have a BFR-id,
 because this BFIR BFR-id is carried in the BFIR-id field of the BIER
 header to indicate to the overlay signaling on the receiving BFER
 which BFIR originated the packet.

 In BIER, BFR-id = SI * BSL + BP, such that the SI and BP of a BFER
 can be calculated from the BFR-id and vice versa. This also means
 that every BFR with a BFR-id has a reserved BP in an SI, even if that

 is not necessary for BIER forwarding, because the BFR may never be a
 BFER (i.e., will only be a BFIR).

 In BIER-TE, for a non-leaf BFER, there is usually a single BP for
 that BFER with a local_decap() adjacency on the BFER. The BFR-id for
 such a BFER can therefore be determined using the same procedure as
 that used for (non-TE) BIER: BFR-id = SI * BSL + BP.

 As explained in Section 5.1.3, leaf BFERs do not need such a unique
 local_decap() adjacency. Likewise, BFIRs that are not also BFERs may
 not have a unique local_decap() adjacency either. For all those
 BFIRs and (leaf) BFERs, the controller needs to determine unique BFR-
 ids that do not collide with the BFR-ids derived from the non-leaf
 BFER local_decap() BPs.

 While this document defines no requirements on how to allocate such
 BFR-ids, a simple option is to derive it from the (SI,BP) of an
 adjacency that is unique to the BFR in question. For a BFIR, this
 can be the first adjacency that is only populated on this BFIR; for a
 leaf BFER, this could be the first BP with an adjacency towards that
 BFER.

5.3.4. Mapping from BFRs to BitStrings with BIER-TE

 In BIER, applications of the flow overlay on a BFIR can calculate the
 (SI,BP) of a BFER from the BFR-id of the BFER and can therefore
 easily determine the BitStrings for a BIER packet to a set of BFERs
 with known BFR-ids.

 In BIER-TE, this mapping needs to be equally supported for flow
 overlays. This section outlines two core options, based on what type
 of Tree Engineering the BIER-TE controller needs to perform for a
 particular application.

 "Independent branches": For a given flow overlay instance, the
 branches from a BFIR to every BFER are calculated by the BIER-TE
 controller to be independent of the branches to any other BFER.
 Shortest path trees are the most common examples of trees with
 independent branches.

 "Interdependent branches": When a BFER is added to or deleted from a
 particular distribution tree, the BIER-TE controller has to
 recalculate the branches to other BFERs, because they may need to
 change. Steiner trees are examples of interdependent branch
 trees.

 If "independent branches" are used, the BIER-TE controller can signal
 to the BFIR flow overlay for every BFER an SI:BitString that
 represents the branch to that BFER. The flow overlay on the BFIR can
 then, independently of the controller, calculate the SI:BitString for
 all desired BFERs by ORing their BitStrings. This allows flow
 overlay applications to operate independently of the controller
 whenever they need to determine which subset of BFERs needs to
 receive a particular packet.

 If "interdependent branches" are required, an application would need
 to query the SI:BitString for a given set of BFERs whenever the set
 changes.

 Note that in either case (unlike the scenario for BIER), the bits may
 need to change upon link/node failure/recovery, network expansion, or
 network resource consumption by other traffic as part of achieving
 Traffic Engineering goals (e.g., reoptimization of lower-priority
 traffic flows). Interactions between such BFIR applications and the
 BIER-TE controller do therefore need to support dynamic updates to
 the SIs:BitStrings.

 Communications between the BFIR flow overlay and the BIER-TE
 controller require some way to identify the BFERs. If BFR-ids are
 used in the deployment, as outlined in Section 5.3.3, then those are
 the "natural" BFR-ids. If BFR-ids are not used, then any other

 unique identifier, such as a BFR’s BFR-prefix [RFC8279], could be
 used.

5.3.5. Assigning BFR-ids for BIER-TE

 It is not currently determined if a single subdomain could or should
 be allowed to forward both (non-TE) BIER and BIER-TE packets. If
 this should be supported, there are two options:

 A. BIER and BIER-TE have different BFR-ids in the same subdomain.
 This allows higher replication efficiency for BIER because the
 BIER BFR-ids can be assigned sequentially, while the BitStrings
 for BIER-TE will also have to assign the additional bits for the
 topology adjacencies. There is no relationship between a BFR
 BIER BFR-id and its BIER-TE BFR-id.

 B. BIER and BIER-TE share the same BFR-id. The BFR-ids are assigned
 as explained above for BIER-TE and simply reused for BIER. The
 replication efficiency for BIER will be as low as that for BIER-
 TE in this approach.

5.3.6. Example Bit Allocations

5.3.6.1. With BIER

 Consider a network setup with a BSL of 256 for a network topology as
 shown in Figure 17. The network has six areas, each with 170 BFERs,
 connecting via a core with four (core) BFRs. To address all BFERs
 with BIER, four SIs are required. To send a BIER packet to all BFERs
 in the network, four copies need to be sent by the BFIR. On the
 BFIR, it does not matter how the BFR-ids are allocated to BFERs in
 the network, but it does matter for efficiency further down in the
 network.

 area1 area2 area3
 BFR1a BFR1b BFR2a BFR2b BFR3a BFR3b
 | \ / \ / |

 . Core .

 | / \ / \ |
 BFR4a BFR4b BFR5a BFR5b BFR6a BFR6b
 area4 area5 area6

 Figure 17: Scaling BIER-TE Bits by Reuse

 With random allocation of BFR-ids to BFERs, each receiving area would
 (most likely) have to receive all four copies of the BIER packet
 because there would be BFR-ids for each of the four SIs in each of
 the areas. Only further towards each BFER would this duplication
 subside -- when each of the four trees runs out of branches.

 If BFR-ids are allocated intelligently, then all the BFERs in an area
 would be given BFR-ids with as few different SIs as possible. Each
 area would only have to forward one or two packets instead of four.

 Given how networks can grow over time, replication efficiency in an
 area will then also go down over time when BFR-ids are only allocated
 sequentially, network wide. An area that initially only has BFR-ids
 in one SI might end up with many SIs over a longer period of growth.
 Allocating SIs to areas that initially have sufficiently many spare
 bits for growth can help alleviate this issue. Alternatively, BFERs
 can be renumbered after network expansion. In this example, one may
 consider using six SIs and assigning one to each area.

 This example shows that intelligent BFR-id allocation within at least
 subdomain 0 can be helpful or even necessary in BIER.

5.3.6.2. With BIER-TE

 In BIER-TE, one needs to determine a subset of the physical topology

 and attached BFERs so that the "desired" representation of this
 topology and the BFERs fit into a single BitString. This process
 needs to be repeated until the whole topology is covered.

 Once bits/SIs are assigned to the topology and BFERs, BFR-ids are
 just a derived set of identifiers from the operator / BIER-TE
 controller as explained above.

 Whenever different subtopologies have overlap, bits need to be
 repeated across the BitStrings, increasing the overall amount of bits
 required across all BitStrings/SIs. In the worst case, one assigns
 random subsets of BFERs to different SIs. This will result in an
 outcome much worse than in (non-TE) BIER: it maximizes the amount of
 unnecessary topology overlap across SIs and therefore reduces the
 number of BFERs that can be reached across each individual SI.
 Intelligent BFER-to-SI assignment and selecting specific "desired"
 subtopologies can minimize this problem.

 To set up BIER-TE efficiently for the topology shown in Figure 17,
 the following bit allocation method can be used. This method can
 easily be expanded to other, similarly structured larger topologies.

 Each area is allocated one or more SIs, depending on the number of
 future expected BFERs and the number of bits required for the
 topology in the area. In this example, six SIs are used, one per
 area.

 In addition, we use four bits in each SI:

 bia: (b)it (i)ngress (a)

 bib: (b)it (i)ngress (b)

 bea: (b)it (e)gress (a)

 beb: (b)it (e)gress (b)

 These bits will be used to pass BIER packets from any BFIR via any
 combination of ingress area a/b BFRs and egress area a/b BFRs into a
 specific target area. These bits are then set up with the right
 forward_routed() adjacencies on the BFIRs and area edge BFRs as
 follows.

 On all BFIRs in an area, j|j=1...6, bia in each BIFT:SI is populated
 with the same forward_routed(BFRja) and bib with
 forward_routed(BFRjb). On all area edge BFRs, bea in
 BIFT:SI=k|k=1...6 is populated with forward_routed(BFRka) and beb in
 BIFT:SI=k with forward_routed(BFRkb).

 For BIER-TE forwarding of a packet to a subset of BFERs across all
 areas, a BFIR would create at most six copies, with SI=1...SI=6. In
 each packet, the BitString includes bits for one area and the BFERs
 in that area, plus the four bits to indicate whether to pass this
 packet via the ingress area a or b border BFR and the egress area a
 or b border BFR, therefore allowing path steering for those two
 "unicast" legs: 1) BFIR to ingress area edge and 2) core to egress
 area edge. Replication only happens inside the egress areas. For
 BFERs that are in the same area as the BFIR, these four bits are not
 used.

5.3.7. Summary

 BIER-TE can, like BIER, support multiple SIs within a subdomain.
 This allows application of the mapping BFR-id = SI * BSL + BP. This
 also permits the reuse of the BIER architecture concept of BFR-ids
 and, therefore, minimization of BIER-TE-specific functions in
 possible BIER layer control plane mechanisms with BIER-TE, including
 flow overlay methods and BIER header fields.

 The number of BFIRs/BFERs possible in a subdomain is smaller than in
 BIER because BIER-TE uses additional bits for the topology.

 Subdomains in BIER-TE can be used as they are in BIER to create more
 efficient replication to known subsets of BFERs.

 Assigning bits for BFERs intelligently into the right SI is more
 important in BIER-TE than in BIER because of replication efficiency
 and the overall amount of bits required.

6. Security Considerations

 If "Encapsulation for Bit Index Explicit Replication (BIER) in MPLS
 and Non-MPLS Networks" [RFC8296] is used, its security considerations
 also apply to BIER-TE.

 The security considerations of "Multicast Using Bit Index Explicit
 Replication (BIER)" [RFC8279] also apply to BIER-TE, with the
 following overriding or additional considerations.

 BIER-TE forwarding explicitly supports unicast "tunneling" of BIER
 packets via forward_routed() adjacencies. The BIER domain security
 model is based on a subset of interfaces on a BFR that connect to
 other BFRs of the same BIER domain. For BIER-TE, this security model
 equally applies to such unicast "tunneled" BIER packets. This not
 only includes the need to filter received unicast "tunneled" BIER
 packets to prohibit the injection of such "tunneled" BIER packets
 from outside the BIER domain but also the need to prohibit
 forward_routed() adjacencies from leaking BIER packets from the BIER
 domain. It SHOULD be possible to configure interfaces to be part of
 a BIER domain solely for sending and receiving unicast "tunneled"
 BIER packets even if the interface cannot send/receive BIER
 encapsulated packets.

 In BIER, the standardized methods for the routing underlays are IGPs
 with extensions to distribute BFR-ids and BFR-prefixes. [RFC8401]
 specifies the extensions for IS-IS, and [RFC8444] specifies the
 extensions for OSPF. Attacking the protocols for the BIER routing
 underlay or (non-TE) BIER layer control plane, or the impairment of
 any BFRs in a domain, may lead to successful attacks against the
 information that BIER-TE learns from the routing protocol (routes,
 next hops, BFR-ids, ...), enabling DoS attacks against paths or the
 addressing (BFR-ids, BFR-prefixes) used by BIER.

 The reference model for the BIER-TE layer control plane is a BIER-TE
 controller. When such a controller is used, the impairment of an
 individual BFR in a domain causes no impairment of the BIER-TE
 control plane on other BFRs. If a routing protocol is used to
 support forward_routed() adjacencies, then this is still an attack
 vector as in BIER, but only for BIER-TE forward_routed() adjacencies
 and not other adjacencies.

 Whereas IGP routing protocols are most often not well secured through
 cryptographic authentication and confidentiality, communications
 between controllers and routers such as those to be considered for
 the BIER-TE controller / control plane can be, and are, much more
 commonly secured with those security properties -- for example, by
 using "Secure Shell" (SSH) [RFC4253] for NETCONF [RFC6242]; or via
 "Transport Layer Security" (TLS), such as [RFC8253] for PCEP
 [RFC5440] or [RFC7589] for NETCONF. BIER-TE controllers SHOULD use
 security equal to or better than these mechanisms.

 When any of these security mechanisms/protocols are used for
 communications between a BIER-TE controller and BFRs, their security
 considerations apply to BIER-TE. In addition, the security
 considerations of "A Path Computation Element (PCE)-Based
 Architecture" [RFC4655] apply.

 The most important attack vector in BIER-TE is misconfiguration,
 either on the BFRs themselves or via the BIER-TE controller.
 Forwarding entries with DNC could be set up to create persistent
 loops, in which packets only expire because of TTL. To minimize the
 impact of such attacks (or, more likely, unintentional

 misconfiguration by operators and/or bad BIER-TE controller
 software), the BIER-TE forwarding rules are defined to be as strict
 in clearing bits as possible. The clearing of all bits with an
 adjacency on a BFR prohibits a looping packet from creating
 additional packet amplification through the misconfigured loop on the
 packet’s second time or subsequent times around the loop, because all
 relevant adjacency bits would have been cleared on the first round
 through the loop. As a result, looping packets can occur in BIER-TE
 to the same degree as is possible with unintentional or malicious
 loops in the routing underlay with BIER, or even with unicast
 traffic.

 Deployments where BIER-TE would likely be beneficial may include
 operational models where actual configuration changes from the
 controller are only required during non-production phases of the
 network’s life cycle, e.g., in embedded networks or in manufacturing
 networks during such activities as plant reworking or repairs. In
 these types of deployments, configuration changes could be locked out
 when the network is in production state and could only be
 (re-)enabled through reverting the network/installation to non-
 production state. Such security designs would not only allow a
 deployment to provide additional layers of protection against
 configuration attacks but would, first and foremost, protect the
 active production process from such configuration attacks.

7. IANA Considerations

 This document has no IANA actions.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8279] Wijnands, IJ., Ed., Rosen, E., Ed., Dolganow, A.,
 Przygienda, T., and S. Aldrin, "Multicast Using Bit Index
 Explicit Replication (BIER)", RFC 8279,
 DOI 10.17487/RFC8279, November 2017,
 <https://www.rfc-editor.org/info/rfc8279>.

 [RFC8296] Wijnands, IJ., Ed., Rosen, E., Ed., Dolganow, A.,
 Tantsura, J., Aldrin, S., and I. Meilik, "Encapsulation
 for Bit Index Explicit Replication (BIER) in MPLS and Non-
 MPLS Networks", RFC 8296, DOI 10.17487/RFC8296, January
 2018, <https://www.rfc-editor.org/info/rfc8296>.

8.2. Informative References

 [BIER-MCAST-OVERLAY]
 Trossen, D., Rahman, A., Wang, C., and T. Eckert,
 "Applicability of BIER Multicast Overlay for Adaptive
 Streaming Services", Work in Progress, Internet-Draft,
 draft-ietf-bier-multicast-http-response-06, 10 July 2021,
 <https://datatracker.ietf.org/doc/html/draft-ietf-bier-
 multicast-http-response-06>.

 [BIER-TE-PROTECTION]
 Eckert, T., Cauchie, G., Braun, W., and M. Menth,
 "Protection Methods for BIER-TE", Work in Progress,
 Internet-Draft, draft-eckert-bier-te-frr-03, 5 March 2018,
 <https://datatracker.ietf.org/doc/html/draft-eckert-bier-
 te-frr-03>.

 [BIER-TE-YANG]
 Zhang, Z., Wang, C., Chen, R., Hu, F., Sivakumar, M., and
 H. Chen, "A YANG data model for Tree Engineering for Bit
 Index Explicit Replication (BIER-TE)", Work in Progress,
 Internet-Draft, draft-ietf-bier-te-yang-05, 1 May 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-bier-te-
 yang-05>.

 [Bloom70] Bloom, B. H., "Space/time trade-offs in hash coding with
 allowable errors", Comm. ACM 13(7):422-6,
 DOI 10.1145/362686.362692, July 1970,
 <https://dl.acm.org/doi/10.1145/362686.362692>.

 [CONSTRAINED-CAST]
 Bergmann, O., Bormann, C., Gerdes, S., and H. Chen,
 "Constrained-Cast: Source-Routed Multicast for RPL", Work
 in Progress, Internet-Draft, draft-ietf-roll-ccast-01, 30
 October 2017, <https://datatracker.ietf.org/doc/html/
 draft-ietf-roll-ccast-01>.

 [ICC] Reed, M. J., Al-Naday, M., Thomos, N., Trossen, D.,
 Petropoulos, G., and S. Spirou, "Stateless multicast
 switching in software defined networks", IEEE
 International Conference on Communications (ICC), Kuala
 Lumpur, Malaysia, DOI 10.1109/ICC.2016.7511036, May 2016,
 <https://ieeexplore.ieee.org/document/7511036>.

 [NON-MPLS-BIER-ENCODING]
 Wijnands, IJ., Mishra, M., Xu, X., and H. Bidgoli, "An
 Optional Encoding of the BIFT-id Field in the non-MPLS
 BIER Encapsulation", Work in Progress, Internet-Draft,
 draft-ietf-bier-non-mpls-bift-encoding-04, 30 May 2021,
 <https://datatracker.ietf.org/doc/html/draft-ietf-bier-
 non-mpls-bift-encoding-04>.

 [RCSD94] Zhang, H. and D. Ferrari, "Rate-Controlled Service
 Disciplines", Journal of High Speed Networks, Volume 3,
 Issue 4, pp. 389-412, DOI 10.3233/JHS-1994-3405, October
 1994, <https://content.iospress.com/articles/journal-of-
 high-speed-networks/jhs3-4-05>.

 [RFC4253] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Transport Layer Protocol", RFC 4253, DOI 10.17487/RFC4253,
 January 2006, <https://www.rfc-editor.org/info/rfc4253>.

 [RFC4456] Bates, T., Chen, E., and R. Chandra, "BGP Route
 Reflection: An Alternative to Full Mesh Internal BGP
 (IBGP)", RFC 4456, DOI 10.17487/RFC4456, April 2006,
 <https://www.rfc-editor.org/info/rfc4456>.

 [RFC4655] Farrel, A., Vasseur, J.-P., and J. Ash, "A Path
 Computation Element (PCE)-Based Architecture", RFC 4655,
 DOI 10.17487/RFC4655, August 2006,
 <https://www.rfc-editor.org/info/rfc4655>.

 [RFC5440] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation
 Element (PCE) Communication Protocol (PCEP)", RFC 5440,
 DOI 10.17487/RFC5440, March 2009,
 <https://www.rfc-editor.org/info/rfc5440>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC7589] Badra, M., Luchuk, A., and J. Schoenwaelder, "Using the
 NETCONF Protocol over Transport Layer Security (TLS) with

 Mutual X.509 Authentication", RFC 7589,
 DOI 10.17487/RFC7589, June 2015,
 <https://www.rfc-editor.org/info/rfc7589>.

 [RFC7752] Gredler, H., Ed., Medved, J., Previdi, S., Farrel, A., and
 S. Ray, "North-Bound Distribution of Link-State and
 Traffic Engineering (TE) Information Using BGP", RFC 7752,
 DOI 10.17487/RFC7752, March 2016,
 <https://www.rfc-editor.org/info/rfc7752>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC7988] Rosen, E., Ed., Subramanian, K., and Z. Zhang, "Ingress
 Replication Tunnels in Multicast VPN", RFC 7988,
 DOI 10.17487/RFC7988, October 2016,
 <https://www.rfc-editor.org/info/rfc7988>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8253] Lopez, D., Gonzalez de Dios, O., Wu, Q., and D. Dhody,
 "PCEPS: Usage of TLS to Provide a Secure Transport for the
 Path Computation Element Communication Protocol (PCEP)",
 RFC 8253, DOI 10.17487/RFC8253, October 2017,
 <https://www.rfc-editor.org/info/rfc8253>.

 [RFC8345] Clemm, A., Medved, J., Varga, R., Bahadur, N.,
 Ananthakrishnan, H., and X. Liu, "A YANG Data Model for
 Network Topologies", RFC 8345, DOI 10.17487/RFC8345, March
 2018, <https://www.rfc-editor.org/info/rfc8345>.

 [RFC8401] Ginsberg, L., Ed., Przygienda, T., Aldrin, S., and Z.
 Zhang, "Bit Index Explicit Replication (BIER) Support via
 IS-IS", RFC 8401, DOI 10.17487/RFC8401, June 2018,
 <https://www.rfc-editor.org/info/rfc8401>.

 [RFC8402] Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L.,
 Decraene, B., Litkowski, S., and R. Shakir, "Segment
 Routing Architecture", RFC 8402, DOI 10.17487/RFC8402,
 July 2018, <https://www.rfc-editor.org/info/rfc8402>.

 [RFC8444] Psenak, P., Ed., Kumar, N., Wijnands, IJ., Dolganow, A.,
 Przygienda, T., Zhang, J., and S. Aldrin, "OSPFv2
 Extensions for Bit Index Explicit Replication (BIER)",
 RFC 8444, DOI 10.17487/RFC8444, November 2018,
 <https://www.rfc-editor.org/info/rfc8444>.

 [RFC8556] Rosen, E., Ed., Sivakumar, M., Przygienda, T., Aldrin, S.,
 and A. Dolganow, "Multicast VPN Using Bit Index Explicit
 Replication (BIER)", RFC 8556, DOI 10.17487/RFC8556, April
 2019, <https://www.rfc-editor.org/info/rfc8556>.

 [TE-OVERVIEW]
 Farrel, A., Ed., "Overview and Principles of Internet
 Traffic Engineering", Work in Progress, Internet-Draft,
 draft-ietf-teas-rfc3272bis-21, 11 September 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-teas-
 rfc3272bis-21>.

Appendix A. BIER-TE and Segment Routing (SR)

 SR [RFC8402] aims to enable lightweight path steering via loose
 source routing. For example, compared to its more heavyweight
 predecessor, RSVP-TE, SR does not require per-path signaling to each
 of these hops.

 BIER-TE supports the same design philosophy for multicast. Like SR,
 BIER-TE

 * relies on source routing (via a BitString), and

 * only requires consideration of the "hops" either (1) on which
 replication has to happen or (2) across which the traffic should
 be steered (even without replication).

 Any other hops can be skipped via the use of routed adjacencies.

 BIER-TE "bit positions" (BPs) can be understood as the BIER-TE
 equivalent of "forwarding segments" in SR, but they have a different
 scope than do forwarding segments in SR. Whereas forwarding segments
 in SR are global or local, BPs in BIER-TE have a scope that is
 comprised of one or more BFRs that have adjacencies for the BPs in
 their BIFTs. These segments can be called "adjacency-scoped"
 forwarding segments.

 Adjacency scope could be global, but then every BFR would need an
 adjacency for a given BP -- for example, a forward_routed() adjacency
 with encapsulation to the global SR "Segment Identifier" (SID) of the
 destination. Such a BP would always result in ingress replication,
 though (as in [RFC7988]). The first BFR encountering this BP would
 directly replicate traffic on it. Only by using non-global adjacency
 scope for BPs can traffic be steered and replicated on a non-BFIR.

 SR can naturally be combined with BIER-TE and can help optimize it.
 For example, instead of defining bit positions for non-replicating
 hops, it is equally possible to use SR encapsulations (e.g., SR-MPLS
 label stacks) for the encapsulation of "forward_routed()"
 adjacencies.

 Note that (non-TE) BIER itself can also be seen as being similar to
 SR. BIER BPs act as global destination Node-SIDs, and the BIER
 BitString is simply a highly optimized mechanism to indicate multiple
 such SIDs and let the network take care of effectively replicating
 the packet hop by hop to each destination Node-SID. BIER does not
 allow the indication of intermediate hops or, in terms of SR, the
 ability to indicate a sequence of SIDs to reach the destination. On
 the other hand, BIER-TE and its adjacency-scoped BPs provide these
 capabilities.

Acknowledgements

 The authors would like to thank Greg Shepherd, IJsbrand Wijnands,
 Neale Ranns, Dirk Trossen, Sandy Zheng, Lou Berger, Jeffrey Zhang,
 Carsten Bormann, and Wolfgang Braun for their reviews and
 suggestions.

 Special thanks to Xuesong Geng for shepherding this document.
 Special thanks also for IESG review/suggestions by Alvaro Retana
 (responsible AD/RTG), Benjamin Kaduk (SEC), Tommy Pauly (TSV),
 Zaheduzzaman Sarker (TSV), Ã\211ric Vyncke (INT), Martin Vigoureux (RTG),
 Robert Wilton (OPS), Erik Kline (INT), Lars Eggert (GEN), Roman
 Danyliw (SEC), Ines Robles (RTGDIR), Robert Sparks (Gen-ART),
 Yingzhen Qu (RTGDIR), and Martin Duke (TSV).

Authors’ Addresses

 Toerless Eckert (editor)
 Futurewei Technologies Inc.
 2330 Central Expy
 Santa Clara, CA 95050
 United States of America
 Email: tte@cs.fau.de

 Michael Menth
 University of Tuebingen
 Germany
 Email: menth@uni-tuebingen.de

 Gregory Cauchie
 KOEVOO
 France
 Email: gregory@koevoo.tech

